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PREFACE

I wrote this book from my perspective as a designer in industry, primarily for other
designers and users of antennas. On occasion I have prepared and taught antenna
courses, for which I developed a systematic approach to the subject. For the last
decade I have edited the “Antenna Designer’s Notebook” column in the IEEE antenna
magazine. This expanded edition adds a combination of my own design notebook and
the many other ideas provided to me by others, leading to this collection of ideas that
I think designers should know.

The book contains a systematic approach to the subject. Every author would like to
be read from front to back, but my own career assignments would have caused to me
to jump around in this book. Nevertheless, Chapter 1 covers those topics that every
user and designer should know. Because I deal with complete antenna design, which
includes mounting the antenna, included are the effects of nearby structures and how
they can be used to enhance the response. We all study ideal antennas floating in free
space to help us understand the basics, but the real world is a little different.

Instead of drawing single line graphs of common relationships between two param-
eters, I generated scales for calculations that I perform over and over. I did not supply
a set of computer programs because I seldom use collections supplied by others, and
younger engineers find my programs quaint, as each generation learns a different com-
puter language. You’ll learn by writing your own.

IEEE Antennas and Propagation Society’s digital archive of all material published
from 1952 to 2000 has changed our approach to research. I have not included extensive
bibliographies, because I believe that it is no longer necessary. The search engine of the
archive can supply an exhaustive list. I referred only to papers that I found particularly
helpful. Complete sets of the transactions are available in libraries, whereas the wealth
of information in the archive from conferences was not. I have started mining this
information, which contains many useful design ideas, and have incorporated some
of them in this book. In this field, 40-year-old publications are still useful and we
should not reinvent methods. Many clever ideas from industry are usually published

xv



xvi PREFACE

only once, if at all, and personally, I’ll be returning to this material again and again,
because all books have limited space.

As with the first edition, I enjoyed writing this book because I wanted to express
my point of view of a rewarding field. Although the amount of information available
is overwhelming and the mathematics describing it can cloud the ideas, I hope my
explanations help you develop new products or use old ones.

I would like to thank all the authors who taught me this subject by sharing their ideas,
especially those working in industry. On a personal note I thank the designers at Lock-
heed Martin, who encouraged me and reviewed material while I wrote: in particular,
Jeannette McDonnell, Thomas Cencich, Donald Huebner, and Julie Huffman.

THOMAS A. MILLIGAN



1
PROPERTIES OF ANTENNAS

One approach to an antenna book starts with a discussion of how antennas radiate.
Beginning with Maxwell’s equations, we derive electromagnetic waves. After that
lengthy discussion, which contains a lot of mathematics, we discuss how these waves
excite currents on conductors. The second half of the story is that currents radiate
and produce electromagnetic waves. You may already have studied that subject, or if
you wish to further your background, consult books on electromagnetics. The study of
electromagnetics gives insight into the mathematics describing antenna radiation and
provides the rigor to prevent mistakes. We skip the discussion of those equations and
move directly to practical aspects.

It is important to realize that antennas radiate from currents. Design consists of
controlling currents to produce the desired radiation distribution, called its pattern.
In many situations the problem is how to prevent radiation from currents, such as in
circuits. Whenever a current becomes separated in distance from its return current, it
radiates. Simply stated, we design to keep the two currents close together, to reduce
radiation. Some discussions will ignore the current distribution and instead, consider
derived quantities, such as fields in an aperture or magnetic currents in a slot or around
the edges of a microstrip patch. You will discover that we use any concept that provides
insight or simplifies the mathematics.

An antenna converts bound circuit fields into propagating electromagnetic waves
and, by reciprocity, collects power from passing electromagnetic waves. Maxwell’s
equations predict that any time-varying electric or magnetic field produces the oppo-
site field and forms an electromagnetic wave. The wave has its two fields oriented
orthogonally, and it propagates in the direction normal to the plane defined by the
perpendicular electric and magnetic fields. The electric field, the magnetic field, and
the direction of propagation form a right-handed coordinate system. The propagating
wave field intensity decreases by 1/R away from the source, whereas a static field

Modern Antenna Design, Second Edition, By Thomas A. Milligan
Copyright  2005 John Wiley & Sons, Inc.

1



2 PROPERTIES OF ANTENNAS

drops off by 1/R2. Any circuit with time-varying fields has the capability of radiating
to some extent.

We consider only time-harmonic fields and use phasor notation with time depen-
dence ejωt . An outward-propagating wave is given by e−j (kR−ωt), where k, the wave
number, is given by 2π/λ. λ is the wavelength of the wave given by c/f , where c is
the velocity of light (3 × 108 m/s in free space) and f is the frequency. Increasing the
distance from the source decreases the phase of the wave.

Consider a two-wire transmission line with fields bound to it. The currents on a
single wire will radiate, but as long as the ground return path is near, its radiation will
nearly cancel the other line’s radiation because the two are 180◦ out of phase and the
waves travel about the same distance. As the lines become farther and farther apart,
in terms of wavelengths, the fields produced by the two currents will no longer cancel
in all directions. In some directions the phase delay is different for radiation from the
current on each line, and power escapes from the line. We keep circuits from radiating
by providing close ground returns. Hence, high-speed logic requires ground planes to
reduce radiation and its unwanted crosstalk.

1-1 ANTENNA RADIATION

Antennas radiate spherical waves that propagate in the radial direction for a coordinate
system centered on the antenna. At large distances, spherical waves can be approx-
imated by plane waves. Plane waves are useful because they simplify the problem.
They are not physical, however, because they require infinite power.

The Poynting vector describes both the direction of propagation and the power
density of the electromagnetic wave. It is found from the vector cross product of the
electric and magnetic fields and is denoted S:

S = E × H∗ W/m2

Root mean square (RMS) values are used to express the magnitude of the fields. H∗ is
the complex conjugate of the magnetic field phasor. The magnetic field is proportional
to the electric field in the far field. The constant of proportion is η, the impedance of
free space (η = 376.73 �):

|S| = S = |E|2
η

W/m2 (1-1)

Because the Poynting vector is the vector product of the two fields, it is orthogonal to
both fields and the triplet defines a right-handed coordinate system: (E, H, S).

Consider a pair of concentric spheres centered on the antenna. The fields around the
antenna decrease as 1/R, 1/R2, 1/R3, and so on. Constant-order terms would require
that the power radiated grow with distance and power would not be conserved. For
field terms proportional to 1/R2, 1/R3, and higher, the power density decreases with
distance faster than the area increases. The energy on the inner sphere is larger than that
on the outer sphere. The energies are not radiated but are instead concentrated around
the antenna; they are near-field terms. Only the 1/R2 term of the Poynting vector
(1/R field terms) represents radiated power because the sphere area grows as R2 and
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gives a constant product. All the radiated power flowing through the inner sphere will
propagate to the outer sphere. The sign of the input reactance depends on the near-field
predominance of field type: electric (capacitive) or magnetic (inductive). At resonance
(zero reactance) the stored energies due to the near fields are equal. Increasing the
stored fields increases the circuit Q and narrows the impedance bandwidth.

Far from the antenna we consider only the radiated fields and power density. The
power flow is the same through concentric spheres:

4πR2
1S1,avg = 4πR2

2S2,avg

The average power density is proportional to 1/R2. Consider differential areas on the
two spheres at the same coordinate angles. The antenna radiates only in the radial
direction; therefore, no power may travel in the θ or φ direction. Power travels in flux
tubes between areas, and it follows that not only the average Poynting vector but also
every part of the power density is proportional to 1/R2:

S1R
2
1 sin θ dθ dφ = S2R

2
2 sin θ dθ dφ

Since in a radiated wave S is proportional to 1/R2, E is proportional to 1/R. It is
convenient to define radiation intensity to remove the 1/R2 dependence:

U(θ, φ) = S(R, θ, φ)R2 W/solid angle

Radiation intensity depends only on the direction of radiation and remains the same
at all distances. A probe antenna measures the relative radiation intensity (pattern)
by moving in a circle (constant R) around the antenna. Often, of course, the antenna
rotates and the probe is stationary.

Some patterns have established names. Patterns along constant angles of the spher-
ical coordinates are called either conical (constant θ ) or great circle (constant φ). The
great circle cuts when φ = 0◦ or φ = 90◦ are the principal plane patterns. Other named
cuts are also used, but their names depend on the particular measurement positioner,
and it is necessary to annotate these patterns carefully to avoid confusion between
people measuring patterns on different positioners. Patterns are measured by using
three scales: (1) linear (power), (2) square root (field intensity), and (3) decibels (dB).
The dB scale is used the most because it reveals more of the low-level responses
(sidelobes).

Figure 1-1 demonstrates many characteristics of patterns. The half-power beamwidth
is sometimes called just the beamwidth. The tenth-power and null beamwidths are used
in some applications. This pattern comes from a parabolic reflector whose feed is moved
off the axis. The vestigial lobe occurs when the first sidelobe becomes joined to the
main beam and forms a shoulder. For a feed located on the axis of the parabola, the
first sidelobes are equal.

1-2 GAIN

Gain is a measure of the ability of the antenna to direct the input power into radiation
in a particular direction and is measured at the peak radiation intensity. Consider the
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FIGURE 1-1 Antenna pattern characteristics.

power density radiated by an isotropic antenna with input power P0 at a distance R:
S = P0/4πR2. An isotropic antenna radiates equally in all directions, and its radiated
power density S is found by dividing the radiated power by the area of the sphere
4πR2. The isotropic radiator is considered to be 100% efficient. The gain of an actual
antenna increases the power density in the direction of the peak radiation:

S = P0G

4πR2
= |E|2

η
or |E| = 1

R

√
P0Gη

4π
= √

Sη (1-2)

Gain is achieved by directing the radiation away from other parts of the radiation
sphere. In general, gain is defined as the gain-biased pattern of the antenna:

S(θ, φ) = P0G(θ, φ)

4πR2
power density

U(θ, φ) = P0G(θ, φ)

4π
radiation intensity (1-3)

The surface integral of the radiation intensity over the radiation sphere divided by the
input power P0 is a measure of the relative power radiated by the antenna, or the
antenna efficiency:

Pr

P0
=

∫ 2π

0

∫ π

0

G(θ, φ)

4π
sin θ dθ dφ = ηe efficiency
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where Pr is the radiated power. Material losses in the antenna or reflected power
due to poor impedance match reduce the radiated power. In this book, integrals in
the equation above and those that follow express concepts more than operations we
perform during design. Only for theoretical simplifications of the real world can we find
closed-form solutions that would call for actual integration. We solve most integrals
by using numerical methods that involve breaking the integrand into small segments
and performing a weighted sum. However, it is helpful that integrals using measured
values reduce the random errors by averaging, which improves the result.

In a system the transmitter output impedance or the receiver input impedance may
not match the antenna input impedance. Peak gain occurs for a receiver impedance
conjugate matched to the antenna, which means that the resistive parts are the same
and the reactive parts are the same magnitude but have opposite signs. Precision gain
measurements require a tuner between the antenna and receiver to conjugate-match
the two. Alternatively, the mismatch loss must be removed by calculation after the
measurement. Either the effect of mismatches is considered separately for a given
system, or the antennas are measured into the system impedance and mismatch loss is
considered to be part of the efficiency.

Example Compute the peak power density at 10 km of an antenna with an input
power of 3 W and a gain of 15 dB.

First convert dB gain to a ratio: G = 1015/10 = 31.62. The power spreads over the
sphere area with radius 10 km or an area of 4π(104)2 m2. The power density is

S = (3 W)(31.62)

4π × 108 m2
= 75.5 nW/m2

We calculate the electric field intensity using Eq. (1-2):

|E| = √
Sη =

√
(75.5 × 10−9)(376.7) = 5333 µV/m

Although gain is usually relative to an isotropic antenna, some antenna gains are
referred to a λ/2 dipole with an isotropic gain of 2.14 dB.

If we approximate the antenna as a point source, we compute the electric field
radiated by using Eq. (1-2):

E(θ, φ) = e−jkR

R

√
P0G(θ, φ)η

4π
(1-4)

This requires only that the antenna be small compared to the radial distance R.
Equation (1-4) ignores the direction of the electric field, which we define as polariza-
tion. The units of the electric field are volts/meter. We determine the far-field pattern
by multiplying Eq. (1-4) by R and removing the phase term e−jkR since phase has
meaning only when referred to another point in the far field. The far-field electric field
Eff unit is volts:

Eff(θ, φ) =
√

P0G(θ, φ)η

4π
or G(θ, φ) = 1

P0

[
Eff(θ, φ)

√
4π

η

]2

(1-5)

During analysis, we often normalize input power to 1 W and can compute gain easily
from the electric field by multiplying by a constant

√
4π/η = 0.1826374.
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1-3 EFFECTIVE AREA

Antennas capture power from passing waves and deliver some of it to the terminals.
Given the power density of the incident wave and the effective area of the antenna,
the power delivered to the terminals is the product

Pd = SAeff (1-6)

For an aperture antenna such as a horn, parabolic reflector, or flat-plate array, effective
area is physical area multiplied by aperture efficiency. In general, losses due to material,
distribution, and mismatch reduce the ratio of the effective area to the physical area.
Typical estimated aperture efficiency for a parabolic reflector is 55%. Even antennas
with infinitesimal physical areas, such as dipoles, have effective areas because they
remove power from passing waves.

1-4 PATH LOSS [1, p. 183]

We combine the gain of the transmitting antenna with the effective area of the receiv-
ing antenna to determine delivered power and path loss. The power density at the
receiving antenna is given by Eq. (1-3), and the received power is given by Eq. (1-6).
By combining the two, we obtain the path loss:

Pd

Pt

= A2G1(θ, φ)

4πR2

Antenna 1 transmits, and antenna 2 receives. If the materials in the antennas are
linear and isotropic, the transmitting and receiving patterns are identical (reciprocal) [2,
p. 116]. When we consider antenna 2 as the transmitting antenna and antenna 1 as the
receiving antenna, the path loss is

Pd

Pt

= A1G2(θ, φ)

4πR2

Since the responses are reciprocal, the path losses are equal and we can gather and
eliminate terms:

G1

A1
= G2

A2
= constant

Because the antennas were arbitrary, this quotient must equal a constant. This constant
was found by considering the radiation between two large apertures [3]:

G

A
= 4π

λ2
(1-7)

We substitute this equation into path loss to express it in terms of the gains or effective
areas:

Pd

Pt

= G1G2

(
λ

4πR

)2

= A1A2

λ2R2
(1-8)

We make quick evaluations of path loss for various units of distance R and for fre-
quency f in megahertz using the formula

path loss(dB) = KU + 20 log(f R) − G1(dB) − G2(dB) (1-9)
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where KU depends on the length units:

Unit KU

km 32.45
nm 37.80
miles 36.58
m −27.55
ft −37.87

Example Compute the gain of a 3-m-diameter parabolic reflector at 4 GHz assuming
55% aperture efficiency.

Gain is related to effective area by Eq. (1-7):

G = 4πA

λ2

We calculate the area of a circular aperture by A = π(D/2)2. By combining these
equations, we have

G =
(

πD

λ

)2

ηa =
(

πDf

c

)2

ηa (1-10)

where D is the diameter and ηa is the aperture efficiency. On substituting the values
above, we obtain the gain:

G =
[

3π(4 × 109)

0.3 × 109

]2

(0.55) = 8685 (39.4 dB)

Example Calculate the path loss of a 50-km communication link at 2.2 GHz using
a transmitter antenna with a gain of 25 dB and a receiver antenna with a gain of
20 dB.

Path loss = 32.45 + 20 log[2200(50)] − 25 − 20 = 88.3 dB

What happens to transmission between two apertures as the frequency is increased?
If we assume that the effective area remains constant, as in a parabolic reflector, the
transmission increases as the square of frequency:

Pd

Pt

= A1A2

R2

1

λ2
= A1A2

R2

(
f

c

)2

= Bf 2

where B is a constant for a fixed range. The receiving aperture captures the same power
regardless of frequency, but the gain of the transmitting antenna increases as the square
of frequency. Hence, the received power also increases as frequency squared. Only for
antennas, whose gain is a fixed value when frequency changes, does the path loss
increase as the square of frequency.

1-5 RADAR RANGE EQUATION AND CROSS SECTION

Radar operates using a double path loss. The radar transmitting antenna radiates a field
that illuminates a target. These incident fields excite surface currents that also radiate
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to produce a second field. These fields propagate to the receiving antenna, where they
are collected. Most radars use the same antenna both to transmit the field and to collect
the signal returned, called a monostatic system, whereas we use separate antennas for
bistatic radar. The receiving system cannot be detected in a bistatic system because it
does not transmit and has greater survivability in a military application.

We determine the power density illuminating the target at a range RT by using
Eq. (1-2):

Sinc = PT GT (θ, φ)

4πR2
T

(1-11)

The target’s radar cross section (RCS), the scattering area of the object, is expressed in
square meters or dBm2: 10 log(square meters). The RCS depends on both the incident
and reflected wave directions. We multiply the power collected by the target with its
receiving pattern by the gain of the effective antenna due to the currents induced:

RCS = σ = powerreflected

power density incident
= Ps(θr , φr, θi, φi)

PT GT /4πR2
T

(1-12)

In a communication system we call Ps the equivalent isotropic radiated power (EIRP),
which equals the product of the input power and the antenna gain. The target becomes
the transmitting source and we apply Eq. (1-2) to find the power density at the receiving
antenna at a range RR from the target. Finally, the receiving antenna collects the power
density with an effective area AR . We combine these ideas to obtain the power delivered
to the receiver:

Prec = SRAR = ARPT GT σ(θr , φr , θi, φi)

(4πR2
T )(4πR2

R)

We apply Eq. (1-7) to eliminate the effective area of the receiving antenna and gather
terms to determine the bistatic radar range equation:

Prec

PT

= GT GRλ2σ(θr , φr, θi, φi)

(4π)3R2
T R2

R

(1-13)

We reduce Eq. (1-13) and collect terms for monostatic radar, where the same antenna
is used for both transmitting and receiving:

Prec

PT

= G2λ2σ

(4π)3R4

Radar received power is proportional to 1/R4 and to G2.
We find the approximate RCS of a flat plate by considering the plate as an antenna

with an effective area. Equation (1-11) gives the power density incident on the plate
that collects this power over an area AR:

PC = PT GT (θ, φ)

4πR2
T

AR

The power scattered by the plate is the power collected, PC , times the gain of the plate
as an antenna, GP :

Ps = PCGP = PT GT (θi, φi)

4πR2
T

ARGP (θr , φr)



WHY USE AN ANTENNA? 9

This scattered power is the effective radiated power in a particular direction, which
in an antenna is the product of the input power and the gain in a particular direction.
We calculate the plate gain by using the effective area and find the scattered power in
terms of area:

Ps = PT GT 4πA2
R

4πR2
T λ2

We determine the RCS σ by Eq. (1-12), the scattered power divided by the incident
power density:

σ = Ps

PT GT /4πR2
T

= 4πA2
R

λ2
= GR(θi, φi)GR(θr , φr)λ

2

4π
(1-14)

The right expression of Eq. (1-14) divides the gain into two pieces for bistatic scatter-
ing, where the scattered direction is different from the incident direction. Monostatic
scattering uses the same incident and reflected directions. We can substitute any object
for the flat plate and use the idea of an effective area and its associated antenna gain.
An antenna is an object with a unique RCS characteristic because part of the power
received will be delivered to the antenna terminals. If we provide a good impedance
match to this signal, it will not reradiate and the RCS is reduced. When we illuminate
an antenna from an arbitrary direction, some of the incident power density will be
scattered by the structure and not delivered to the antenna terminals. This leads to
the division of antenna RCS into the antenna mode of reradiated signals caused by
terminal mismatch and the structural mode, the fields reflected off the structure for
incident power density not delivered to the terminals.

1-6 WHY USE AN ANTENNA?

We use antennas to transfer signals when no other way is possible, such as commu-
nication with a missile or over rugged mountain terrain. Cables are expensive and
take a long time to install. Are there times when we would use antennas over level
ground? The large path losses of antenna systems lead us to believe that cable runs
are better.

Example Suppose that we must choose between using a low-loss waveguide run and a
pair of antennas at 3 GHz. Each antenna has 10 dB of gain. The low-loss waveguide has
only 19.7 dB/km loss. Table 1-1 compares losses over various distances. The waveguide
link starts out with lower loss, but the antenna system soon overtakes it. When the
path length doubles, the cable link loss also doubles in decibels, but an antenna link

TABLE 1-1 Losses Over Distance

Distance
(km)

Waveguide
Loss (dB)

Antenna Path
Loss (dB)

2 39.4 88
4 78.8 94
6 118.2 97.6

10 197 102
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increases by only 6 dB. As the distance is increased, radiating between two antennas
eventually has lower losses than in any cable.

Example A 200-m outside antenna range was set up to operate at 2 GHz using a 2-m-
diameter reflector as a source. The receiver requires a sample of the transmitter signal
to phase-lock the local oscillator and signal at a 45-MHz difference. It was proposed
to run an RG/U 115 cable through the power and control cable conduit, since the run
was short. The cable loss was 36 dB per 100 m, giving a total cable loss of 72 dB.
A 10-dB coupler was used on the transmitter to pick off the reference signal, so the
total loss was 82 dB. Since the source transmitted 100 mW (20 dBm), the signal was
−62 dBm at the receiver, sufficient for phase lock.

A second proposed method was to place a standard-gain horn (15 dB of gain) within
the beam of the source on a small stand out of the way of the measurement and next
to the receiver. If we assume that the source antenna had only 30% aperture efficiency,
we compute gain from Eq. (1-10) (λ = 0.15 m):

G =
(

2π

0.15

)2

(0.3) = 526 (27.2 dB)

The path loss is found from Eq. (1-9) for a range of 0.2 km:

32.45 + 20 log[2000(0.2)] − 27.2 − 15 = 42.3 dB

The power delivered out of the horn is 20 dBm − 42.3 dB = −22.3 dBm. A 20-dB
attenuator must be put on the horn to prevent saturation of the receiver (−30 dBm).
Even with a short run, it is sometimes better to transmit the signal between two antennas
instead of using cables.

1-7 DIRECTIVITY

Directivity is a measure of the concentration of radiation in the direction of the
maximum:

directivity = maximum radiation intensity

average radiation intensity
= Umax

U0
(1-15)

Directivity and gain differ only by the efficiency, but directivity is easily estimated
from patterns. Gain—directivity times efficiency—must be measured.

The average radiation intensity can be found from a surface integral over the
radiation sphere of the radiation intensity divided by 4π, the area of the sphere in
steradians:

average radiation intensity = 1

4π

∫ 2π

0

∫ π

0
U(θ, φ) sin θ dθ dφ = U0 (1-16)

This is the radiated power divided by the area of a unit sphere. The radiation intensity
U(θ, φ) separates into a sum of co- and cross-polarization components:

U0 = 1

4π

∫ 2π

0

∫ π

0
[UC(θ, φ) + U×(θ, φ)] sin θ dθ dφ (1-17)
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Both co- and cross-polarization directivities can be defined:

directivityC = UC,max

U0
directivity× = U×,max

U0
(1-18)

Directivity can also be defined for an arbitrary direction D(θ, φ) as radiation intensity
divided by the average radiation intensity, but when the coordinate angles are not
specified, we calculate directivity at Umax.

1-8 DIRECTIVITY ESTIMATES

Because a ratio of radiation intensities is used to calculate directivity, the pattern may be
referred to any convenient level. The most accurate estimate is based on measurements
at equal angle increments over the entire radiation sphere. The average may be found
from coarse measurements by using numerical integration, but the directivity measured
is affected directly by whether the maximum is found. The directivity of antennas with
well-behaved patterns can be estimated from one or two patterns. Either the integral
over the pattern is approximated or the pattern is approximated with a function whose
integral is found exactly.

1-8.1 Pencil Beam

By estimating the integral, Kraus [4] devised a method for pencil beam patterns with
its peak at θ = 0◦. Given the half-power beamwidths of the principal plane patterns, the
integral is approximately the product of the beamwidths. This idea comes from circuit
theory, where the integral of a time pulse is approximately the pulse width (3-dB
points) times the pulse peak: U0 = θ1θ2/4π, where θ1 and θ2 are the 3-dB beamwidths,
in radians, of the principal plane patterns:

directivity = 4π

θ1θ2
(rad) = 41,253

θ1θ2
(deg) (1-19)

Example Estimate the directivity of an antenna with E- and H -plane (principal plane)
pattern beamwidths of 24◦ and 36◦.

Directivity = 41,253

24(36)
= 47.75 (16.8 dB)

An analytical function, cos2N(θ/2), approximates a broad pattern centered on θ = 0◦

with a null at θ = 180◦:

U(θ) = cos2N(θ/2) or E = cosN(θ/2)

The directivity of this pattern can be computed exactly. The characteristics of the
approximation are related to the beamwidth at a specified level, Lvl(dB):

beamwidth [Lvl(dB)] = 4 cos−1(10−Lvl(dB)/20N) (1-20a)

N = −Lvl(dB)

20 log[cos(beamwidthLvl(dB)/4)]
(1-20b)

directivity = N + 1 (ratio) (1-20c)
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Directivity, dB

3-dB Beamwidth

SCALE 1-1 3-dB beamwidth and directivity relationship for cos2N (θ /2) pattern.

Directivity, dB

10-dB Beamwidth

SCALE 1-2 10-dB beamwidth and directivity relationship for cos2N (θ /2) pattern.

Scales 1-1 and 1-2, which give the relationship between beamwidth and directivity
using Eq. (1-20), are useful for quick conversion between the two properties. You can
use the two scales to estimate the 10-dB beamwidth given the 3-dB beamwidth. For
example, an antenna with a 90◦ 3-dB beamwidth has a directivity of about 7.3 dB. You
read from the lower scale that an antenna with 7.3-dB directivity has a 159.5◦ 10-dB
beamwidth. Another simple way to determine the beamwidths at different pattern levels
is the square-root factor approximation:

BW[Lvl 2(dB)]

BW[Lvl 1(dB)]
=

√
Lvl 2(dB)

Lvl 1(dB)

By this factor, beamwidth10 dB = 1.826 beamwidth3 dB; an antenna with a 90◦ 3-dB
beamwidth has a (1.826)90◦ = 164.3◦ 10-dB beamwidth.

This pattern approximation requires equal principal plane beamwidths, but we use
an elliptical approximation with unequal beamwidths:

U(θ, φ) = cos2Ne(θ/2) cos2 φ + cos2Nh(θ/2) sin2 φ (1-21)

where Ne and Nh are found from the principal plane beamwidths. We combine the
directivities calculated in the principal planes by the simple formula

directivity (ratio) = 2 · directivitye · directivityh

directivitye + directivityh

(1-22)

Example Estimate the directivity of an antenna with E- and H -plane pattern beam-
widths of 98◦ and 140◦.

From the scale we read a directivity of 6.6 dB in the E-plane and 4.37 dB in the
H -plane. We convert these to ratios and apply Eq. (1-22):

directivity (ratio) = 2(4.57)(2.74)

4.57 + 2.74
= 3.426 or 10 log(3.426) = 5.35 dB
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Many analyses of paraboloidal reflectors use a feed pattern approximation limited
to the front hemisphere with a zero pattern in the back hemisphere:

U(θ) = cos2N θ or E = cosN θ for θ ≤ π/2(90◦
)

The directivity of this pattern can be found exactly, and the characteristics of the
approximation are

beamwidth [Lvl(dB)] = 2 cos−1(10−Lvl(dB)/20N) (1-23a)

N = −Lvl(dB)

20 log[cos(beamwidthLvl(dB)/2)]
(1-23b)

directivity = 2(2N + 1) (ratio) (1-23c)

We use the elliptical model [Eq. (1-21)] with this approximate pattern and use Eq. (1-22)
to estimate the directivity when the E- and H -plane beamwidths are different.

1-8.2 Butterfly or Omnidirectional Pattern
Many antennas have nulls at θ = 0◦ with rotational symmetry about the z-axis
(Figure 1-2). Neither of the directivity estimates above can be used with these patterns
because they require the beam peak to be at θ = 0◦. We generate this type of antenna
pattern by using mode 2 log-periodic conical spirals, shaped reflectors, some higher-
order-mode waveguide horns, biconical horns, and traveling-wave antennas. A formula
similar to Kraus’s can be found if we assume that all the power is between the 3-dB
beamwidth angles θ1 and θ2:

U0 = 1

2

∫ θ2

θ1

sin θ dθ = cos θ1 − cos θ2

2

Rotational symmetry eliminates integration over φ:

directivity = Umax

U0
= 2

cos θ1 − cos θ2
(1-24)

FIGURE 1-2 Omnidirectional antenna pattern with sidelobes scanned above the horizon.
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Directivity, dB of Omnipattern at q = 90°

3-dB Beamwidth

SCALE 1-3 Relationship between 3-dB beamwidth of omnidirectional pattern and directivity.

Example A pattern with rotational symmetry has half-power points at 35◦ and 75◦.
Estimate the directivity.

Directivity = 2

cos 35◦ − cos 75◦ = 3.57 (5.5 dB)

If the pattern also has symmetry about the θ = 90◦ plane, the integral for the average
radiation intensity has limits from 0 to π/2. Equation (1-24) reduces to directivity =
1/ cos θ1.

Example A rotationally symmetric pattern with a maximum at 90◦ has a 45◦ beam-
width. Estimate the directivity.

θ1 = 90◦ − 45◦
/2 = 67.5◦, so

directivity = 1

cos 67.5◦ = 2.61 (4.2 dB)

The pattern can be approximated by the function

U(θ) = B sin2M(θ/2) cos2N(θ/2)

but the directivity estimates found by integrating this function show only minor
improvements over Eq. (1-24). Nevertheless, we can use the expression for analytical
patterns. Given beam edges θL and θU at a level Lvl(dB), we find the exponential
factors.

AA = ln[cos(θU/2)] − ln[cos(θL/2)]

ln[sin(θL/2)] − ln[sin(θU/2)]
and T M2 = tan−1

√
AA

N = −|Lvl(dB)|/8.68589

AA{ln[sin(θL/2)] − ln(sin T M2)} + ln(cos(θL/2)) − ln(cos T M2)

M = AA(N)

A second pattern model of an omnidirectional pattern based on the pattern function
with minor sidelobes and a beam peak at θ0 measured from the symmetry axis is

sin[b(θ0 − θ)]

b(θ0 − θ)

We estimate the directivity from the half-power beamwidth (HPBW) and the beam
peak θ0 [5]:

directivity(dB) = 10 log
101

(HPBW − 0.0027HPBW2) sin θ0
(1-25)
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Scan Factor, dB

Beam Direction, q

SCALE 1-4 Additional directivity of omnidirectional pattern when scanned into conical
pattern.

Scale 1-3 evaluates this formula for a beam at θ0 = 90◦ given HPBW, and Scale 1-4
gives the additional gain when the beam peak scans toward the axis.

The directivity of butterfly patterns with unequal beamwidths in the principal planes
cannot be estimated directly from the foregoing formulas. Similarly, some pencil beam
patterns have large sidelobes which decrease the directivity and cannot be estimated
accurately from Eq. (1-19). Both problems are solved by considering the directivity as
an estimate of the average radiation intensity.

Example A butterfly pattern peak is at 50◦ in both principal planes, but the beamwidths
are 20◦ and 50◦. Estimate the directivity.

The 3-dB pattern points are given by:

Cut 1 (40◦ and 60◦):

U01 = cos 40◦ − cos 60◦

2
= 0.133

Cut 2 (25◦ and 75◦):

U02 = cos 25◦ − cos 75◦

2
= 0.324

Average the two pattern integral estimates:

U0 = 0.133 + 0.324

2
= 0.228

directivity = Umax

U0
= 1

0.228
= 4.38 (6.4 dB)

Suppose that the beams are at different levels on the same pattern. For example, the
lobe on the right of the first pattern is the peak and the left lobe is reduced by 3 dB.
The peaks of the second pattern are reduced by 1 dB. We can average on one pattern
alone. Each lobe contributes Umax(cos θ1 − cos θ2)/4 to the integral. The integral of
the first pattern is approximated by

0.266 + 0.266 × 10−3/10

4
= 0.100

The integral of the second pattern is reduced 1 dB from the peak. The average radiation
intensity is found by averaging the two pattern averages:

U0 = 0.100 + 0.324 × 10−0.1

2
= 0.178

directivity = 1

U0
= 5.602 (7.5 dB)
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Pencil beam patterns with large sidelobes can be averaged in a similar manner: Up =
1/directivity. By using Eq. (1-19) and assuming equal beamwidths, we have Up =
HPBW2/41, 253, where Up is the portion of the integral due to the pencil beam and
HPBW is the beamwidth in degrees.

Example Consider a pencil beam antenna with pattern beamwidths of 50◦ and 70◦

in the principal planes. The second pattern has a sidelobe at θ = 60◦ down 5 dB from
the peak and a 30◦ beamwidth below the 5 dB. What is the effect of the sidelobe on
the directivity estimate?

Without the sidelobe the directivity estimate is

directivity = 41253

50(70)
= 11.79 (10.7 dB)

Consider each pattern separately:

UP1 = 502

41,253
= 0.0606 UP2 = 702

41,253
= 0.1188

The sidelobe adds to the second integral:

UPS2 = (cos 45◦ − cos 75◦
)10−5/10

4
= 0.0354

Averaging the integrals of the parts gives us 0.1074:

directivity = 1

U0
= 9.31 (9.7 dB)

If there had been a sidelobe on each side, each would have added to the integral.
Estimating integrals in this manner has limited value. Remember that these are only
approximations. More accurate results can be obtained by digitizing the pattern and
performing numerical integration on each pattern by using Eq. (1-16) or (1-17).

1-9 BEAM EFFICIENCY

Radiometer system designs [6, p. 31–6] specify the antenna in terms of beam efficiency.
For a pencil beam antenna with the boresight at θ = 0, the beam efficiency is the ratio
(or percent) of the pattern power within a specified cone centered on the boresight to
the total radiated power. In terms of the radiation intensity U ,

beam efficiency =

∫ θ1

0

∫ 2π

0
U(θ, φ) sin θ dθ dφ∫ π

0

∫ 2π

0
U(θ, φ) sin θ dθ dφ

(1-26)

where U includes both polarizations if necessary. Extended noise sources, such as
radiometry targets, radiate noise into sidelobes of the antenna. Beam efficiency mea-
sures the probability of the detected target being located within the main beam (θ ≤ θ1).
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Sometimes we can calculate directivity more easily than the pattern everywhere
required by the denominator of Eq. (1-26): for example, a paraboloidal reflector. We
use Eqs. (1-15) and (1-16) to calculate the denominator integral:∫ π

0

∫ 2π

0
U(θ, φ) sin θ dθ dφ = 4πUmax

directivity

This reduces Eq. (1-26) to

beam efficiency =
directivity

∫ θ1

0

∫ 2π

0
U(θ, φ) sin θ dθ dφ

4πUmax
(1-27)

Equation (1-27) greatly reduces the pattern calculation requirements to compute beam
efficiency when the directivity can be found without pattern evaluation over the entire
radiation sphere.

1-10 INPUT-IMPEDANCE MISMATCH LOSS

When we fail to match the impedance of an antenna to its input transmission line
leading from the transmitter or to the receiver, the system degrades due to reflected
power. The input impedance is measured with respect to some transmission line or
source characteristic impedance. When the two are not the same, a voltage wave is
reflected, ρV , where ρ is the voltage reflection coefficient:

ρ = ZA − Z0

ZA + Z0
(1-28)

ZA is the antenna impedance and Z0 is the measurement characteristic impedance.
On a transmission line the two traveling waves, incident and reflected, produce a
standing wave:

Vmax = (1 + |ρ|)Vi Vmin = (1 − |ρ|)Vi (1-29)

VSWR = Vmax

Vmin
= 1 + |ρ|

1 − |ρ| (1-30)

VSWR is the voltage standing-wave ratio. We use the magnitude of ρ, a complex
phasor, since all the terms in Eq. (1-28) are complex numbers. The reflected power is
given by V 2

i |ρ|2/Z0. The incident power is V 2
i /Z0. The ratio of the reflected power to

the incident power is |ρ|2. It is the returned power ratio. Scale 1-5 gives the conversion
between return loss and VSWR:

return loss = −20 log |ρ| (1-31)

Return Loss, dB

VSWR

SCALE 1-5 Relationship between return loss and VSWR.
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Reflected Power Loss, dB

Return Loss, dB

SCALE 1-6 Reflected power loss due to antenna impedance mismatch.

The power delivered to the antenna is the difference between the incident and the
reflected power. Normalized, it is expressed as

1 − |ρ|2 or reflected power loss(dB) = 10 log(1 − |ρ|2) (1-32)

The source impedance to achieve maximum power transfer is the complex conjugate
of the antenna impedance [7, p. 94]. Scale 1-6 computes the power loss due to antenna
impedance mismatch.

If we open-circuit the antenna terminals, the reflected voltage equals the incident
voltage. The standing wave doubles the voltage along the transmission line compared
to the voltage present when the antenna is loaded with a matched load. We consider
the effective height of an antenna, the ratio of the open-circuit voltage to the input
field strength. The open-circuit voltage is twice that which appears across a matched
load for a given received power. We can either think of this as a transmission line with
a mismatch that doubled the incident voltage or as a Thévenin equivalent circuit with
an open-circuit voltage source that splits equally between the internal resistor and the
load when it is matched to the internal resistor. Path loss analysis predicts the power
delivered to a matched load. The mathematical Thévenin equivalent circuit containing
the internal resistor does not say that half the power received by the antenna is either
absorbed or reradiated; it only predicts the circuit characteristics of the antenna load
under all conditions.

Possible impedance mismatch of the antenna requires that we derate the feed cables.
The analysis above shows that the maximum voltage that occurs on the cable is twice
that present when the cable impedance is matched to the antenna. We compute the
maximum voltage given the VSWR using Eq. (1-29) for the maximum voltage:

Vmax = 2 VSWR(Vi)

VSWR + 1
= 2Vi

1 + 1/VSWR
(1-33)

1-11 POLARIZATION

The polarization of a wave is the direction of the electric field. We handle all polariza-
tion problems by using vector operations on a two-dimensional space using the far-field
radial vector as the normal to the plane. This method is systematic and reduces chance
of error. The spherical wave in the far field has only θ and φ components of the electric
field: E = Eθ θ̂ + Eφφ̂. Eθ and Eφ are phasor components in the direction of the unit
vectors θ̂ and φ̂. We can also express the direction of the electric field in terms of
a plane wave propagating along the z-axis: E = Ex x̂ + Ey ŷ. The direction of propa-
gation confines the electric field to a plane. Polarization is concerned with methods
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FIGURE 1-3 Polarization ellipse.

of describing this two-dimensional space. Both of the above are linear polarization
expansions. We can rewrite them as

E = Eθ(θ̂ + ρ̂Lφ̂) ρ̂L = Eφ

Eθ

E = Ex(x̂ + ρ̂Lŷ) ρ̂L = Ey

Ex

(1-34)

where ρ̂L is the linear polarization ratio, a complex constant. If time is inserted into
the expansions, and the tip of the electric field traced in space over time, it appears as
an ellipse with the electric field rotating either clockwise (CW) or counter clockwise
(CCW) (Figure 1-3). τ is the tilt of the polarization ellipse measured from the x-axis
(φ = 0) and the angle of maximum response. The ratio of the maximum to minimum
linearly polarized responses on the ellipse is the axial ratio.

If ρ̂L = e±jπ/2, the ellipse expands to a circle and gives the special case of circular
polarization. The electric field is constant in magnitude but rotates either CW (left
hand) or CCW (right hand) at the rate ωt for propagation perpendicular to the page.

1-11.1 Circular Polarization Components

The two circular polarizations also span the two-dimensional space of polarization. The
right- and left-handed orthogonal unit vectors defined in terms of linear components are

R̂ = 1√
2
(θ̂ − j φ̂) or R̂ = 1√

2
(x̂ − j ŷ) (1-35a)

L̂ = 1√
2
(θ̂ + j φ̂) or L̂ = 1√

2
(x̂ + j ŷ) (1-35b)

The electric field in the polarization plane can be expressed in terms of these new unit
vectors:

E = ELL̂ + ERR̂
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When projecting a vector onto one of these unit vectors, it is necessary to use the
complex conjugate in the scalar (dot) product:

EL = E · L̂
∗

ER = E · R̂
∗

When we project R̂ onto itself, we obtain

R̂ · R̂
∗ = 1

2 (θ̂ − j φ̂) · (θ̂ + j φ̂) = 1
2 (1 − j · j) = 1

Similarly,
L̂ · R̂

∗ = 1
2 (θ̂ + j φ̂) · (θ̂ + j φ̂) = 1

2 (1 + j · j) = 0

The right- and left-handed circular (RHC and LHC) components are orthonormal.
A circular polarization ratio can be defined from the equation

E = EL(L̂ + ρ̂cR̂) ρ̂c = ER

EL

= ρce
jδc

Let us look at a predominately left-handed circularly polarized wave when time and
space combine to a phase of zero for EL. We draw the polarization as two circles
(Figure 1-4). The circles rotate at the rate ωt in opposite directions (Figure 1-5), with
the center of the right-handed circular polarization circle moving on the end of the
vector of the left-handed circular polarization circle. We calculate the phase of the
circular polarization ratio ρ̂c from the complex ratio of the right- and left-handed
circular components. Maximum and minimum electric fields occur when the circles

f (y)

q (x)

ER

ER

E
L + E

R

ER

EL
EL

E

EL

dc

E L

− E R

t

FIGURE 1-4 Polarization ellipse LHC and RHC components. (After J. S. Hollis, T. J. Lyons,
and L. Clayton, Microwave Antenna Measurements, Scientific Atlanta, 1969, pp. 3–6. Adapted
by permission.)
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FIGURE 1-5 Circular polarization components. (After J. S. Hollis, T. J. Lyons, and L. Clayton,
Microwave Antenna Measurements, Scientific Atlanta, 1969, pp. 3–5. Adapted by permission.)

Axial Ratio, dB

Circular Cross-polarization, dB

SCALE 1-7 Circular cross-polarization/axial ratio.

alternately add and subtract as shown in Figure 1-4. Scale 1-7 shows the relationship
between circular cross-polarization and axial ratio:

Emax = (|EL| + |ER|) /
√

2 Emin = (|EL| − |ER|) /
√

2

axial ratio =




Emax

Emin
= |EL| + |ER|

|EL| − |ER| = 1 + |ρ̂c|
1 − |ρ̂c| LHC

Emax

Emin
= |ER| + |EL|

|ER| − |EL| = |ρ̂c| + 1

|ρ̂c| − 1
RHC

(1-36)

0 ≤



|ρ̂c| < 1 LHC∣∣∣∣ 1

ρ̂c

∣∣∣∣ < 1 RHC

axial ratio(dB) = 20 log
Emax

Emin

The tilt angle of the polarization ellipse τ is one-half δc, the phase of ρ̂c. Imagine time
moving forward in Figure 1-5. When the LHC vector has rotated δc/2 CW, the RHC
vector has rotated δc/2 CCW and the two align for a maximum.

1-11.2 Huygens Source Polarization

When we project the currents induced on a paraboloidal reflector to an aperture plane,
Huygens source radiation induces aligned currents that radiate zero cross-polarization
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in the principal planes. We separate feed antenna radiation into orthogonal Huygens
sources for this case. To calculate the far-field pattern of a paraboloid reflector, we can
skip the step involving currents and integrate over the Huygens source fields in the
aperture plane directly. We transform the measured fields of the feed into orthogonal
Huygens sources by [

Ec

Ex

]
=

[
cos φ − sin φ

sin φ cos φ

] [
Eθf

Eφf

]
(1-37)

where Ec is the φ = 0 direction of polarization in the feed pattern and Ex is the
φ = 90◦ polarization. This division corresponds to Ludwig’s third definition of cross-
polarization [8]. The following matrix converts the Huygens source polarizations to
the normal far-field components of spherical coordinates:[

Eθ

Eφ

]
=

[
cos φ sin φ

− sin φ cos φ

] [
Ec

Ex

]
(1-38)

1-11.3 Relations Between Bases

In problems with antennas at arbitrary orientations, circularly polarized components
have an advantage over linear components. When the coordinate system is rotated,
both the amplitude and phase change for ρ̂L, the linear polarization ratio, whereas
the circular polarization ratio ρ̂c magnitude is constant under rotations and only the
phase changes. In other words, the ratio of the diameters of the circles (Figure 1-4)
is constant.

The circular components can be found from linear polarization components by pro-
jection.

ER = (Eθ θ̂ + Eφφ̂) · R̂∗ = 1√
2
(Eθ θ̂ + Eφφ̂) · (θ̂ + j φ̂)

ER = 1√
2
(Eθ + jEφ) (1-39)

Similarly,

EL = 1√
2
(Eθ − jEφ)

The linear polarizations can be found in terms of the circular components in the same
manner:

Eθ = 1√
2
(EL + ER) Eφ = j√

2
(EL − ER)

These relations enable the conversion between polarizations.
Good circularly polarized antennas over a wide bandwidth are difficult to build,

but good linearly polarized antennas are obtained easily. After we measure the phase
and amplitude of Eθ and Eφ component phasors, we compute the circular components
from Eq. (1-39), the axial ratio by using Eq. (1-36), and the polarization ellipse tilt
τ from one-half the phase of ER/EL. We employ a leveled phase-locked source to
record two patterns with orthogonal linear sources (or the same linear source is rotated
between patterns). Afterward, we use the equations given above to convert polarization
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to any desired polarization components. We calculate the maximum and minimum
linear components by projecting the linear components into the rotated coordinate
system of the polarization ellipse:

Emax = Eθ cos τ + Eφ sin τ

Emin = −Eθ sin τ + Eφ cos τ

1-11.4 Antenna Polarization Response

The path loss formulas assume that the two antennas have matched polarizations.
Polarization mismatch adds an extra loss. We determine polarization efficiency by
applying the scalar (dot) product between normalized polarization vectors. An antenna
transmitting in the z-direction has the linear components

Ea = E1(x̂ + ρ̂L1ŷ)

The incident wave on the antenna is given by

Ei = E2(x̂ + ρ̂L2ŷ)

where the wave is expressed in the coordinates of the source antenna. The z-axis of
the source is in the direction opposite that of the antenna. It is necessary to rotate the
coordinates of the receiving antenna wave. Rotating about the x-axis is equivalent to
changing the sign of the tilt angle or taking the complex conjugate of Ea.

The measurement antenna projects the incident wave polarization onto the antenna
polarization. The antenna measures the incident field, but we need to normalize the
antenna polarization to a unit vector to calculate polarization efficiency:

E2 · E∗
1 = E2E

∗
1 (1 + ρ̂L2ρ̂

∗
L1)√

1 + |ρ̂L1|2
We normalize both the incident wave and antenna responses to determine loss due to
polarization mismatch:

Ei

|Ei| = x̂ + ρ̂L2ŷ√
1 + ρ̂∗

L2ρ̂L2

E∗
a

|Ea| = x̂ + ρ̂∗
L1ŷ√

1 + ρ̂∗
L1ρ̂L1

The normalized voltage response is

Ei · E∗
a

|Ei ||Ea| = 1 + ρ̂∗
L1ρ̂L2√

1 + ρ̂L1ρ̂
∗
L1

√
1 + ρ̂L2ρ̂

∗
L2

(1-40)

When we express it as a power response, we obtain the polarization efficiency �:

� = |Ei · E∗
a|2

|Ei|2|Ea|2 = 1 + |ρ̂L1|2|ρ̂L2|2 + 2|ρ̂L1||ρ̂L2| cos(δ1 − δ2)

(1 + |ρ̂L1|2)(1 + |ρ̂L2|2) (1-41)

This is the loss due to polarization mismatch. Given that δ1 and δ2 are the phases of
the polarization ratios of the antenna and the incident wave. As expressed in terms of
linear polarization ratios, the formula is awkward because when the antenna is rotated
to determine the peak response, both the amplitudes and phases change. A formula
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using circular polarization ratios would be more useful, because only phase changes
under rotation.

Two arbitrary polarizations are orthogonal (� = 0) only if

|ρ̂1| = 1

|ρ̂2| and δ1 − δ2 = ±180◦
(1-42)

This can be expressed as vectors by using unit vectors: a1 · a∗
2 = 0; a1 and a2 are the

orthonormal generalized basis vectors for polarization. We can define polarization in
terms of this basis with a polarization ratio ρ. By paralleling the analysis above for
linear polarizations, we obtain the polarization efficiency for an arbitrary orthonormal
polarization basis:

� = 1 + |ρ̂1|2|ρ̂2|2 + 2|ρ̂1||ρ̂2| cos(δ1 − δ2)

(1 + |ρ̂1|2)(1 + |ρ̂2|2) (1-43)

It has the same form as Eq. (1-41) derived for linear polarizations.
We can use Eq. (1-43) with circular polarizations whose polarization ratio ρc magni-

tudes are constant with rotations of the antenna. The maximum and minimum polariza-
tion efficiencies occur when δ1 − δ2 equals 0◦ and 180◦, respectively. The polarization
efficiency becomes

�max / min = (1 ± |ρ̂1||ρ̂2|)2

(1 + |ρ̂1|2)(1 + |ρ̂2|2) (1-44)

In all other vector pair bases for polarization, the magnitude of the polarization ratio
ρ changes under rotations.

Figure 1-6 expresses Eq. (1-44) as a nomograph. If we have fixed installations, we
can rotate one antenna until the maximum response is obtained and realize minimum
polarization loss. In transmission between mobile antennas such as those mounted on
missiles or satellites, the orientation cannot be controlled and the maximum polariza-
tion loss must be used in the link analysis. Circularly polarized antennas are used in
these cases.

Example A satellite telemetry antenna is RHC with an axial ratio of 7 dB. The ground
station is RHC with a 1.5-dB axial ratio. Determine the polarization loss.

Because the orientation of the satellite is unknown, we must use the maximum
polarization loss. To find it, use the RHC ends of the scales in Figure 1-6. Draw
a line from 7 on the leftmost scale to 1.5 on the center scale. Read the loss on the
scale between: 0.9 dB. The measured cross-polarization response of a linearly polarized
antenna is the reciprocal of the axial ratio, the same absolute magnitude in decibels.

Example Suppose that the linear cross-polarization responses of two antennas in a
stationary link are given as 10 and 20 dB. Compute the minimum polarization loss.

We rotate one of the antennas until the maximum response is found. The specification
of cross-polarization response does not state whether an antenna is predominately left-
or right-handed circularly polarized. It must be one or the other. Suppose that the 20-
dB cross-polarization antenna is LHC. If the other antenna also is LHC, we use a line
drawn from the lower portion of the center scale in Figure 1-6 to the rightmost LHC
scale and read 0.2 dB of loss on the scale between the two. The second possibility is
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FIGURE 1-6 Maximum and minimum polarization loss. (After A. C. Ludwig, A simple graph
for determining polarization loss, Microwave Journal, vol. 19, no. 9, September 1976, p. 63.)

that the antenna could be predominately RHC. On drawing a line to the RHC (lower)
scale, we read 0.7 dB on the center scale. When polarization is expressed in terms
of linearly polarized components, it is ambiguous to give only magnitudes and no
information of the circular polarization sense.

1-11.5 Phase Response of Rotating Antennas

The polarization sense of an antenna can be determined from the phase slope of a
rotating antenna. Before starting the phase measurement, determine that the setup is
proper. Some older phase–amplitude receivers are ambiguous, depending on whether
the local oscillator frequency was above or below the signal frequency. We use the
convention that increased distance between antennas gives decreased phase. Move the
antenna away from the source and observe decreasing phase or correct the setup. A
rotating linearly polarized source field is given by

Es = E2(cos αx̂ + sin αŷ)

where α is clockwise rotation viewed from the direction of propagation (forward). A
horizontally polarized linear antenna has the response Ea = E1x̂. It responds to the
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rotating linear source field, E1E2 cos α. The phase is constant under rotation until the
null is passed and it flips 180◦ through the null.

An RHC polarized antenna has the response E1(x̂ − j ŷ). It responds to the rotating
linear source field,

E1E2(cos α − j sin α) = E1E2e
−jα

The magnitude remains constant, but the phase decreases with rotation. Phase increases
when the antenna is LHC. By observing the phase slope, the sense of the predominant
polarization can be determined: RHC = negative phase slope; LHC = positive phase
slope. It is easily remembered by considering the basis vectors of circular polarization:

R̂ = 1√
2
(x̂ − j ŷ)

In rotation from the x-axis to the y-axis, the phase decreases 90◦.

1-11.6 Partial Gain

If we measure the antenna gain to one polarization (e.g., RHC) and operate it in a
link with an antenna also measured to one polarization, Eq. (1-44) fails to predict the
response. Polarization efficiency assumes that the antenna gain was measured using
a source field with matched polarization. Gains referred to a single polarization are
partial gains. If we align the two polarization ellipses of the two antennas, the response
increases. Similarly, when the ellipses are crossed, the link suffers polarization loss.
To obtain the full gain, we add the factor

10 log(1 + |ρ|2) (1-45)

to the partial gain, an expression valid using ρ for either circular or linear polarization.
In terms of axial ratio A for circular polarization, the conversion is

20 log

√
2(1 + A2)

1 + A

When using measured partial gains for both antennas, the range of polarization effi-
ciency is given by

polarization efficiency � = 20 log(1 ± ρ1ρ2) (1-46)

We can convert Eq. (1-46) to expressions that use the axial ratio of the two antennas:

maximum polarization efficiency = 20 log
2(A1A2 + 1)

(A1 + 1)(A2 + 1)

minimum polarization efficiency = 20 log
2(A1 + A2)

(A1 + 1)(A2 + 1)

1-11.7 Measurement of Circular Polarization Using Amplitude Only

The analyses given above assume that you can measure both amplitude and phase
response of antennas, whereas in some cases only amplitude can be measured. If
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you do not know the sense of circular polarization, it will be necessary to build two
antennas that are identical except for their circular polarization sense. For example, you
can build two identically sized counter-wound helical wire antennas. You determine
polarization sense by using both sources and comparing measured levels. Once you
establish the polarization sense, mount a linearly polarized measurement antenna with
low cross-polarization. For a given pointing direction of the antenna under test, rotate
the source antenna and record the maximum and minimum levels. The ratio of the
maximum to the minimum is the axial ratio.

To measure gain, rotate the measurement linearly polarized antenna to determine the
peak response. Replace the antenna under test with a linearly polarized gain standard
(horn) and perform a gain comparison measurement. Given the antenna axial ratio A,
you adjust the linearly polarized gain by the correction factor:

gain correction factor(dB) = 20 log
A + 1√

2A
(1-47)

We obtain the RHC and LHC response from

ER = 1√
2
(Emax + Emin) and EL = 1√

2
(Emax − Emin)

assuming that the antenna is predominately RHC.

1-12 VECTOR EFFECTIVE HEIGHT

The vector effective height relates the open-circuit voltage response of an antenna to
the incident electric field. Although we normally think of applying effective height to
a line antenna, such as a transmitting tower, the concept can be applied to any antenna.
For a transmitting tower, effective height is the physical height multiplied by the ratio
of the average current to the peak current:

VOC = Ei · h∗ (1-48)

The vector includes the polarization properties of the antenna. Remember from our
discussion of antenna impedance mismatch that the open-circuit voltage VOC is twice
that across a matched load ZL for a given received power: VOC = 2

√
PrecZL. The

received power is the product of the incident power density S and the effective area
of the antenna, Aeff. Gathering terms, we determine the open-circuit voltage from the
incident field strength E and a polarization efficiency �:

VOC = 2E

√
ZLAeff�

η

We calculate polarization efficiency by using the scalar product between the normalized
incident electric field and the normalized vector effective height:

� = |Ei·h∗|2
|Ei|2|h|2 (1-49)
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Equation (1-49) is equivalent to Eq. (1-41) because both involve the scalar product
between the incident wave and the receiving polarization, but the expressions have
different normalizations. You can substitute vector effective height of the transmit-
ting antenna for the incident wave in Eq. (1-49) and calculate polarization efficiency
between two antennas. When an antenna rotates, we rotate h. We could describe polar-
ization calculations in terms of vector effective height, which would parallel and repeat
the discussion given in Section 1-11. We relate the magnitude of the effective height
h to the effective area Aeff and the load impedance ZL:

h = 2

√
ZLAeff

η
(1-50)

The mutual impedance in the far field between two antennas can be found from the
vector effective heights of both antennas [9, p. 6–9]. Given the input current I1 to the
first antenna, we find the open-circuit voltage of the second antenna:

Z12 = (V2)OC

I1
= jkηe−jkr

4πr
h1·h∗

2 (1-51)

When we substitute Eq. (1-50) into Eq. (1-51) and gather terms, we obtain a general
expression for the normalized mutual impedance of an arbitrary pair of antennas given
the gain of each in the direction of the other antenna as a function of spacing r:

Z12√
ZL1ZL2

= j
√

G1G2

kr
e−jkr h1·h∗

2

|h1||h2| (1-52)

The magnitude of mutual impedance increases when the gain increases or the distance
decreases. Of course, Eq. (1-52) is based on a far-field equation and gives only an
approximate answer, but it produces good results for dipoles spaced as close as 1λ.
Figure 1-7 gives a plot of Eq. (1-52) for isotropic gain antennas with matched polar-
izations which shows the 1/R amplitude decrease with distance and that resistance and
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FIGURE 1-7 Normalized mutual impedance (admittance) from the vector effective length for
two antennas with 0 dB gain along the line between them.
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reactance curves are shifted out of phase. The cosine and sine factors of the complex
exponential produce this effect. We multiply these curves by the product of the antenna
gains, but the increased gain from larger antennas means that it is a greater distance
to the far field. When we bring two antennas close together, the currents on each
antenna radiate and excite additional currents on the other that modify the result given
by Eq. (1-52). But as we increase the distance, these induced current effects fade.
Equivalent height analysis can be repeated using magnetic currents (e.g., used with
microstrip patches), and Eqs. (1-51) and (1-52) become mutual admittance. Figure 1-7
is also valid for these antennas when we substitute normalized mutual admittance for
normalized mutual impedance. For antennas with pattern nulls directed toward each
other, the mutual impedance decreases at the rate 1/R2, due to the polarization of
current direction h.

1-13 ANTENNA FACTOR

The EMC community uses an antenna connected to a receiver such as a spectrum
analyzer, a network analyzer, or an RF voltmeter to measure field strength E. Most
of the time these devices have a load resistor ZL that matches the antenna impedance.
The incident field strength Ei equals antenna factor AF times the received voltage Vrec.
We relate this to the antenna effective height:

AF = Ei

Vrec
= 2

h
(1-53)

AF has units meter−1 but is often given as dB(m−1). Sometimes, antenna factor is
referred to the open-circuit voltage and it would be one-half the value given by
Eq. (1-53). We assume that the antenna is aligned with the electric field; in other
words, the antenna polarization is the electric field component measured:

AF =
√

η

ZLAeff
= 1

λ

√
4π

ZLG

This measurement may be corrupted by a poor impedance match to the receiver and
any cable loss between the antenna and receiver that reduces the voltage and reduces
the calculated field strength.

1-14 MUTUAL COUPLING BETWEEN ANTENNAS

The simplest approach for coupling between antennas is to start with a far-field approx-
imation. We can modify Eq. (1-8) for path loss and add the phase term for the finite
distance to determine the S-parameter coupling:

S21 = √
G1G2

e−jkr

2kr

E1·E∗
2

|E1||E2| (1-54)

Equation (1-54) includes the polarization efficiency when the transmitted polarization
does not match the receiving antenna polarization. We have an additional phase term
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because the signal travels from the radiation phase center along equivalent transmission
lines to the terminals of each antenna. Equations (1-52) and (1-54) have the same
accuracy except that Eq. (1-54) eliminates the need to solve the two-port circuit matrix
equation for transmission loss. These formulas assume that antenna size is insignificant
compared to the distance between the antennas, and each produces approximately
uniform amplitude and phase fields over the second element.

We can improve on Eq. (1-54) when we use the current distribution on one of
the two antennas and calculate the near-field fields radiated by the second antenna
at the location of these currents. Since currents vary across the receiving antenna,
we use vector current densities to include direction: Jr electric and Mr magnetic.
Although magnetic current densities are fictitious, they simplify the representation of
some antennas. We compute coupling from reactance, an integral across these currents
[see Eq. (2-34)]:

S21 = j

2
√

PrPt

∫∫∫
(Et ·Jr − Ht · Mr ) dV (1-55)

The input power to the transmitting antenna Pt produces fields Et and Ht . The power Pr

into the receiving antenna excites the currents. The scalar product between the incident
fields and the currents includes polarization efficiency. If we know the currents on the
transmitting antennas, we calculate the near-field pattern response from them at the
location of the receiving antenna. Similar to many integrals, Eq. (1-55) is notional
because we perform the integral operations only where currents exist. The currents
could be on wire segments or surfaces. A practical implementation of Eq. (1-55) divides
the currents into patches or line segments and performs the scalar products between the
currents and fields on each patch and sums the result. A second form of the reactance
[see Eq. (2-35)] involves an integral over a surface surrounding the receiving antenna.
In this case each antenna radiates its field to this surface, which requires near-field
pattern calculations for both. Equation (1-55) requires adding the phase length between
the input ports and the currents, similar to using Eq. (1-54). When we use Eq. (1-55),
we assume that radiation between the two antennas excites insignificant additional
currents on each other. We improve the answer by using a few iterations of physical
optics, which finds induced currents from incident fields (Chapter 2).

We improve on Eq. (1-55) by performing a moment method calculation between the
two antennas. This involves subdividing each antenna into small elements excited with
simple assumed current densities. Notice the similarity between Eqs. (1-52) and (1-54)
and realize that Eq. (1-55) is a near-field version of Eq. (1-54). We use reactance to
compute the mutual impedance Z21 between the small elements as well as their self-
impedance. For the moment method we calculate a mutual impedance matrix with a
row and column for each small current element. We formulate a matrix equation using
the mutual impedance matrix and an excitation vector to reduce coupling to a circuit
problem. This method includes the additional currents excited on each antenna due to
the radiation of the other.

1.15 ANTENNA NOISE TEMPERATURE [10]

To a communication or radar system, an antenna contributes noise from two sources.
The antenna receives noise power because it looks out on the sky and ground. The
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FIGURE 1-8 Antenna sky temperature. Noise temperature of an idealized antenna (lossless,
no Earth-directed sidelobes) located at the Earth’s surface, as a function of frequency, for a
number of beam elevation angles. Solid curves are for geometric-mean galactic temperature,
sun noise 10 times quiet level, sun in unity-gain sidelobe, cool temperate-zone troposphere,
2.7 K cosmic blackbody radiation, zero ground noise. The upper dashed curve is for maximum
galactic noise (center of galaxy, narrow-beam antenna). Sun noise 100 times quiet level, zero
elevation, other factors the same as solid curves. The lower dashed curve is for minimum galactic
noise, zero sun noise, 90◦ elevation angle. (The bump in the curves at about 500 MHz is due to
the sun-noise characteristic. The curves for low elevation angles lie below those for high angles
at frequencies below 400 MHz because of reduction of galactic noise by atmospheric absorption.
The maxima at 22.2 and 60 GHz are due to the water-vapor and oxygen absorption resonance.)
(From L. V. Blake, A guide to basic pulse-radar maximum-range calculation, Naval Research
Laboratory Report 5868, December 1962.)

ground generates noise because it is about 290 K and a portion of the antenna pattern
falls on it. Similarly, the sky adds noise dependent on the elevation angle and the oper-
ating frequency. Figure 1-8 gives the sky temperature versus frequency and elevation
angle. The frequency range of lowest noise occurs in the middle of microwave fre-
quencies of 1 to 12 GHz. The graphs show a large variation between the dashed curves,
which occurs because of antenna direction and the pointing relative to the galactic cen-
ter. In the middle of microwaves the sky noise temperatures are around 50 K, whereas
near zenith the temperature is under 10 K. Near the horizon it rises because of the
noise from oxygen and water vapor. The exact value must be determined for each
application. As frequency decreases below 400 MHz, the sky temperature rises rapidly
and becomes independent of antenna pointing. The curve continues the rapid rise at
the same slope for lower frequencies. Low-frequency sky temperatures are often given
as decibels relative to 290 K.
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An antenna receives this blackbody noise from the environment, but the value that
affects the communication system depends both on the pattern shape and the direction
of the main beam. We determine the antenna noise temperature by integrating the
pattern times the environmental noise temperature distribution:

Ta = 1

4π

∫ 2π

0

∫ π

0
G(θ, φ)Ts(θ, φ) sin θ dθ dφ (1-56)

where G(θ, φ) is the antenna gain pattern and Ts(θ, φ) is the angle-dependent
blackbody radiation of the environment. Changing the antenna pointing changes Ta .
Equation (1-56) is a weighted average of the environment noise temperature, usually
referred to as the sky temperature. The second source of noise in the antenna is that of
components that have both dissipative losses and reflection losses that generate noise.

A receiving system needs to maximize the signal-to-noise ratio for given resources.
System considerations, such as bit error rate, establish the required S/N ratio. We
determine the noise power from the product

N = k0BnTe (1-57)

where k0 is Boltzmann’s constant (1.38 × 10−23W/K · Hz = −228.6 dB) and Bn is the
receiver bandwidth (Hz). Te is the effective noise temperature (K). When referring
noise temperature to other parts of the network, we increase or decrease it by the gain
or loss, since it represents power and not a true temperature. Antenna gain is a measure
of the signal level, since we can increase gain independent of the noise temperature,
although the gain pattern is a factor by Eq. (1-56).

The antenna conductor losses have an equivalent noise temperature:

Te = (L − 1)Tp (1-58)

where Tp is the antenna physical temperature and L is the loss (a ratio > 1). From
a systems point of view, we include the transmission line run to the first amplifier
or mixer of the receiver. We do not include the current distribution losses (aperture
efficiencies) that reduce gain in Eq. (1-58) because they are a loss of potential antenna
gain and not noise-generating losses (random electrons). The antenna–receiver chain
includes mismatch losses, but these do not generate random electrons, only reflected
waves, and have a noise temperature of zero. We include them in a cascaded devices
noise analysis as an element with loss only.

Noise characteristics of some receiver components are specified as the noise figure
FN (ratio), and cascaded devices’ noise analysis can be analyzed using the noise figure,
but we will use noise temperature. Convert the noise figures to noise temperature using

TE = (FN − 1)T0 (1-59)

T0 is the standard reference temperature 290 K.
We calculate noise temperature for the entire receiver chain of devices at a particular

point normally at the input to the first device. To calculate the S/N ratio we use the
transmitter power, path loss (including antenna gain and polarization efficiency), and
the gains (losses) of any devices for signal to the location in the receiver chain where
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noise temperature is being calculated. We characterize a given antenna by the ratio
G/T , a measure independent of transmitter power and path loss, but including the
receiver noise characteristics. Using the input of the first device as the noise reference
point, we calculate the input noise temperature from component noise temperatures
and gains:

T = T1 + T2

G1
+ T3

G1G2
+ T4

G1G2G3
+ · · · (1-60)

Equation (1-60) merely states that noise temperatures are powers that decrease when
we pass backward through a device with gain G. Each noise term is referred to the
input of the device, and we pass backward to all previous devices and reduce noise
temperature by 1/G. If we decided to locate the noise reference point at the input to
the second device, the noise initially referred to the chain input would increase by the
gain of the first device. The system noise temperature becomes T(2):

T(2) = T1G1 + T2 + T3

G2
+ T4

G2G3
+ · · ·

The signal also passes through the first device and the new gain at the input to the
second device becomes GG1. The gain and the noise temperature change by the same
factor G1 and produce a constant ratio. By extending these operations to any location
in the receiver chain, we show that G/T is constant through the receiver device chain.

It is easiest to illustrate G/T noise calculations with an example. A ground station
has a 5-m-diameter paraboloid reflector with 60% aperture efficiency with the system
operating at 2.2 GHz (λ = 0.136 m). We compute antenna directivity using the physical
area and aperture efficiency:

directivity = 0.60

(
π · Dia

λ

)2

= 0.60

(
5π

0.136

)2

= 7972 (39 dB)

The reflector feed loss is 0.2 dB and it has a VSWR of 1.5 : 1. The cable between
the feed and the first amplifier (LNA) has a 0.5-dB loss. These are elements under
control of the antenna designer. We calculate the noise temperature of these by using
Eq. (1-58) when we use a physical antenna temperature of 37.7◦C (100◦F) (310.8 K).

Feed loss: T1 = (100.2/10 − 1)310.8 = 14.65 K
Feed mismatch: T2 = 0 K
Cable: T3 = (100.5/10 − 1)310.8 = 37.92 K

The gains of these devices are G1 = 10−0.2/10 = 0.955 (feed loss), G2 = 10−0.18/10 =
0.959 (reflected power loss for 1.5 : 1 VSWR), and G3 = 10−0.5/10 = 0.891 (cable loss).
The antenna sees the environment that generates noise due to blackbody radiation from
the sky and ground. A typical value for the antenna pointed at 5◦ elevation is 50 K. This
is not a physical temperature but represents an equivalent received power. Remember
that the 60% aperture efficiency has no noise or loss contribution, because it only
represents the loss of potential gain, since no random electrons are generated.

We must consider the rest of the receiver chain when calculating the total input
noise temperature. For this example we assume that the LNA has a noise figure of
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2 dB with 20 dB gain. The final portion of the receiver includes the mixer and IF of
the receiver, which we assume has a 10-dB noise figure. We use Eq. (1-59) to convert
noise figure to noise temperature.

LNA noise temperature T4 = 290(102/10 − 1) = 162.62 K

Receiver noise temperature T5 = 290(1010/10 − 1) = 2610 K

The 20-dB (100) LNA gain greatly reduces the effect of the 2610-K receiver. We
calculate the contribution of each device to the input noise temperature by applying
Eq. (1-60) to each device. We pass the noise temperature of the receiver through the
four devices, and its temperature is reduced by the gain of each device:

Te5 = T5

G1G2G3G4
= 2610

0.955(0.959)(0.891)(100)
= 31.98 K

The gain of the LNA greatly reduced the effective noise of the receiver at the antenna
input. This operation shows that cascading noise temperature involves passing each
device’s noise temperature through the gains of all preceding devices to the input and
reducing it by the product of their gains. Similarly, we perform this operation on all
the other noise temperatures.

Te4 = T4

G1G2G3
= 169.62

0.955(0.959)(0.891)
= 207.86 K

Te3 = T3

G1G2
= 37.92

0.955(0.959)
= 41.40 K

Te2 = T2

G1
= 0

0.955
= 0

Te1 = T1 = 14.65

These operations illustrate that the cascaded devices’ noise temperature equation (1-60)
is easily derived by considering the passage of noise temperature (power) through
devices with gain to a common point where we can add the contributions.

The sky temperature is not an input noise temperature but the noise power delivered
at the fictitious point called the antenna directivity, where gain = directivity. Since
noise temperature represents power, we convert it to decibels and subtract it from
directivity to compute G/T :

G/T (dB) = 39 − 10 log(345.9) = 13.6 dB

This G/T is a measure of the antenna and receiver combined performance when the
antenna is pointed to 5◦ elevation. Changing the pointing direction affects only the sky
temperature added directly to the final result. We use G/T in the link budget of the
communication system.

We can supply a single value for the antenna gain and noise temperature at the
output port connected to the receiver. Recognize that the first three noise temperatures
and the sky temperature are associated with the antenna. We moved the noise reference
of each device to the input by dividing by the gain of the preceding devices. To move
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to the output of the antenna, we increase the noise temperature and the antenna gain
by the product of the gain for the devices:

T = (Tsky + Te1 + Te2 + Te3)G1G2G3

= (50 + 14.65 + 0 + 37.92)10−0.88/10 = 83.7 K

gain(dB) = directivity(dB) − 0.88 dB = 39 − 0.88 = 38.12 dB

This reduces the antenna to a single component similar to the directivity and sky
temperature that started our analysis.

1-16 COMMUNICATION LINK BUDGET AND RADAR RANGE

We illustrate communication system design and path loss by considering a sample link
budget example. The 5-m-diameter reflector is pointing at a satellite in an orbit 370 km
above the Earth with a telemetry antenna radiating 10 W at 2.2 GHz. Since the antenna
pattern has to cover the visible Earth, its performance is compromised. Considering the
orbit geometry and antenna pointing is beyond the scope of this discussion. The range
from a satellite at 370 km to a ground station pointing at 5◦ is 1720 km. The satellite
antenna pointing angle from nadir is 70.3◦, and a typical antenna for this application
would have gain = −2 dBiC (RHC gain relative to an isotropic antenna) and an axial
ratio of 6 dB. Assume that the ground station antenna has a 2-dB axial ratio. We apply
the nomograph of Figure 1-6 to read the maximum polarization loss of 0.85 dB since
we cannot control the orientation of the polarization ellipses. The link budget needs to
show margin in the system, so we take worst-case numbers. When we apply Eq. (1-9)
for path loss, we leave out the antenna gains and add them as separate terms in the
link budget (Table 1-2):

free-space path loss = 32.45 + 20 log[2200(1720)] = 164 dB

The link budget shows a 4.4-dB margin, which says that the communication link will be
closed. This link budget is only one possible accounting scheme of the system param-
eters. Everyone who writes out a link budget will separate the parameters differently.
This budget shows typical elements.

Radar systems have similar link budgets or detection budgets that consider S/N :

S/N = Prec

KT B
= PT GT (directivity)λ2σ

(4π)3R4KT B
= (EIRP)λ2(G/T )σ

(4π)3R4KB

The radar has a required S/N value to enable it to process the information required,
which leads to the maximum range equation:

R =
[

(EIRP)λ2(G/T )σ

(4π)3(S/N)reqKB

]1/4

(1-61)

Equation (1-61) clearly shows the role of the transmitter, EIRP; the receiver and
antenna noise; G/T ; and the requirement for signal quality, S/Nreq, on the radar range
for a given target size σ .

Equation (1-61) applies to CW radar, whereas most radars use pulses. We increase
radar performance by adding many pulses. We ignore the aspects of pulse train encoding
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TABLE 1-2 Link Budget

Frequency 2.2 GHz Information only
Transmit power 10 dBW 10 log(10)
Transmit antenna gain −2 dB
EIRP (effective isotropic

radiated power)
8 dBW Transmit power dBW + antenna gain dB

Free-space path loss 164 dB Isotropic antenna path loss
Polarization loss 0.85 Maximum for uncontrolled orientation
Atmospheric loss 0.30 5◦ elevation at 2.2 GHz
Rain loss 0.00 Little loss at this frequency
Pointing loss 0.00
Receive antenna

directivity
39 dB Location in receiver chain for G/T calculation

G/T 13.6 dB From preceding section
Boltzmann’s constant 228.6 dB
Carrier/noise (C/N) ratio 85 dB EIRP + G/T − path loss − polarization loss

(ignores bandwidth) −atmospheric loss − rain loss + 228.6
Bit rate: 8 Mb/s 69 dB 10 log(bit rate) bandwidth
Eb/N0 (energy per

bit/noise density)
16 dB Eb/N0 = C/N − 10 log(bit rate)

Implementation loss 2 dB Groups extra system losses
Eb/N0 required 9.6 dB For bit error rate (BER) = 10−5 in QPSK
Margin 4.4 dB Eb/N0 − required Eb/N0 − implementation

loss

that allow coherent addition. Radar range is determined by the total energy contained
in the pulses summed. We replace EIRP with GT (energy) since PT × time = energy.
It is the total energy that illuminates the target that determines the maximum detection
range. Using antennas in radar leads to speaking of the radiated energy correct for
pulsed systems, but when we do not integrate pulse shape times time, the antenna
radiates power. To be correct we should call radiation that we integrate over angular
space to find power, “power density.” To say “energy radiated in the sidelobes” is poor
physics unless it is a radar system, because it is power.

1-17 MULTIPATH

Multipath means that the field intensity at a particular point is the sum of a number
of waves that arrive from different directions or from different sources. It arises from
signal transmission paths such as edge reflections from the mounting structure around
an antenna and general reflections from objects near the antenna. Nearby reflections
only seem to modify the antenna pattern, while reflections from additional objects
cause rapid ripple with changing pattern angle. In Section 3-1 we discuss how to use
the ripple angular rate and pattern distribution to locate its source. Multipath causes
degraded system performance or measurement errors. Of course, multipath can improve
performance as well. In fact, we add nearby objects, such as ground planes, to improve
antenna performance.

We specify pattern response in terms of the power response, but we add fields. An
extra signal −20 dB relative to the main signal is 0.01 in power but 0.1 in field strength
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Peak-to-Peak Ripple, dB

Interference Signal Level, dB

SCALE 1-8 Signal peak-to-peak amplitude ripple due to multipath signal.

Maximum Phase Error (degrees)

Interference Signal Level, dB

SCALE 1-9 Peak phase error due to multipath signal.

(voltage). Since the extra signal can have any phase relative to the main signal, it can
add or subtract. Given an extra signal MP(dB), the pattern ripple is

ripple(dB) = 20 log
1 + 10MP/20

1 − 10MP/20
(1-62)

where MP(dB) has a negative sign. Scale 1-8 gives the relationship between peak-
to-peak amplitude ripple and the level of the multipath signal. Equation (1-62) is
numerically the same as the relationship between return loss and 20 log(VSWR). The
multipath signal can change the phase when summed with the main signal over a range
given by

maximum phase error = ± tan−1(10MP/20) (1-63)

Scale 1-9 calculates the peak phase error due to a multipath signal.

1-18 PROPAGATION OVER SOIL

When we position antennas over soil and propagate the signal any significant distance, it
will reflect from soil or water and produce a large multipath signal. Soil is a conductive
dielectric that reflects horizontally and vertically polarized signals differently. Typical
ground constants are listed in Table 1-3. Given the grazing angle ψ measured between
the reflected ray and ground, the voltage reflection coefficients are

ρh = sin ψ − √
εr − jx − cos2 ψ

sin ψ + √
εr − jx − cos2 ψ

and ρv = (εr − jx) sin ψ − √
εr − jx − cos2 ψ

(εr − jx) sin ψ + √
εr − jx − cos2 ψ

(1-64)

where x = σ/ωε0 = 17, 975σ /frequency(MHz).
Figure 1-9 gives the reflection coefficient for the two polarizations versus grazing

angle. Horizontal polarization reflects from soil about the same as a metal surface.
Vertical polarization reflection produces a more interesting curve. The graph shows
that the reflection is low over a region of grazing angles. The minimum reflection
direction is called the Brewster angle. At this angle the reflected wave is absorbed
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TABLE 1-3 Typical Ground Constants

Surface
Dielectric
Constant

Conductivity
(S)

Dry ground 4–7 0.001
Average ground 15 0.005
Wet ground 25–30 0.020
Fresh water 81 0.010
Seawater 81 5.0
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Horizontal Polarization

Vertical Polarization

Grazing Angle

FIGURE 1-9 Average soil reflection for horizontal and vertical polarization.

into the soil. At high grazing angles ρh has a phase near 180◦ and ρv a phase of
0◦. When the grazing angle decreases and becomes less than the Brewster angle,
the vertical polarization reflection changes from 0◦ to 180◦. Remember that for most
general response nulls, the signal phase changes by 180◦ when passing through the
transition. As the grazing angle approaches zero both reflection coefficients approach
−1 and multipath is independent of polarization.

The electric field at the receiving antenna is the sum of the direct wave plus the
reflected wave, which traveled along a longer path:

E = Ed [1 − exp(−j�φ)] = Ed(1 − cos �φ + j sin �φ)

We compute the magnitude

|E| = |Ed |
√

1 + cos2 �φ + sin2 �φ − 2 cos �φ = 2|Ed | sin(�φ/2)

for the small phase difference between the two equal-amplitude signals. The received
power Prec is proportional to E2. The path loss for this multipath link is modified from
the free-space equation:

Prec = 4PT

(
λ

4πd

)2

GT GR sin2 2πhT hR

λd
→ PT GT GR

(
hT hR

d2

)2

(1-65)
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Equation (1-65) states that the power received is proportional to 1/d4 and increases by
h2 for either antenna. We can approximate the propagation over soil by a region for
closely spaced antennas when the results consist of the free-space transmission with
1/d2 average transmission with significant variation due to multipath and a second
region proportional to 1/d4 with small multipath variations. The breakpoint between
the two models occurs at a distance d = 4hT hR/λ.

Experiments at mobile telephone frequencies showed that Eq. (1-65) overestimates
the received power when the receiving antenna height is less than 30 m and a more
correct model modifies the exponent of hR [11, p. 38]:

Prec = PT GT GR

h2
T hC

R

d4
(1-66)

Below 10 m, C = 1 and the exponent varies linearly between 10 and 30 m: C =
hR/20 + 1

2 .
On a narrow-beam terrestrial propagation path, scattering from an object along a

path an odd multiple of λ/2 produces a signal that reduces the main path signal. Given
an obstacle at a distance h radial from the direct ray path and located dT from the
transmitter and a distance dR from the receiving antenna, we determine the differential
path length as

� = h2

2

dT + dR

dT dR

= n
λ

2
or clearance height h =

√
nλdT dR

dT + dR

(1-67)

We call these Fresnel clearance zones of order n. The direct path should clear obstacles
by at least one clearance zone distance h to prevent the scattered signal from having a
negative impact on the communication link. The first Fresnel zone touches ground when
dT = 4hT hR/λ is the breakpoint distance between 1/d2 and 1/d4 propagation models.

1-19 MULTIPATH FADING

Most mobile communication occurs when there is no direct path between the base
station antennas and the mobile user. The signal reflects off many objects along the
path between the two. This propagation follows a Rayleigh probability distribution
about the mean signal level:

pr(r) = r

α2
exp

(
− r2

2α2

)
prob[r < R] = PR(R) = 1 − exp

(
− R2

2α2

)

R is the signal level, α the value of the peak in the distribution, with mean = α
√

π/2
and median RM = α

√
2 ln(2) = 1.1774α. The median signal level is found by fitting

measured data for various localities (town, small town, open country, etc.) into a
prediction model. The signal will have large signal fades where the level drops rapidly.
The Rayleigh model can be solved for the average distance between fades given the
level. As a designer it is important to realize the magnitude of the problem [12, pp.
125–130]:

average distance between fades = λ
2(R/RM)2

√
2π ln(2)(R/RM)

(1-68)
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Distance between Fades, l

Rayleigh Multipath Signal Fade, dB

SCALE 1-10 Average distance between fades and depth of fade for a Rayleigh multipath.

Length of Fade Region, l

Rayleigh Multipath Signal Fade, dB

SCALE 1-11 Average fade length and depth of fade for a Rayleigh multipath.

R is the fade level (ratio) and RM is the median signal level found from a propagation
model. Scale 1-10 shows the relationship between the average distance between fades
and the depth of fade for Rayleigh multipath. A mobile channel operating at 1.85 GHz
(λ = 16.2 cm) has a 15-dB fade every 2.75λ which equals 44.5 cm, while 10-dB fades
occur every 1.62λ = 26.25 cm. The communication system must overcome these fades.
Fortunately, the deep fades occur over a short distance:

average length of fade = λ
2(R/RM)2 − 1√

2π ln(2)(R/RM)

The signal fades and then recovers quickly for a moving user. Scale 1-11 shows the
average fade length along a path given the depth of fade. For the 1.85-GHz channel
the 15-dB fade occurs only over 0.06(16.2) = 0.97 cm, and the 10-dB fade length is
0.109(16.2) = 1.76 cm.

The solution to mobile communication multipath fading is found either in increasing
the link margin with higher gain base station antennas or the application of diver-
sity techniques. We use multiple paths between the user and the base station so that
while one path experiences a fade, the other one does not. Diversity has no effect on
the median signal level, but it reduces the effects of the nulls due to the Rayleigh
distribution propagation.
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2
RADIATION STRUCTURES
AND NUMERICAL METHODS

Antenna analysis, an important part of design, requires a compromise between extensive
calculations and the fabrication and measurement of prototypes, which depends on your
working environment. You should minimize cost, which means reducing the time from
the start of a design to completion of a working model. In some cases you should not
rush to build a prototype. For example, when designing large and expensive antennas,
such as paraboloidal reflectors, the high fabrication cost justifies the time required for
analysis. Management will not let you proceed before knowing the design will work.
You should develop a cost model for each design in which analysis is one factor.

Analyses allow optimization of a design. You can design a number of antennas and
adjust the dimensions until you find the best one. Again, you should be considering
the costs of your time. At some point the incremental improvements are not worth the
extra time for further analyses. In any case, when you build the prototype, you can
expect differences. You soon determine that you can achieve only limited knowledge
about a design because fabrication and measurement errors mask the true response of
the antenna. You are doing engineering, not a science project.

Textbooks contain many analyses of ideal antennas, and this book is no exception.
You need to consider the application and the final antenna environment. The mounting
structure has little effect on the pattern of a large antenna with narrow beamwidth
because little radiation strikes it. The overall radiation characteristics of narrow- or
wide-beam antennas depend significantly on the shape of the vehicle and how the
antenna is mounted. In later chapters we discuss how to use antenna mounting to
improve performance, so you can take advantage of it. The size of the mounting
structure limits the type of analysis used.

In this chapter we discuss physical optics (PO) and geometric optics (GO) [geometric
theory of diffraction (GTD)] for large structures. In physical optics we compute the
current induced on the vehicle due to antenna radiation and include their radiation in the
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overall pattern. But the PO analysis cost rises rapidly as the number of small current
patches increases for larger structures. PO analysis works well with large antennas,
such as paraboloidal reflectors, that produce focused beams. Geometric optics uses ray
optics techniques whose computation cost is independent of the size of the vehicle
and whose accuracy improves as structure size increases. GO provides insight because
we can visualize the combination of direct, reflected, and diffracted (GTD) rays to
calculate the pattern, but it requires the solution of difficult geometry problems.

Smaller structures allow the use of multiple methods. For example, the moment
method divides the surroundings into small patches and uses an expansion of the
current in predetermined basis functions. This method uses integral equations of the
boundary conditions to calculate a matrix equation involving coefficients of the current
expansion. Numerical methods invert the matrix to solve for the coefficients, but it is
a costly numerical operation and limits the size of the problem that can be handled
to a few wavelengths. The finite-difference time-domain (FDTD) technique computes
the fields on the structure in the time domain. This method handles moderate-sized
structures and readily includes complex material properties such as biological features.
FDTD divides the region into cubic cells and when excited by pulse feeding functions,
it produces wide frequency bandwidth responses. Finite-element methods (FEMs) also
divide the problem into cubic cells, but the analysis is performed in the frequency
domain. FEM analysis must be repeated at every frequency of interest. FDTD and
FEMs require a program to divide the structure into a mesh before starting the solu-
tion. Both methods calculate currents on a boundary surface by using the equivalence
theorem with the incident fields and then calculate the far-field radiation pattern from
these boundary currents.

Most methods start by assuming a current distribution on the antenna or, equiva-
lently, a distribution of fields on an aperture. The fields on the aperture can be reduced
to a current distribution. The moment method uses a summation of assumed basis func-
tion currents and solves for the coefficients of the expansion, but it, too, starts with
assumed currents over small regions. You will discover that the radiation pattern can be
found with greater accuracy than the input impedance. For antennas constructed from
wires, the moment method computes the input current for a given excitation voltage
and we calculate impedance from the ratio. Interaction of an antenna with the currents
induced on a structure has little effect on impedance for narrow-beam antennas. Even
for wide-beam antennas, such as dipoles, the structure effect on impedance can be
found by using source mutual coupling with its images. In the end, antenna impedance
should be measured when mounted in the final configuration.

An antenna has both a radiation pattern bandwidth and an impedance bandwidth, but
you must give the pattern primary consideration. Too many designs concentrate on the
wideband impedance characteristics of an antenna when, in fact, the antenna pattern
has changed over the frequency range of the impedance bandwidth. Your primary task
should be to design for the radiation pattern desired. In Chapter 1 we detailed the
system aspects of impedance mismatch (Section 1-10), and you may determine the
overall system impact of small impedance mismatch.

2-1 AUXILIARY VECTOR POTENTIALS

We do not use vector potentials in design. It seems as though they would be use-
ful, but only a few simple antennas fit their direct use. You cannot measure them
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because they are not physical entities, so they seem artificial. Physical optics (PO)
calculates the radiation directly from currents using dyadic Green’s functions but uses
long expressions. Nevertheless, many analysis techniques find them more efficient than
PO expressions and you should be aware of them. We illustrate their use with a couple
of simple antennas.

We use vector potentials to introduce a few antenna concepts. In the first example
we apply the magnetic vector potential to calculate the radiation from a short-length
current element (dipole) and show how to obtain the pattern. Integration of the radiation
pattern power density (Section 1-2) determines the total power radiated. Because we
know the input current and the total radiated power, the ratio of the power to the input
current squared gives the radiation resistance. We combine the low radiation resistance
with the material resistance to compute the antenna efficiency. Electric vector potentials
used with fictitious magnetic currents illustrate analysis by duality. We apply this to the
analysis of a small loop and show that it has the same pattern as that of a small dipole.

2-1.1 Radiation from Electric Currents

Normal electron currents radiate when time varying. The simplest example is a fila-
mentary current on wire, but we include surface and volumetric current densities as
well. We analyze them by using the magnetic vector potential. Far-field electric fields
are proportional to the magnetic vector potential A:

E = −jωA (2-1)

We determine the magnetic field from

|E| = η|H| (2-2)

and realizing the cross product of the electric field with the magnetic field points in
the direction of power flow, the Poynting vector. Since the electric field direction
defines polarization, we usually ignore the magnetic field. We derive the magnetic
vector potential from a retarded volume integral over the current density J:

A = µ

∫∫∫
J(r′)e−jk|r−r′ |

4π|r − r′| dV ′ (2-3)

where r is the field measurement point radius vector, r′ the source-point radius vector,
µ the permeability (4π × 10−7 A/m in free space), and k, the wave number, is 2π/λ.
As written, Eq. (2-3) calculates the potential A everywhere: near and far field. The
vector potential can be written in terms of a free-space Green’s function:

g(R) = e−jkR

4πR
where R = |r − r′|

A = µ

∫∫∫
g(R)J(r′) dV ′ (2-4)

Radiation Approximation When we are interested only in the far-field response of
an antenna, we can simplify the integral [Eq. (2-3)]. An antenna must be large in terms
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of wavelengths before it can radiate efficiently with gain, but at great distances it still
appears as a point source. Consider the radiation from two different parts of an antenna.
Far away from the antenna, the ratio of the two distances to the different parts will be
nearly 1. The phase shift from each part will go through many cycles before reaching
the observation point, and when adding the response from each part, we need only the
difference in phase shift. In the radiation approximation we pick a reference point on
the antenna and use the distance from that point to the far-field observation point for
amplitudes, 1/R, for all parts of the antenna. The direction of radiation defines a plane
through the reference point. This plane is defined by the radius normal vector, given
in rectangular coordinates by

r̂ = sin θ cos φx̂ + sin θ sin φŷ + cos θ ẑ

We compute the phase difference to the far-field point by dropping a normal to the
reference plane from each point on the antenna. This distance multiplied by k, the
propagation constant, is the phase difference. Given a point on the antenna r′, the
phase difference is kr′ · r̂. When we substitute these ideas into Eq. (2-3), the equation
becomes

A = e−jkr

4πr
µ

∫∫∫
J′ejkr′·r̂ dV ′ (2-5)

In rectangular coordinates kr′ · r̂ becomes

k(x ′ sin θ cos φ + y ′ sin θ sin φ + z′ cos θ)

We can combine k and r̂ to form a k-space vector:

k = kr̂ = k sin θ cos φx̂ + k sin θ sin φŷ + k cos θ ẑ

and the phase constant becomes k · r′. Currents in filaments (wires) simplify Eq. (2-5)
to a single line integral. Magnetic vector potentials and electric fields are in the same
directions as the wires that limit the directions of current. For example, filamentary
current along the z-axis produces z-directed electric fields. Spherical waves (far field)
have only θ̂ and φ̂ components found from the projection of Ez onto those axes.
Filamentary currents on the z-axis produce only z-directed electric fields with a null
from θ̂ · ẑ = − sin θ at θ = 0. In turn, x- or y-directed currents produce electric fields
depending on the scalar products (projections) of the x̂ and ŷ unit vectors onto the θ̂

and φ̂ vectors in the far field:

θ̂ · x̂ = cos θ cos φ φ̂ · x̂ = − sin φ

θ̂ · ŷ = cos θ sin φ φ̂ · ŷ = cos φ

By examining antenna structure you can discover some of its characteristics without
calculations. Without knowing the exact pattern, we estimate the polarization of the
waves by examining the directions of the wires that limit the current density. Consider
various axes or planes of symmetry on an antenna: for example, a center-fed wire along
the z-axis. If we rotate it about the z-axis, the problem remains the same, which means
that all conical polar patterns (constant θ ) must be circles; in other words, all great
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circle patterns must be the same. An antenna with the same structure above and below
the x –y plane radiates the same pattern above and below the x –y plane. Always look
for axes and planes of symmetry to simplify the problem.

We can extend the magnetic vector potential [Eq. (2-1)] to determine near fields:

E = −jωA + ∇(∇ · A)

jωεµ

H = 1

µ
∇ × A (2-6)

The electric field separates into far- and near-field terms, but the equation for the
magnetic field, the defining equation of the potential, does not separate. If we substitute
the free-space Green’s function from Eq. (2-4) into Eq. (2-6), expand, and gather terms,
we can determine the fields directly from the electric currents and eliminate the use of
a vector potential.

E(r) = ηk2

4π

∫∫∫
V ′

[
J(r′)

(
− j

kR
− 1

k2R2
+ j

k3R3

)

+[J(r′) · R̂]R̂
(

j

kR
+ 3

k2R2
− 3j

k3R3

)]
e−jkR dV ′ (2-7)

H(r) = k2

4π

∫∫∫
V ′

J(r′) × R̂
(

j

kR
+ 1

k2R

)
e−jkR dV ′ (2-8)

R̂ = r − r′

|r − r′| = r − r′

R
since R = |r − r′|

Terms with 1/R dependence are the far-field terms. The radiative near-field terms have
1/R2 dependence and near-field terms have 1/R3 dependence. The impedance of free
space, η, is 376.7 �. We can rearrange Eqs. (2-7) and (2-8) so that they become the
integral of the dot product of the current density J with dyadic Green’s functions [1].
It is only a notation difference that leads to a logic expression. Except for a few
examples given below, we leave the use of these expressions to numerical methods
when designing antennas.

Example Use the magnetic vector potential to derive the far field of a short-length
current element.

Assume a constant current on the wire. The current density is I lδ(r ′), where δ(r ′)
is the Dirac delta distribution and l is the length over which the far-field phase is
constant. The integral in Eq. (2-4) easily reduces to

Az = µIle−jkr

4πr

The current element is so short that the phase distances from all parts of the element
are considered to be equal; e−jkr is the retarded potential phase term. The electric field
is found from Az using Eq. (2-1):

Ez = −jωµ
I l

4πr
e−jkr

Eθ = Ezẑ · θ̂ = jωµ
I l

4πr
e−jkr sin θ
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Evaluate ω as 2πf , split µ in
√

µ
√

µ, and divide and multiply by
√

ε:

Eθ = jI l2πf
√

µε

4πr

√
µ

ε
e−jkr sin θ

The following terms can be recognized as

c = 1√
µε

f

c
= l

λ
η =

√
µ

ε

The far-field electric field becomes

Eθ = jI lη

2λr
e−jkr sin θ

The magnetic field is found from the electric field using Eq. (2-2):

Hφ = Eθ

η
= jI l

2λr
e−jkr sin θ

The term j can be evaluated as ejπ/2, a phase shift term. The power density Sr is

Sr = EθH
∗
φ = |I |2l2

4λ2r2
η sin2 θ

The normalized power pattern is equal to sin2 θ . Figure 2-1 gives the polar pattern of
this antenna as a dashed plot. The dashed circle is the −3-dB pattern level. We measure
the angular separation between the 3-dB points to determine the beamwidth (half-power
beamwidth). For comparison, Figure 2-1 shows the pattern of a half-wavelength-long
dipole as a solid curve. At a length about 5% shorter than a half wavelength, the
reactive component of the impedance vanishes. The figure illustrates that a short dipole
has about the same pattern as a long-resonant-length (reactance equals zero) dipole.

We determine directivity (Section 1-7) by calculating the average radiation intensity,
often normalized to the peak of the power pattern:

Uavg =
∫ π/2

0
sin2 θ sin θ dθ = 2

3

Umax = 1

directivity = Umax

Uavg
= 1.5 (1.76 dB)

The resonant-length dipole (≈ λ/2) has a directivity of 2.15 dB or only 0.39 dB more
than that of the very short dipole. The total power radiated by the antenna is found by
integrating the Poynting vector magnitude over a sphere:

Pr =
∫ 2π

0

∫ π

0
Srr

2 sin θ dθ dφ

=
∫ 2π

0

∫ π

0

( |I |l
2λ

)2

η sin θ dθ dφ

= 2π

3

( |I |l
2λ

)2

η
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Short Dipole

l/2 Dipole

FIGURE 2-1 Pattern of a short current element and small loop (dashed curve) compared to a
λ/2 -long dipole (solid curve) located along the 0 to 180◦ axis.

We represent the radiated power as a radiation resistance at the input of the antenna:

RR = Pr

|I |2 = 2π

3
η

(
l

λ

)2

While a short dipole with a length λ/20 has a radiation resistance of about 2 �,
a resonant-length dipole has about a 50-� radiation resistance and is more efficient
because the relative material resistance is low.

The input resistance of the antenna is the sum of the radiation resistance and the
resistance due to material losses:

Pin = (RR + RL)|I |2

The gain of an antenna is the ratio of the peak radiation intensity to the input power
averaged over the radiation sphere:

gain = Sr,peakr
2

Pin

4π

= Umax

Pin

4π

By using the idea of radiation resistance, we rewrite this as

gain = 4πUmax

(RR + RL)|I |2
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Efficiency is the ratio of radiated power to input power:

ηe = Pr

Pin
= Rr |I |2

(Rr + RL)|I |2 = Rr

Rr + RL

Instead of integrating the pattern to calculate the total power radiated, we sometimes
compute the input power of the antenna from currents induced on the antenna elements
by given voltage sources on various terminals of the antenna in analysis:

Pin = Re(V1I
∗
1 ) + Re(V2I

∗
2 ) + · · · + Re(VNI ∗

N)

The gain can be found from

gain = Sr(θ, φ)r2

Pin

4π

= U(θ, φ)

Pin

4π

This method is considerably easier than integrating the radiation intensity to compute
directivity.

By integrating the pattern, we found only the input resistance of the short antenna,
not the reactive component. A short antenna has a large capacitive reactance term
that limits the impedance bandwidth when combined with a match network. The short
antenna has a large pattern bandwidth but a narrow impedance bandwidth. Of course,
an active network could be designed to impedance-match the antenna at any frequency,
but the instantaneous bandwidth is narrow. The moment method of analysis gives us
the currents for given input voltages and calculates the complete input impedance.

2-1.2 Radiation from Magnetic Currents

Magnetic currents are fictitious, but they enable slot radiation to be solved by the
same methods as electric currents on dipoles by using duality. Slot radiation could
be calculated from the surface currents around it, but it is easier to use magnetic
currents to replace the electric field in the slot. Magnetic currents along the long axis
of slots in ground planes replace the electric fields across the slots by application of
the equivalence theorem. Similarly, current loops can be replaced by magnetic dipole
elements to calculate radiation.

We use the electric vector potential F with magnetic currents. The far-field magnetic
field is proportional to the electric vector potential:

H = −jωF (2-9)

We determine the magnitude of the electric field from Eq. (2-2); it is perpendicular
to H. The electric vector potential is found from a retarded volume integral over the
magnetic current density M. Applying the radiation approximation, it is

F = e−jkr

4πr
ε

∫∫∫
M′ejk·r′

dV ′ (2-10)

where ε is the permittivity (8.854 × 10−12 F/m in free space). Equation (2-9) is the
dual of Eq. (2-1), and Eq. (2-10) is the dual of Eq. (2-5). The dual of Eq. (2-3) is valid
in both the near- and far-field regions.
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The magnetic currents in a slot are perpendicular to the slot electric fields: M =
E × n̂, where n̂ is the normal to the plane with the slot. The filamentary currents of
thin slots reduce Eq. (2-10) to a line integral, and magnetic current direction limits the
direction of the electric vector potential and the magnetic field. Since the electric field
(far field) is orthogonal to the magnetic field, the electric field is in the same direction
as the field across the slots. We use the direction of the electric field across the slots
to estimate the polarization of the far field. As with filamentary electric currents, the
far field is zero along the axis of the magnetic current.

The electric vector potential can also be used to derive the near field:

H = −jωF + ∇(∇ · F)

jωµε

E = −1

ε
∇ × F

The magnetic field separates into near- and far-field terms in the electric vector poten-
tial; the electric field does not. We can determine the radiated fields directly in terms
of the magnetic currents and avoid using the vector potential:

E(r) = − k2

4π

∫∫∫
V ′

M(r′) × R̂
(

j

kR
+ 1

k2R

)
e−jkR dV ′ (2-11)

H(r) = k2

4πη

∫∫∫
V ′

[
M(r′)

(
− j

kR
− 1

k2R2
+ j

k3R3

)

+[M(r′) · R̂]R̂
(

j

kR
+ 3

k2R2
− 3j

k3R3

)]
e−jkR dV ′ (2-12)

Equations (2-11) and (2-12) can be rearranged to find the dyadic Green’s functions for
magnetic currents. These differ from the dyadic Green’s functions for electric currents
by only constants.

Example Derive the fields radiated from a small constant-current loop.
We could use the magnetic vector potential and calculate over the currents in the

wire but must account for changing current direction around the loop. Place the loop
in the x –y plane. The electric field radiated by the loop is in the φ direction because
the currents in the loop can only be in the φ̂ direction. When solving the integral for
the magnetic vector potential, note that the direction of the current on the loop, φ̂′ at a
general point is not in the same direction as the field point, φ̂, unit vector. The integral
must be solved with a constant vector direction, one component at a time.

Although the magnetic vector potential can be computed, it is easier to replace the
current loop with an incremental magnetic current element. The equivalent magnetic
current element is

Iml = jωµIA

where A is the area of the loop. The magnetic current density is

M = Imlδ(r ′)ẑ = jωµIAδ(r ′)ẑ
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The electric vector potential is found using Eq. (2-10):

Fz = jωµεIA

4πr
e−jkr

The magnetic field is found from this electric vector potential using Eq. (2-9):

Hz = −jωFz = ω2µεIA

4πr
e−jkr

We calculate Hθ by projection:

Hθ = Hzẑ · θ̂ = −ω2µεIA

4πr
e−jkr sin θ

Eφ and Hθ are related in the far field because the wave propagates in the r direction:

Eφ = −ηHθ = ω2µεIAη

4πr
e−jkr sin θ

The small current loop and small current element have the same pattern shape, sin θ ,
but opposite polarizations. The directivity is 1.5 (1.76 dB). Figure 2-1 uses a dashed
curve to plot the response of the small loop, while the solid curve gives the pattern of
a half-wavelength slot that radiates on both sides of the ground sheet.

2-2 APERTURES: HUYGENS SOURCE APPROXIMATION

Many antennas, such as horns or paraboloid reflectors, can be analyzed simply as aper-
tures. We replace the incident fields in the aperture with a combination of equivalent
electric and magnetic currents. We calculate radiation as a superposition of each source
by using the vector potentials. Most of the time, we assume that the incident field is
a propagating free-space wave whose electric and magnetic fields are proportional to
one another. This gives us the Huygens source approximation and allows the use of
integrals over the electric field in the aperture. Each point in the aperture is consid-
ered to be a source of radiation. The far field is given by a Fourier transform of the
aperture field:

f(kx, ky) =
∫∫
S

Eejk·r′
ds ′ (2-13)

This uses the vector propagation constant

k = kx x̂ + ky ŷ + kzẑ

kx = k sin θ cos φ ky = k sin θ sin φ kz = k cos θ

where f(kx, ky) is the pattern in k-space. We multiply the Fourier transform far field
by the pattern of the Huygens source:

je−jkr

2λr
(1 + cos θ) (2-14)

When apertures are large, we can ignore this pattern factor. In Eq. (2-13), f(kx, ky) is
a vector in the same direction as the electric field in the aperture. Each component
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is transformed separately. The far-field components Eθ and Eφ are found by projec-
tion (scalar products) from f(kx, ky) times the pattern factor of the Huygens source
[Eq. (2-14)].

If we have a rectangular aperture in which the electric field is expressed as a product
of functions of x and y only, the integral reduces to the product of two single integrals
along each coordinate. The Fourier transform relationships provide insight into pattern
shape along the two axes. Large apertures radiate patterns with small beamwidths.
An antenna with long and short axes has a narrow-beamwidth pattern in the plane
containing the long dimension and a wide beamwidth in the plane containing the short
dimension. This is the same as the time and frequency dual normally associated with
the Fourier transform.

We draw on our familiarity with signal processing to help us visualize the
relationship between aperture distributions and patterns. Large apertures give small
beamwidths, just as long time pulses relate to low-frequency bandwidths in normal
time–frequency transforms. The sidelobes of the pattern correspond to the frequency
harmonics of an equivalent time waveform under the Fourier transform and rapid
transitions in the time response lead to high levels of harmonics in the frequency
domain. Rapid amplitude transitions in the aperture plane produce high sidelobes
(harmonics) in the far-field response (Fourier transform). Step transitions on the
aperture edges produce high sidelobes, while tapering the edge reduces sidelobes
and we relate the sidelobe envelope of peaks to the derivative of the distributions
at the edges. To produce equal-level sidelobes, we need Dirac delta functions in the
aperture that transform to a constant level in the pattern domain. Another example is
periodic aperture errors that produce single high sidelobes. When we discuss aperture
distribution synthesis, we see that the aperture extent in wavelengths limits our ability
to control the pattern.

A uniform amplitude and phase aperture distribution produces the maximum aper-
ture efficiency and gain that we determine from the following argument. An aperture
collects power from a passing electromagnetic wave and maximum collectible power
occurs at its peak amplitude response. If the amplitude response somewhere else in the
aperture is reduced from the maximum, that portion will collect less power. The ampli-
tude response can be reduced only by adding loss or reflecting power in reradiation.
The antenna with the highest aperture efficiency reflects the least amount of power
when illuminated by a plane wave. Similarly, if the phase shift from the collecting
aperture to the antenna connector is different for different parts of the aperture, the
voltages from the various parts will not add in phase. Gain is directly proportional
to aperture efficiency [Eq. (1-10)]. Therefore, a uniform amplitude and phase aper-
ture distribution has maximum gain. All this assumes that the input match on various
aperture distribution antennas is the same.

For example, consider the pattern of a uniform aperture distribution in a rectangu-
lar aperture a × b. We use the Fourier transform and ignore the polarization of the
electric field in the aperture. (This assumes that the field has a constant polarization or
direction.)

f (kx, ky) = E0

∫ b/2

−b/2

∫ a/2

−a/2
ejk·r′

dx dy

= E0

∫ b/2

−b/2

∫ a/2

−a/2
ejkxxejkyydx dy
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We separate the integral into a product of two integrals each with the form∫ a/2

−a/2
ejkxx dx = ejkxa/2 − e−jkxa/2

jkx

= a sin(kxa/2)

kxa/2

On combining the two similar integrals, we have

f (kx, ky) = ab sin(kxa/2)

kxa/2

sin(kyb/2)

kyb/2

where kx = k sin θ cos φ, ky = k sin θ sin φ, and kz = k cos θ and k = 2π/λ. The pattern
in both planes is given by a k-space function, sin u/u. Figure 2-2 plots this pattern
function as a solid curve using kx-space [(ka/2) sin θ ] as the abscissa to produce a
universal curve independent of aperture size a. The half-power points occur when

sin u

u
= 1√

2
or u = 1.39156

When we substitute for u, we have in the principal planes

πa

λ
sin θ = 1.39156

By solving for θ , we compute the half-power beamwidth (HPBW):

HPBW = 2 sin−1 0.4429λ

a

By using the approximation u = sin u for small angles, the half-power beamwidth can
be estimated as

HPBW = 50.76◦ λ

a

Uniform

Cosine

A
m

pl
itu

de
, d

B

ka/2 sin q

FIGURE 2-2 Universal k-space pattern for the radiation from uniform (solid curve) and cosine
(dashed curve) aperture distributions.
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Note that we have ignored the (1 + cos θ)/2 pattern of the Huygens source, which
reduces the beamwidth for radiation from small apertures. We discover on Figure 2-2
the pattern nulls occur at integer multiples of π and the first sidelobe amplitude is
13.2 dB below the peak.

The gain of a uniform amplitude and phase aperture distribution is given by Eq. (1-7),
where A is the area of the aperture. Chapter 4 develops amplitude taper efficiency for
nonuniform aperture amplitude distributions to calculate the gain reduction. Phase error
efficiency gives the gain reduction due to phase anomalies. Each of these is found from
the distribution of aperture fields. Figure 2-2 plots the pattern of a half cosine aperture
distribution as a dashed curve. The distribution peaks in the center and tapers linearly to
zero at the edges. Tapering the aperture distribution widens the beamwidth and reduces
both gain and sidelobe levels. The pattern beamwidth is 1.342 times wider than the
uniform distribution beamwidth. A cosine distribution produces a −0.91-dB amplitude
taper loss, and the distribution edge taper causes the sidelobes to fall off at a faster rate.

Example Compute the length of the aperture with a uniform distribution that will
give a 10◦ beamwidth.

a

λ
= 50.76◦

10◦ � 5 wavelengths

We can calculate radiated power by integrating the Poynting vector magnitude over
the radiation sphere, but there is an easier way. We assumed that the aperture fields
are free-space waves. The total power radiated is in the aperture,

Pr =
∫∫

aperture

|E|2
η

ds Pavg = Uavg = Pr

4π

where η is the impedance of free space. The radiated electric field is

E = j
e−jkr (1 + cos θ)

2λr
f(kx, ky)

The Poynting vector magnitude is

Sr = |E|2
η

= (1 + cos θ)2

4λ2r2
|f(kx, ky)|2 (2-15)

By combining Eqs. (2-14) and (2-15), we determine directivity:

directivity(θ, φ) = U(θ, φ)

Uavg
= Srr

2

Pr/4π

= π(1 + cos θ)

λ2

∣∣∣∣∣∣
∫∫

Eejk·r′
ds ′

∣∣∣∣∣∣
2

∫∫
|E|2ds ′

(2-16)

By considering electric and magnetic fields separately in the aperture, we eliminate the
requirement that the ratio electric and magnetic fields are the same as free space used
in the Huygens source approximation. Given the fields in an aperture, we can equate
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them to magnetic and electric currents:

Ms = Ea × n Js = n × Ha (2-17)

where Ea and Ha are the aperture fields and n is the outward normal. The equivalence
theorem [2, p. 113] results in exact solutions by using the total aperture field, incident and
reflected. When using the equivalence theorem, we replace the total fields present with
equivalent currents. The induction theorem equates currents only to the incident fields
on the aperture, which ignores wave reflection and results in approximate solutions:

F = ε

∫∫
s

Mse
−jk|r−r′|

4π|r − r′| ds ′ A = µ

∫∫
s

Jse
−jk|r−r′|

4π|r − r′| ds ′ (2-18)

We derive the radiated fields from each distribution of currents by using vector poten-
tials where r is the field point and r′ is the source point in the aperture. These
expressions are valid in the near and far fields. By integrating over only a finite aper-
ture, we assume zero fields outside the aperture, while rigorous expressions require
integrals over closed boundaries. A planar aperture must extend to infinity, but the
fields outside the aperture are nearly zero and contribute little.

2-2.1 Near- and Far-Field Regions

The radiative near- and far-field regions are characterized by the approximations made
to the integrals [Eq. (2-18)]. The radiative near-field region lies between the near field,
with no approximations, and the far-field region. In both approximations the field
(observation) distance r is substituted for |r − r′| in the amplitude term. The vector
potentials reduce to

F = ε

4πr

∫∫
s

Mse
−jk|r−r′| ds ′ A = µ

4πr

∫∫
s

Jse
−jk|r−r′| ds ′ (2-19)

We handle the phase term differently in the two regions. First, we expand the phase
term in a Taylor series,

|r − r′| =
√

r2 + r ′2 − 2r · r′ = r − r̂ · r′ + 1

2r
[r ′2 − (r̂ · r′)2] · · ·

where r̂ is the unit vector in the field point direction. We retain the first two terms for
the far-field approximation and the vector potentials become

F = e−jkrε

4πr

∫∫
s

Mse
jk·r′

ds ′, etc. (2-20)

where we have combined k, the propagation constant, with the unit vector r̂:

k = kr̂ = k(sin θ cos φx̂ + sin θ sin φŷ + cos θ ẑ)

The magnetic vector potential integral parallels Eq. (2-20) as in Eq. (2-19). In the
radiative near-field zone approximation the terms in r ′2 are retained and we obtain the
following integral for the electric vector potential:

F = e−jkrε

4πr

∫∫
Ms exp

[
j (k · r′) + (k · r′)2

2rk
− kr ′2

2r

]
ds ′ (2-21)
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No clear boundary between the three regions exists because the fields are continuous.
Common boundaries are

r

L
< 1 near field

1 <
r

L
<

L

λ
radiative near field

r

L
>

L

λ
far field

where L is the maximum dimension on the aperture.

Example Determine the maximum difference between the radiative near- and far-field
approximations at a point normal to the maximum aperture dimension when r = L2/λ

and r = 2L2/λ.
Normal to the maximum dimension, r̂ · r′ = 0. The phase difference is

kr
′2
max

2r
where r ′

max = L

2

phase difference φ = 2πL2

8λr

φ = π/4 at r = L2/λ and φ = π/8 at r = 2L2/λ

The usual minimum distance used for antenna patterns is 2L2/λ, where L is the
maximum dimension of the antenna. At that distance, the phase error across the aperture
from a point source antenna is π/8. The distance is not sufficient for low-sidelobe
antennas [3] because quadratic phase error raises the measured sidelobes.

We can use vector potentials in the aperture after determining equivalent currents,
but we will find it more convenient to use the fields directly. Define the following
integrals:

f =
∫∫
s

Eae
jk·r′

ds g =
∫∫
s

Mae
jk·r′

ds (2-22)

using the far-field approximation. Near-field integrals require additional phase terms.
Given an aperture, we calculate the vector potentials in terms of Ea and Ha through
the currents by using either the equivalence or inductance theorems, and we use the
integrals of Eq. (2-22) in the vector potentials. We combine the fields in the far field
due to each partial source:

E = −jωA − jηωF × r̂

For an aperture in the x –y plane, we carry out these steps by using the inductance
theorem and obtain the following far fields from the incident aperture fields

Eθ = jke−jkr

4πr
[fx cos φ + fy sin φ + η cos θ(−gx sin φ + gy cos φ)]

Eφ = −jke−jkr

4πr
[(fx sin φ − fy cos φ) cos θ + η(gx cos φ + gy sin φ)]

(2-23)
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where f and g have been expanded in terms of their x- and y-components and η is the
impedance of free space.

2-2.2 Huygens Source

The Huygens source approximation is based on the assumption that the magnetic and
electric fields are related as in a plane wave in the aperture:

ηgy = fx and − ηgx = fy

since
ηHy = Ex and − ηHx = Ey

With this approximation, the far field [Eq. (2-23)] becomes

Eθ = jke−jkr

4πr
(1 + cos θ)(fx cos φ + fy sin φ)

Eφ = −jke−jkr

4πr
(1 + cos θ)(fx sin φ − fy cos φ)

(2-24)

The two-dimensional vector Fourier transform f = (fx, fy) of the aperture electric
field in the x –y plane determines the far-field components. We derive the radiated
components by projecting (vector scalar product) this field onto the vectors θ̂/ cos θ

and φ̂. The transform f expands the field in k-space [usually, (kx, ky)]. This normalizes
the pattern and removes the direct dependence on aperture length.

We separate out all but f when we consider aperture distributions. We drop the
terms for the radiation from a point source and the pattern of a Huygens point source
[Eq. (2-14)] and limit our discussions to Huygens sources and far fields. General aper-
ture fields require Eq. (2-23), and for any region other than the far field, additional
phase terms are needed in the transforms [Eq. 2-21)].

2-3 BOUNDARY CONDITIONS

Material boundaries cause discontinuities in the electric and magnetic fields. The effects
can be found by considering either vanishing small pillboxes or loops that span the
boundary between the two regions. By using the integral form of Maxwell’s equations
on these differential structures, the integrals reduce to simple algebraic expressions.
These arguments can be found in most electromagnetic texts and we give only the
results. Conversely, we will discover that artificial boundaries such as shadow and
reflection boundaries used in geometric optics (ray optics) cannot cause a disconti-
nuity in the fields because they are not material boundaries. The idea that the fields
remain continuous across the boundary leads to the necessity of adding terms to extend
ray optics methods. We discuss these ideas when considering the uniform theory of
diffraction (UTD) method used with ray optics.

Suppose that we have a locally plane boundary in space described by a point and a
unit normal vector n̂ that points from region 1 to region 2. We compute the tangential
fields from the vector (cross) product of the fields and the normal vector. The fields
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can be discontinuous at the interface between the two regions if surface magnetic MS

or electric current JS densities exist on the surface.

n̂ × (E2 − E1) = −MS n̂ × (H2 − H1) = JS (2-25a,b)

The normal components of the fields change due to the differing dielectric and magnetic
properties of the materials and the charges induced on the surface:

n̂ · (ε2E2 − ε1E1) = ρS n̂ · (µ2H2 − µ1H1) = τS (2-26)

with ρS and τS given as electric and magnetic surface charge densities, respectively.
Perfect dielectric and magnetic materials can have no currents, which reduces
Eq. (2-25) to

n̂ × (E2 − E1) = 0 n̂ × (H2 − H1) = 0 (2-27)

Equation (2-27) means that the tangential fields are continuous across the boundary.
These boundary conditions are used in the method of moment analyses to determine

currents. The method applies the boundary condition in integral equations to determine
the coefficients of the expansion of currents in the sum of basis functions. The currents
described as these sums do not satisfy the boundary conditions at all points but do
when integrated over a region. This method leads to approximations that will converge
as more terms are included in the expansions.

When doing analysis we find two types of surfaces convenient. We use these surfaces
to reduce analysis effort by using planes of symmetry. The first one is the perfect
electric conductor (PEC). A PEC surface causes the fields to vanish inside and to have
electric currents induced on it:

n̂ × E2 = 0 n̂ × H2 = JS (PEC) (2-28a,b)

A PEC surface is also called an electric wall. The second surface is the perfect magnetic
conductor (PMC) and is a hypothetical surface. Whereas good conductors approximate
PEC, there are no PMC materials. The PMC has no internal fields like the PEC and
forces the tangential magnetic field to be zero:

n̂ × E2 = −MS n̂ × H2 = 0 (PMC) (2-29)

A PMC surface supports the hypothetical magnetic current density MS . We find that
the magnetic wall (PMC) concept simplifies analysis.
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FIGURE 2-3 Ground-plane images.
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We use images of currents to include material boundaries in analysis. Figure 2-3
illustrates ground-plane images. When we analyze radiation from currents in the pres-
ence of a boundary, we include the actual antenna and its image to compute the fields.
The figure shows an infinite ground plane, but a finite ground-plane image can be used
in the angular region where a reflected wave occurs in the finite plane. We consider
this idea further when discussing geometric optics. We can use images in dielectric
boundaries provided that we calculate the polarization sensitive reflection coefficients
to adjust the magnitude and phase of the image.

2-4 PHYSICAL OPTICS

Physical optics uses things that can be measured. We can measure both currents
and fields, but auxiliary vector potentials have no physical reality, only mathemat-
ical artifacts that simplify Maxwell’s equations. Nevertheless, the auxiliary vector
potentials provide simple models for problems that enable simple mental pictures,
as shown earlier, but we cannot easily formulate them into a systematic analysis tool
for antenna problems.

The physical optics analysis method combines the use of Green’s functions to calcu-
late fields radiated by a given distribution of currents and then uses boundary conditions
to determine the currents induced on objects due to incident fields. We compute the
effects of a mounting structure by inducing currents on it and adding their radiation to
the antenna pattern. The method assumes that radiation from the induced currents on
the structure does not change the initial currents.

We start analyses from either currents or incident fields and work from those. The
resonant structure of many antennas determines the approximate current distribution that
we normalize to the radiated power. We calculate the fields from these currents. Physical
optics can use an iterative technique to calculate incremental currents induced on the
original radiators and improve the solution, but we usually just sum the radiation from
the original currents to the radiation from the induced currents. The second starting point
for physical optics can be incident fields. These could be plane waves or could be fields
found from the measured radiation patterns of antennas: for example, the pattern of a
reflector feed. We add the radiation from the induced currents to the incident waves.

2-4.1 Radiated Fields Given Currents

The radiated fields can be found from distribution of the electric and magnetic currents
by the use of dyadic Green’s functions that contain source and field coordinates. We
sometimes refer to the Green’s functions as vector propagators or transfer functions
between currents and fields. We calculate the fields from integrals over the source
points of the dot (scalar) product between the dyadic and current densities. The dyadic
Green’s function contains both near- and far-field terms and requires slightly different
expressions for the electric and magnetic fields. The general propagator from electric
and magnetic currents has separate terms for electric and magnetic currents, which
when used with surface patch currents can be reduced to short subroutines or procedures
easily programmed [1]:

E(r) =
∫

GEJ(r, r′) · J(r′) dV ′ +
∫

GEM(r, r′) · M(r′) dV ′ (2-30)

H(r) =
∫

GHJ(r, r′) · J(r′) dV ′ +
∫

GHM(r, r′) · M(r′) dV ′ (2-31)
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These expressions integrate over the currents located at source points r′ for a dyadic
Green’s function that changes at each field point r and source point r′. Although these
Green’s functions are valid at all field points in space both near and far field, they are
singular at a source point. Only retaining terms with 1/R dependence for the far field
greatly simplifies the expressions.

When fields are incident on a perfect electric conductor (PEC), the combination of
incident and reflected tangential magnetic fields induces an electric current density on
the surface. The fields inside the conductor are zero. We assume locally plane surfaces
on patches and compute currents that satisfy the boundary condition. Given the local
unit normal n̂ to the surface, the induced current density is given by

JS = n̂ × (Hincident + Hreflected)

Hincident = Hreflected

JS = 2n̂ × Hincident (2-32)

The reflected magnetic field equals the incident magnetic field because the field reflects
from the conductive surface. The sum of the tangential electric fields must be zero.
Because the reflected wave changes direction, the vector (cross) product of the elec-
tric and magnetic fields must change direction. The reflected tangential electric field
changes direction by 180◦, so the tangential magnetic field must not change direction
because the Poynting vector changed its direction. Equation (2-32) is the magnetic field
equation applied on a PEC. Equation (2-25b) is the general magnetic field equation at
a boundary.

Physical optics starts with a given current distribution that radiates, or the measured
pattern of an antenna. When an object is placed in the radiated field, the method
calculates induced current on the object to satisfy the internal field condition. For
example, PEC or PMC have zero fields inside. When we use simple functions such as
constant-current surface patches, the sum of the radiation from the incident wave and
the scattered fields from induced surface currents produces only approximately zero
fields inside. As the patch size decreases, the method converges to the correct solution.
To obtain the radiated field everywhere, we sum the incident wave and scattered waves.
The fields radiated by the induced currents produce the shadow caused by the object.
With geometric optics techniques such as UTD, the object blocks the incident wave
and we determine the fields in the shadow regions from separate diffraction waves.
In physical optics the incident wave continues as though the object were not present.
Only geometric optics techniques use blockage.

We can calculate the fields radiated from antennas in free space or measure them
in an anechoic chamber that simulates free space, but we mount the antenna on finite
ground planes, handsets, vehicles, over soil, and so on, when we use them. Physical
optics is one method of accounting for the scattering. We show in later chapters that
the mounting configuration can enhance the patterns.

2-4.2 Applying Physical Optics

In this book we do not discuss how to develop numerical techniques, but it is important
to understand how to apply methods. Whether you develop your own codes or use
commercial codes, certain rules should be applied. Consider Eq. (2-32). The normal to
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the surface points in the direction of the incident wave: outward. If the normal pointed
inward, the sign of induced electric current density would change. Most codes have
made the assumption that the normal points outward, but some codes may check on
the direction of the normal relative to the incident wave and make the necessary sign
change. We must keep track of the direction of the normal, and it may be necessary
to rotate the normal depending on the expected direction of the incident wave. If an
object can have radiation from both sides, it may be necessary to use two objects in
the analysis.

Many codes store each object as a separate entity in a disk file. In some cases we
need to store an object multiple times. Take, for example, a Cassegrain dual reflector.
The feed antenna illuminates the subreflector and induces currents on it. These currents
radiate and excite currents on the main reflector. When the main reflector–induced
currents radiate, the subreflector intercepts or blocks part of the fields. We account
for this blockage by using a second subreflector object on which the code calculates
a new set of induced currents by using the main reflector currents as the source. We
could add these currents to the existing disk file object or merely keep the second
object. We want to keep the second object separate so that we can calculate additional
currents induced on the main reflector using these currents as sources. These currents
will be reduced from the initial set, but they are an important contribution to the fields
radiated behind the reflector. This example illustrates iterative PO. When objects face
each other significantly, iterative PO is necessary to calculate correct patterns. The
method converges rapidly in most cases.

Figure 2-4 illustrates the geometry of a corner reflector. A half-wavelength-long
dipole is placed between two metal plates usually bent to form a 90◦ angle. We can
use other angular orientations between the plates, but this is the usual design. The
figure does not show the feed line to the dipole, which usually starts at the juncture of
the two plates and runs up to the dipole. This feed line contains the balun discussed
in Section 5-15. Although the figure shows the plates as solid, many implementations
use metal rods to reduce weight and wind loading.

The analysis starts with assumed currents on the dipole. We divide the plates ana-
lytically into small rectangular patches, which can be small (≈ λ/8 to λ/4) on a side
since it takes only a few to cover the plates. You should repeat the analysis with

FIGURE 2-4 Corner reflector with a dipole located between two flat plates.
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different-sized current patches to determine if the analysis has converged. In a similar
manner, we break down the current on the dipole into short linear segments, each
with constant amplitude. By using a near-field version of Eq. (2-31), we calculate the
magnetic field incident on each patch on the plates. This field induces electric currents
on the plates calculated from Eq. (2-32). Remember that we combine radiation from
the source dipole with that radiated from the induced currents to reduce the radiation
behind the antenna. The currents were induced to satisfy the boundary condition of
the plate, but only with both radiations present. Figure 2-5a illustrates this process of
inducing currents. Figure 2-6 shows the antenna pattern calculated using these currents.
The E-plane pattern drawn as a solid line produces a null at 90◦ because the dipole
pattern has this null. The plates cause the narrowing of the beam in the H -plane. The
plates reduced the back radiation to −22 dB relative to the forward radiation, called
the front-to-back ratio (F/B). The gain has increased from the 2.1 dB expected from
a dipole to 9.3 dB. An equivalent geometric optics analysis uses two images in the
plates, as shown in Figure 2-5b, for the analysis.

If you look at Figure 2-4 or 2-5, you should notice that the two plates face each
other. Currents on one plate will radiate toward the other plate and induce another
set of currents on it. We could ignore these induced currents if the radiation was
insignificant, but to produce correct patterns we must include them. The solution to
this problem calls for an iterative technique where we calculate the radiation from the
currents on the first plate and induce incremental currents on the second plate. These
incremental currents produce further radiation that induces additional currents on the
other plate. The method converges rapidly. Figure 2-7 gives the antenna pattern after
the iterations have been completed and we include radiation from all currents. The
actual F/B ratio of the antenna is 29 dB, and the additional currents increased the gain
by 0.7 dB to 10 dB. Adding the two plates in the original analysis increased the gain
by 7.2 dB, whereas the iterative technique had a much smaller effect. Figure 2-8 illus-
trates the iterative technique and shows that the equivalent geometric optics analysis
adds a third image to represent the reflection between the plates. Remember when
you mount the antenna in an application, the structure will change the realized pat-
tern, but the high F/B ratio reduces this effect. The mounting structure used when
measuring the antenna changes the pattern as well, which limits our knowledge of the
real pattern.

Currents

Dipole

Image

(a) (b)

Image

FIGURE 2-5 Cross-sectional view of a corner reflector: (a) magnetic field radiated from a
dipole induces currents on plates; (b) plate currents replaced with image dipoles.
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E-plane H-Plane

FIGURE 2-6 Pattern calculated from a combination of dipole and plate currents in a corner
reflector with 1 × 0.9λ plates without induced current iteration.

Physical optics can determine the impedance effects of the limited images in the
ground planes, such as the corner reflector. The local nature of impedance effects
allows the use of images to calculate the mutual impedance effects of ground planes.
We use impedance calculations not only to determine the bounds of ground-plane
effects on input impedance, but to calculate the total power radiated by the antenna.
The images (excited currents on ground planes) radiate but do not receive input power.
A ground plane at least λ/2 on a side located about λ/4 away from the antenna pro-
duces nearly the same impedance effects as an infinite ground plane, but the ground
plane alters the radiation pattern greatly because it restricts possible radiation direc-
tions.

It has commonly been thought that physical optics could compute the field only in
the main beam pattern direction of a paraboloidal reflector. The method can determine
this pattern region accurately by using only a few patches, each one being many
wavelengths on a side. As the processing power of computers increases, the patch size
can be shrunk until PO can calculate the pattern in every direction, including behind
the reflector. It is important to remember to include the feed pattern behind the reflector
even though its radiation is obviously blocked by the main reflector. Physical optics
uses induced currents to cancel the fields inside objects when the incident fields and
the radiation from the induced currents are added. We can calculate the pattern behind
a reflector using UTD (GTD), the uniform (geometric) theory of diffraction. This
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E-Plane

H-plane

FIGURE 2-7 Pattern of corner reflector with 1 × 0.9λ plates with induced current iteration
equivalent to multiple reflectors between the plates.

Dipole

Image

Image

Image

(a) (b)

FIGURE 2-8 (a) Wall currents on plates radiate magnetic fields that induce additional currents
on facing plates; (b) added induced currents equivalent to additional image dipole.

geometric optics-based method blocks the radiation from the feed and uses diffractions
from the rim edge to calculate the pattern behind the reflector. We discuss UTD in
Section 2-7. A comparison of UTD and physical optics calculations [1,4] of the pattern
behind shows that the two methods match.

The dashed curve of Figure 2-9 plots the results of the PO analysis of a 20λ-diameter
centrally fed paraboloidal reflector. The feed antenna radiation tapers to −12 dB at the
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FIGURE 2-9 Physical optics analysis of a 20λ-aperture-diameter paraboloidal reflector
(dashed curve) compared to analysis that includes PTD (solid curve).

reflector rim. Figure 2-9 shows the feed power spillover peaking at angles off the
boresight near 100◦. PO analysis computes the currents on a patch by assuming that
it is embedded in an infinite plate. The reflector rim violates this assumption and
we need extra terms to calculate the pattern behind the reflector accurately. Adding
PTD (the physical theory of diffraction) to PO improves the match between the two
methods behind the reflector as shown by the solid curve on Figure 2-9. PTD handles
caustic regions of PO in a manner similar to the equivalent current method based
on diffraction coefficients of UTD with geometric optics for shadow and reflection
boundaries. For this example, the additional PTD currents add with the same phase
because of the symmetry of the reflector geometry and produce the maximum effect.
The PTD currents on the rim of an offset reflector will not add and produce a peak
effect behind the reflector but will produce a more defuse effect. We only need PTD
over a limited pattern angular range to reduce error, and the cost of implementing the
fix may exceed the necessity of knowing the pattern in these regions. Similarly, UTD
needs the addition of edge currents for accurate calculation of the radiation near 180◦,
behind the reflector. Although any model for the feed pattern can be used with PO,
results matching UTD exactly occur only over all regions of the back radiation when
the feed satisfies Maxwell’s equations in the near and far fields [4, p. 212]. One such
feed is the Gaussian beam approximation. Again, like PTD fixes, the small errors when
using other feed antenna approximations occur only at limited pattern regions that may
be unimportant.

2-4.3 Equivalent Currents

We can relate the concept of equivalent currents to physical optics. In this case we
generate an artificial surface that covers a source of radiation. The incident fields
generate surface electric and magnetic current whose radiation cancels the internal
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fields and generates the external pattern. We use these at the apertures of antennas
such as horns. By using the dyadic Green’s functions we can calculate the near-field
patterns and the coupling between antennas when the assumption is made that the
presence of a second antenna does not alter the aperture fields. Given the outward
normal n̂, we calculate the equivalent currents by

n̂ × Eincident = −MS n̂ × Hincident = JS (2-33)

We must use both electric and magnetic current densities on the surface to replace
the internal fields. If the ratio of the electric field to the magnetic field equals the
impedance of free space (376.7 �), the combination of the two currents produces the
radiation of the Huygens aperture source when used with the dyadic Green’s func-
tion. We use equivalent currents for a variety of analyses over flat apertures such as
horns and paraboloidal reflectors, but they can also be used with curved structures or
apertures.

We can, for example, use equivalent currents for calculation of the effects of
radomes. Locally, we assume that the incident waves are plane waves and use boundary
conditions to calculate reflected and transmitted waves. It is necessary to separate the
incident wave into parallel and perpendicular polarizations, the ray-fix representation
discussed in Section 2-7.8. These polarizations have differing reflection and transmis-
sion coefficients. We generate one surface on the inside of the radome and another on
the outside. We use locally free-space waves for the reflected and transmitted waves
lying outside the radome. Both these waves can be replaced with equivalent currents.
The equivalent currents produce null fields inside the radome when combined with
the incident wave radiation [4, p. 155]. Including these equivalent currents in a PO
analysis, we add the effect of the radome.

Equivalent currents can also be used with lenses. We use the incident waves com-
bined with the idea of locally plane waves to calculate reflected and transmitted waves
at each surface and replace them with equivalent currents. We include the dielectric
constant of the lens in the dyadic Green’s functions for the internal radiation of the
lens to calculate the fields at the second surface. We apply locally plane waves at the
second surface to determine the transmitted and reflected rays and then replace them
with equivalent currents. Because the lens has internal reflections, we need to apply
an iterative PO analysis to calculate the multiple reflections between the two surfaces.
The method converges rapidly because the internal reflections are small.

2-4.4 Reactance Theorem and Mutual Coupling

In Section 1-14 we discussed how the coupling between two antennas can be found
from reactance. Given a transmitting antenna that generates a field at the receiving
antenna, the reactance is described by an integral equation [5]:

reactance =
∫∫∫

(Et · Jr − Ht · Mr ) dV = 〈t, r〉 (2-34)

The volume integral is over the receiving antenna currents, but it is often reduced
to a surface or line integral. A second form of Eq. (2-34) uses the fields radiated by
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both antennas. Given a surface that surrounds the receiving antenna, the integral for
reactance is taken over this surface:

reactance =
∫∫
Sr

(Er × Ht − Et × Hr ) · ds = 〈t, r〉 (2-35)

The differential normal ds is pointed away from the receiving antenna.
When we represent the two antennas and the transmission between them as an

impedance matrix, it implies that we know the input currents to both antennas. By
expressing the coupling as an impedance matrix, we compute mutual impedance from
the reactance integral:

Z12 = −1

I1I2
〈t, r〉 (2-36)

Antennas that we describe by input currents only have electric current densities excited
on their surfaces. The mutual impedance formula using reactance reduces to

Z12 = −1

I1I2

∫∫
Vr

Et · Jr dV (2-37)

The volume integral reduces to a line integral in most cases.
Antennas with given input voltages such as slots can be described using magnetic

currents and we use a mutual admittance matrix for the antenna pair:

Y12 = 1

VtVr

· reactance = −1

VtVr

∫∫
Vr

Ht · Mr dV (2-38)

By using reciprocity antennas made of linear, isotropic materials, we have equal cross-
matrix terms:

Z12 = Z21 and Y12 = Y21 (2-39)

We calculate self-impedance terms by integrating over the surface of the antenna: for
example, the radius of a dipole with the source of the field located at the center of
wires or slots.

2-5 METHOD OF MOMENTS

The method of moments (MOM) [6] expands the currents on an antenna (or scattering
object) in a linear sum of simple basis functions. The approximate solution is a finite
series of these basis functions:

fa =
N∑

i=1

aifi (2-40)

We compute the coefficients by solving integral equations to satisfy boundary condi-
tions on the surface of the antenna (or object). The integral equation can be expressed
in the form Lfa = g, where L is a linear operator, usually a scalar product using an
integral, fa the unknown currents given by Eq. (2-40), and g the known excitation
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or source function. We substitute the summation of Eq. (2-40) into the linear operator
equation and use the scalar product integral to calculate the terms in a matrix equation.
The solution of the matrix equation determines the coefficients of current expansion.
The MOM produces filled matrices that require time-consuming numerical methods
for inversion. The art of the MOM is in choosing basis functions and deriving efficient
expressions for evaluating the fields using the basis function currents. Common basis
functions are simple staircase pulses, overlapping triangles, trigonometric functions, or
polynomials.

The method does not satisfy boundary conditions at every point, only over an integral
average on the boundaries. By increasing the number of basis functions, the method
will converge to the correct solution. We need to judge how many terms are required
for an adequate engineering evaluation. Spending excessive time on the solution cannot
be justified if it greatly exceeds our ability to measure antenna performance accurately
using real hardware.

2-5.1 Use of the Reactance Theorem for the Method of Moments

We can use the reactance theorem to generate a moment method solution to the currents
on a thin-wire antenna. Thin-wire solutions assume that there are no circumferential
currents and reduces the problem to filamentary currents. An electric field integral
equation (EFIE) satisfies the boundary condition of Eq. (2-25a), a zero tangential field
at the surface of the wires, but it does not seem explicit in the derivation. The reactance
theorem produces an impedance matrix whose inversion yields the coefficients of the
current expansion [7]. Similar to many other methods, the Green’s function has been
solved explicitly to reduce run time. This method [7] uses overlapping sinusoidal cur-
rents on V-dipoles as basis function currents and uses the Green’s function to calculate
the radiation from one V-dipole at the location of a second V-dipole. Both the radi-
ating and receiving dipoles use the same expansion function. Galerkin’s method uses
the same weighting (or testing) function as the basis function and yields the most sta-
ble solutions. The reactance equation (2-37) calculates the mutual impedance between
the two dipoles when each has unity current. We compute self-impedance by spacing
a second V-dipole one radius away and by using the reactance theorem to calculate
mutual impedance, a technique equivalent to the induced EMF method.

The scalar (dot) product between the incident vector electric field and the current
density along the dipole reduces the vectors to scalars that can be integrated. The current
density acts as the testing or weighting function for the method of moments. Performing
the integration means that the current density only satisfies the zero tangential electric
field boundary condition in an average sense. If series impedances are placed in the
V-dipole, their impedance is added to the diagonal elements of the mutual impedance
matrix. To excite the structure, we place a delta voltage source in series with the V-
dipole terminals. The solution for the currents can be found by inverting the matrix
equation and using the voltage excitation vector starting with the matrix equation

[Zmn][Im] = [Vn] (2-41)

After computing the matrix inverse and specifying the input voltage vector, the complex
current values are found on the structure:

[In] = [Zmn]−1[Vm] (2-42)
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Given the input voltage and the solution for the currents, the input impedance can
be calculated. Similarly, the far- and near-field patterns can be calculated by using
Eqs. (2-30) and (2-31) of the dyadic Green’s function.

The code must satisfy Kirchhoff’s current law at the junction between groups of V-
dipoles, which adds a constraint to the currents. Because an overlapping sinusoidal basis
function closely follows the actual currents normally excited on dipoles, the segments
can be on the order of a quarter-wavelength long or more and yield acceptable results.
Basis functions that closely follow expected current distributions are sometimes called
entire domain functions. These reduce the size of the matrix to be inverted but require
more complicated calculations for matrix terms and radiation. Although the concept
of a V-dipole was expanded to a V rectangular plate [8], the method is only a subset
of general integral equation solutions. This approach generates a simple impedance
matrix formulation easily understood from an engineering point of view.

2-5.2 General Moments Method Approach

The method of moments can solve other types of electromagnetic problems: for
example, electrostatic problems involving charges and dielectrics [9]. These solutions
can determine the characteristic impedance of transmission lines useful in the design
of antenna feeders. All moment method solutions are found from the solution of
integral equations over boundary conditions. The boundary conditions can be either
the tangential electric field (EFIE) or magnetic field (MFIE) conditions given by
Eq. (2-25a,b) or a combination applied using an integral scalar product. We need a
combination for closed bodies near an internal resonance frequency (resonant cavity)
because the solutions exhibit resonances that make the solution invalid over a narrow
frequency range. The method of moments can be applied to dielectric bodies when
we use the constitutive relations of Eqs. (2-25) and (2-26), where the formulations for
dielectric bodies use either volume or surface integrals [9].

Consider the use of the electric field integral equation (EFIE) with metal surfaces.
We expand the currents on the objects using basis functions Bm(r′) with coefficients Im:

J(r′) =
∑

ImBm(r′) (2-43)

The basis functions can be applied over a limited range of the structure in piecewise
linear functions, which can be staircase pulses, overlapping triangular functions, or
sinusoidal basis functions, whereas multiple functions can be applied over the whole
or part of the structure for entire domain basis functions. For example, these could be
a sum of sinusoidal functions which form a Fourier series representation.

On a PEC surface the tangential electric field vanishes [Eq. (2-28a)]. At field point
r along the surface S,

n̂ × [Eincident(r) + Escattered(r)] = 0

Escattered =
M∑

m=1

Im

∫∫
s′

Bm(r′) · G(r, r′) ds ′ (2-44)

We can only satisfy Eq. (2-44) using a finite sum in the average sense of an integral.
Since the integral and summation operate on a linear function, we can interchange them.
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We introduce weighting (or testing) vector functions tangent to the surface Wn(r) and
take the scalar (dot) product of this vector with the sum of electric fields. This limits
the result to the tangential component of the electric field:

∫∫
s

[Eincident(r) · Wn(r) + Escattered(r) · Wn(r)] ds = 0 (2-45)

We identify the weighted integral of the incident field with the source and weighted
integral of the field radiated by the basis functions (scattered field) as the impedance
matrix terms. The integrals over the boundaries are one form of scalar product rep-
resented by 〈·〉 notation. Using unity current on each basis function, we calculate the
matrix terms by using the scalar product:

Zmn =
〈∫∫

s′

Bm · G(r, r′) ds ′, Wn(r)

〉
=

∫∫
s

∫∫
s′

Bm · G(r, r′) · Wn(r) ds ′ ds (2-46)

Vn = −〈Eincident(r), Wn(r)〉 = −
∫∫
s

Eincident(r) · Wn(r) ds (2-47)

The combination of Eqs. (2-46) and (2-47) when integrated over each portion of the
source gives a matrix equation:

[Zmn][Im] = [Vn] (2-48)

The weighting functions could be as simple as pulse functions, overlapping triangular
functions on lines or surfaces (rooftop), piecewise sinusoidal functions, or others. The
type of basis functions determines the convergence more than the weighting (testing)
functions, which only determine the averaging. Realize that the moment method con-
verges to the exact solution when we increase the number of basis functions, but it
is a matter of engineering judgment to determine how many terms give acceptable
answers.

Equation (2-47) defines the source voltage occurring over a segment when the for-
mulation uses a piecewise function expansion. The incident voltage is the weighted
integral of the incident electric field. For example, the NEC formulation applies an
excitation voltage across one segment. The reaction integral formulation of Section 2-
5.1 applies a voltage source at the end of a segment. The modeling of sources is an
important part of the art in the method of moments.

The expansion of Eq. (2-44) is only one possible moment method solution. We could
use the boundary condition on the magnetic field, a combination of the electric and
magnetic field conditions on a PEC. If the surface has finite conductivity, the bound-
ary conditions are modified. The moment method is a general method that computes
approximate solutions to the currents. Unlike physical optics, the currents do not have
to be assumed beforehand but are found as a finite series approximation.

Antenna designers discover that adequate codes are available for most problems.
Moment method solutions are typically limited to objects only one or two wavelengths
in size, although any method can be stretched. Analysis of large structures becomes
intractable because of the large amount of computer memory required and the length
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of time needed to calculate the solution. Coarse models may not give totally accurate
results but can be useful in determining trends. Given these ideas, remember that
physical models can be built that solve the electromagnetic problem instantaneously.
We found that it takes considerable time to learn any code, and a new code has to offer
considerable advantages or solve problems that the present one cannot solve before we
invest our time.

2-5.3 Thin-Wire Moment Method Codes

Thin-wire codes that assume only filamentary currents are readily available. We have
experience with NEC, the Richmond code (ASAP), and AWAS [10], a commercial
code. All have advantages, but they take time to learn. A commercial code with a
graphical interface makes the input and output easier: for example, for NEC. These
pay for themselves quickly by saving time. NEC can include plates, but since it uses a
MFIE (magnetic field integral equation) for them, it is limited to closed bodies. When
accuracy becomes important, it is necessary to decrease the segment length and increase
their number. These codes use matrix inversion with calculation time proportional to
N3 and a matrix fill time proportional to N2. Run time increases enormously as the
number of segments increases.

The commercial code AWAS determines the segmentation, while the user of NEC
must specify it. The rule is to use at least 10 segments per wavelength, but initial
analysis can tolerate the errors due to using fewer segments. The segments should be
longer than the diameter, and care must be taken that the segments do not overlap
because the radius of the wires is too large. Solid objects, such as plates, can be
modeled as wire frames, with the rule that the perimeter of the wire equal the spacing
between the wires [11]. This rule can be violated, but a test of the convergence should
be made. When we model slots in a solid object, we cannot apply the perimeter equal-
spacing rule because the slot will disappear. These codes compute the radiation pattern
more accurately than the input impedance due to simplistic source models, and we
may have to build the antenna to determine the true input impedance. Of course, an
antenna with a good input impedance response that does not have the required pattern
is useless.

We can reduce NEC run time if the antenna has symmetry with multiple inputs. The
code reduces input by allowing the user to specify symmetry. For example, a multiarm
spiral analysis requires only the input of one arm. The various mode voltages are
entered after the basic structure impedance matrix has been solved. If an object has
M-way symmetry, the matrix fill time is reduced by M2 and the solution time by M3.
The various voltage modes can be applied afterward. If we add another wire segment
after specifying symmetry, the symmetry is destroyed and the program uses the full
matrix. The only advantage we gain is in specifying the model because the program
solves the full matrix instead of the reduced matrix.

2-5.4 Surface and Volume Moment Method Codes

Antennas made of plates or containing finite plate ground planes can be solved by using
wire meshing of a thin-wire code. The method of moments code has been extended
to plates [12,13] using a rooftop basis function on both rectangular and triangular
patches. The number of basis functions (i.e., matrix size) grows rapidly. One solution
is to use entire domain basis functions. These require more complicated integrals, but
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they reduce the matrix size. Dielectric portions of the problem lead to either volumetric
integrals or various forms of surface integrals that use equivalent currents to replace the
internal fields [9,14]. These problems lead to a variety of boundary conditions solved
using a finite series of basis function and integral equations to satisfy those boundary
conditions approximately.

MOM analysis of antennas mounted on dielectric substrates requires special tech-
niques. Commercial codes determine the currents flowing on these antennas while
accounting for the dielectric. Often, Green’s functions are found numerically, which
increases the execution time. Since the currents are located on the surface and the
integrals of the boundary conditions are over the same surface, the singularity of
the Green’s function causes a numerical problem. For example, the free-space Green’s
function has the term 1/|r − r′|, which becomes infinite on the surface. Spectral domain
methods remove the singularity by using a sum of current sheets on the surface as an
entire domain basis function. A uniform plane wave propagating at an angle to the
surface excites the current sheet. The actual current flowing on the metal portions
is expanded as a sum of these current sheets [15, p. 208ff; 16]. The uniform current
sheets are expanded in a spatial Fourier transform as well as the Green’s function,
and the MOM problem is solved. The Fourier-transformed Green’s function no longer
has the singularity. When the metallization can be expressed as an infinite periodic
structure, the current is expanded as a Fourier series. The infinite periodic structure is
used with frequency-selective surfaces and infinite arrays. In this case the fields and
currents are expanded in Floquet modes (harmonics).

2-5.5 Examples of Moment Method Models

Figure 2-10 demonstrates the use of a wire mesh to replace a solid plate. We located
a resonant (≈ λ/2) dipole λ/4 distance over a λ-wide ground plane in the H -plane
and offset 3/8λ from one edge. This is repeated in Figure 2-20 using GTD analysis.
The rods only run parallel to the dipole because cross wires do not have currents
induced on them in the ideal world of analysis. The circumference of the rods equals
the spacing between the rods and forms an equivalent solid plate. An actual antenna
could use smaller-diameter rods and work as effectively as the solid plate and would
reduce weight and wind loading. NEC analysis produces the same pattern as the GTD
analysis of Section 2-7.2, except that the E-plane size of the rods alters the backlobe
predicted by GTD to some extent, because that analysis assumes infinite-length rods.

FIGURE 2-10 Use of a wire mesh to replace a solid plate for dipole over a ground plane in
a MOM calculation.
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Over most of the pattern angles the two analyses produce identical results. The NEC
analysis accounts for the mutual impedance between the dipole and its image in the
finite ground plane. For impedance calculations a small ground plane gives almost the
same reaction to the antenna as an infinite ground plane.

Figure 2-11 shows a wire frame model of a cell phone. The model contains more
wires than necessary for λ/10 spacing, but more wires improve the geometry match.
When using crossed wires that shield both polarizations, we reduce the wire circum-
ference in half since the wires approach the squares from four sides. The small wire
antenna must be connected to the wire grid of the model to generate proper currents on
the box. Either we restrict possible locations of the antenna or we must distort the wire
grid locally. You should write an automatic grid generator if you use this analysis often.
Consider that you need to specify whether an edge wire should be generated when two
plates share the same edge. The hand holding the cell phone and the head nearby
have significant effect on the antenna performance. The model given in Figure 2-11
has limited use. We need either a moment method analysis, such as WIPL-D, which
includes volume dielectric structures, or FDTD, which can include complex material
structures to model the head and produce good results.

Figure 2-12 illustrates a wire frame model of an airplane used for low-frequency
analysis. Antennas mounted on free-flying models such as airplanes or spacecraft will
excite the structure. Electrically, small antennas can excite the entire vehicle as an
antenna. For example, a small antenna mounted on a large ground plane that would
produce vertical polarization can excite the wings or fuselage and the entire system will

FIGURE 2-11 Wire frame MOM model of a cellular telephone handset with an antenna con-
nected to the mesh.
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FIGURE 2-12 Wire frame MOM model of an airplane.

radiate horizontal polarization. Models similar to Figure 2-12 can eliminate surprises.
The model restricts antenna mounting locations to the wire positions and may require
local distortions of the grid.

Moment methods can include solid plates. Figure 2-13 shows an open waveguide
horn analysis that uses a combination of plates and a single-feed wire monopole [12].
Locating the monopole or a small dipole inside the waveguide produces excitation of
the waveguide mode that feeds the horn. Even though the model does not necessarily
produce accurate impedance information, the model accurately calculates the pattern
generated by the currents excited in the walls. We can either use an aperture method

FIGURE 2-13 MOM model of a pyramidal horn using flat plates fed by a small dipole.
(From [14, p. 229].)
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FIGURE 2-14 Use of electric and magnetic walls to reduce the model size in MOM analysis
of a pyramidal horn: (a) PEC wall divides the horn; (b) PMC wall divides the horn.

for the horn that replaces the aperture fields or use the currents excited in the walls
to calculate the pattern. Either method works for the front lobe. The moment method
calculation requires significantly greater calculation time but produces results that bet-
ter match measurements in all directions. Figure 2-14 demonstrates how to reduce
calculation time by using planes of symmetry in a moment method analysis. In this
case the small dipole feed is separated by two equally fed closely spaced dipoles. The
right–left symmetry of the antenna allows reduction of the model by half. A vertical
PMC wall divides the antenna into two parts, with only one remaining in the analy-
sis. A horizontal PEC conductor divides the remaining model in half because halfway
between the dipole feed is a virtual short circuit. Figure 2-14 contains only one-fourth
the size of the original problem. Since matrix inversion requires N3 calculations for
an N × N matrix, dividing the analytical model down to one-fourth size reduces this
calculation by a 64 : 1 factor. This also reduces the matrix element (fill time) calcula-
tions by 16 : 1. Reducing the model by using symmetry planes enables the solution of
larger problems and reduces calculation time.

Analyses in later chapters use the moment method to predict antenna performance.
Wire frame and plate analyses determine vehicle and mounting structure pattern effects.
The moment method produces excellent analyses because it determines the approximate
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current distribution as a sum of simple basis functions and we need not start with an
assumed current distribution on the antenna.

2-6 FINITE-DIFFERENCE TIME-DOMAIN METHOD

The finite-difference time-domain (FDTD) method solves the coupled Maxwell’s curl
equations directly in the time domain by using finite time steps over small cells in
space. The method reduces the differential equations to difference equations that can
be solved by sets of simple equations. The method alternates between the electric
and magnetic fields solved at locations a half-step apart because central differences are
used to approximate derivatives. A 1966 paper by Yee [17] described the basic method
that many authors have improved upon, but the original method remains the approach
of choice.

FDTD can solve many types of electromagnetic problems, of which antenna anal-
yses are only one type. Computer memory and speed limit the size of problems that
can be solved, but larger and larger problems can be solved as the cost of computing
keeps reducing. Besides antenna problems, the method is applied to microwave cir-
cuits, biological interaction with electromagnetic waves, optics, and radar cross-section
problems. The number of uses expands every day. The method allows each cell to be
made of different materials, leading to the solution of volumetric complex structures.
The solution of the equations is robust and the errors are well understood.

Currently, the method solves moderately small antenna problems on the order of
a few wavelengths. Of course, faster and larger computers can solve larger problems,
especially if the analyst has patience. FDTD handles microstrip antennas with their
complex layering of dielectrics, including a finite ground plane without the use of
complex Green’s functions required of frequency-domain solutions. The interaction of
antennas with the near environment, such as the effect of the head on cellular tele-
phone handsets, can be solved. In this case the complex electromagnetic properties of
the head can be described as cells each with different electrical properties. In addi-
tion to giving a solution to the radiation pattern and allowing characterization of the
communication system, it can provide insight into the radiation safety concerns of
users. The method handles the solution of the interaction of antennas with the human
body in a straightforward manner for prediction of biomedical applications, such as
electromagnetic heating for cancer treatment.

Learning to apply the technique, whether formulating your own routines or using a
commercial code, will yield insight for design. The method can produce time-domain
animated displays of the fields that show radiation centers and where the fields prop-
agate, but the user must learn to interpret these new displays. It will be worth your
effort to learn this task. The time-domain responses using impulse signals can produce
solutions over a wide band of frequencies when converted to the frequency domain
using the discrete Fourier transform (DFT). The only drawback is the computer run
time required.

2-6.1 Implementation

By using a direct implementation of Maxwell’s curl equations in the time domain,
you do little analytical processing of the equations. No vector potential or Green’s
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functions are developed as in frequency-domain methods. Although the antenna may
be volumetrically complex and contain many different materials, the method yields
sparse matrices rather than the dense matrices produced by moment methods. It is a
direct solution that does not require the inversion of large matrices and includes only
nearest-neighbor interactions. Having only nearest-neighbor interactions means that it
is possible to run problems on parallel machines.

You need to embed the antenna in a rectangular region and divide it into rectangular
cubical cells with sizes ranging from 10 to 20 samples per wavelength at the highest
frequency where analysis is desired. The outer surfaces contain absorbing boundaries
to eliminate reflections that would produce errors. Formulating absorbing boundary
conditions has been a significant part of the method. You need to locate a solution
surface between the absorbing boundaries and the antenna outer surface where we
compute currents by using the equivalence theorem. The DFT of the time response
determines the radiation pattern at a given frequency after the equivalent currents are
found. If you need the pattern amplitude in only a few directions, the time-domain
radiation can be found directly: for example, the gain in one direction.

We can formulate some problems in one or two dimensions if they possess sym-
metry instead of the three-dimensional rectangular cube. The solution time is reduced
dramatically, and the time-animated presentation may provide sufficient insight when
the radiation pattern is found in two dimensions. Because this is a time-domain anal-
ysis, we need to excite the structure with a pulse. You use the pulse frequency power
response to normalize the patterns and compute gain. When the formulation includes
the material losses, the efficiency of the antenna can be found since the dissipation in
the inner cells prevents the radiation from reaching the outer surface.

2-6.2 Central Difference Derivative

Numerical derivatives have greater potential for errors than integrals, but FDTD uses
them to reduce Maxwell’s differential curl equations to simple difference equations. A
second-order accurate formula for a derivative can be found by using central differences
instead of using the difference between the value at a location or time and the value
at the next point in a sequence of evenly spaced points:

∂f

∂u
= f (u0 + �u/2) − f (u0 − �u/2)

�u
+ O(�u)2 (2-49)

We can use finite differences to solve the curl equations provided that we use electric
and magnetic fields spaced at half intervals because each is related to the derivatives
of the other field and we want to use central differences to reduce error. Because
Maxwell’s equations involve time derivatives, we need to calculate the electric and
magnetic fields at interspersed half time intervals.

2-6.3 Finite-Difference Maxwell’s Equations

Consider Maxwell’s curl equations in the time domain, including lossy materials:

∂H
∂t

= − 1

µ
(∇×E − M + σ ∗H)

∂E
∂t

= −1

ε
(∇×H − J + σE)

(2-50)



78 RADIATION STRUCTURES AND NUMERICAL METHODS

Equations (2-50) contain the source currents J and M and include losses due to
conducting dielectric material σ and magnetic material losses σ ∗. Both equations have
the same form, with only an interchange of symbols. Expanding the curl operator, we
get the following equation for the x-component of the magnetic field:

∂Hx

∂t
= 1

µ

(
∂Ey

∂z
− ∂Ez

∂y
− Mx − σ ∗Hx

)
(2-51)

The x-component of the electric field has the same form but with the interchanges
H → E, E → H , M → J , and σ ∗ → σ . You obtain the equations for the y- and
z-components by a cyclic variation (repeating pattern of interchanges) x → y → z →
x → y, and so on. For example, the equations are reduced to two dimensions by
leaving out the y-component.

FDTD calculates the field at discrete times and locations on a grid. The fields can
be represented as an indexed function using integers:

f (i �x, j �y, k �z, n �t) = f (i, j, k, n)

Because we use central differences [Eq. (2-49)], for derivatives, and the magnetic
(electric) field is found from the space derivative of the electric (magnetic) field, the
magnetic and electric fields need to be spaced a half-space interval apart. The time
derivative becomes

∂f (i, j, k, n)

∂t
= f (i, j, k, n + 1

2 ) − f (i, j, k, n − 1
2 )

�t

and means that the electric and magnetic components are interspersed at �t/2 times
that which produces a leapfrog algorithm. We substitute these ideas into Eq. (2-51) to
derive the time-stepping equation for one component:

Hx(i − 1
2 , j, k, n + 1) = 1 − σ ∗(i − 1

2 , j, k) �t/2µ(i − 1
2 , j, k)

1 + σ ∗(i − 1
2 , j, k) �t/2µ(i − 1

2 , j, k)
Hx(i − 1

2 , j, k, n)

+ �t/µ(i − 1
2 , j, k)

1 + σ ∗(i − 1
2 , j, k) �t/2µ(i − 1

2 , j, k)[
Ey(i − 1

2 , j, k + 1
2 , n + 1

2 ) − Ey(i − 1
2 , j, k − 1

2 , n + 1
2 )

�z

− Ez(i − 1
2 , j + 1

2 , k, n + 1
2 ) − Ez(i − 1

2 , j − 1
2 , k, n + 1

2 )

�y

− Mx(i − 1
2 , j, k, n + 1

2 )

]
(2-52)

FDTD uses similar equations for the other components [18,19].

Yee’s Cell Figure 2-15 shows one cubic cell and the components of the fields. When
we consider the upper face, we see that the magnetic field components are spaced a
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FIGURE 2-15 Unit cell of a Yee space lattice showing time and space separation of electric
and magnetic fields in a cell. (From [15], Fig. 1,  1966 IEEE.)

half space interval from the central electrical field and the arrows show the direction
of fields. Although it would appear that the electric field is different on the upper and
lower face along the z-axis, the method assumes that the field is constant throughout
the cell. The magnetic fields shown are at the center of adjoining cells.

A leapfrog solution uses stored values of the electric fields to calculate the magnetic
fields at a half time interval later and stores these values. In the second step the solution
takes another half time step and uses the stored values of the magnetic fields to calculate
the electric fields. The method gains stability by using the half time steps and by solving
for both electric and magnetic fields. Although the fields are a half time step out of
synch, we can average between the two half time steps to produce simultaneous fields
at a point, but we only need to do this when calculating equivalent currents on the
surface used for far-field pattern calculations.

2-6.4 Time Step for Stability

You need to pick the time step to produce a stable solution. Consider a plane wave
traveling through the cubes. If the time step is too large, the wave can pass through
more than one cell for each time step. At that point the solution cannot follow the
actual wave propagation and fails. We must reduce the time step until it is less than
the Courant condition or the wave propagation rate. Consider the fastest-moving wave
in the problem, usually free space, and for equal sides to the cube, we compute the
time step from the velocity and cell length:

v �t ≤ �x√
d

(2-53)

The cell length is �x and the number of dimensions is d . The time step must be lower
for conducting materials (σ > 0) to produce a stable solution. The magic step uses



80 RADIATION STRUCTURES AND NUMERICAL METHODS

the equality and produces the most stable solutions. If you pick unequal sides to the
rectangular cell, Eq. (2-53) is modified.

2-6.5 Numerical Dispersion and Stability

FDTD analyses produce solutions that fail to propagate through the cells at the proper
phase velocity in all directions. The propagation velocity depends on the cell size
in wavelengths; it has a frequency-dependent component. You need to consider this
numerical dispersion because it affects accuracy. Because the waves travel at different
velocities in different directions, the dispersion problem increases for large structures
where many time steps must be taken. After many steps, signals disperse because
they have taken different routes and fail to add together in the correct phase. Finer
cells solve the problem, but the computation requirements grow rapidly. The equation
for the propagation constant can be found from considering the FDTD formulation to
produce the following equation for three-dimensional problems:(

1

c �t
sin

ω �t

2

)2

=
(

1

�x
sin

k′
x �x

2

)2

+
(

1

�y
sin

k′
y �y

2

)2

+
(

1

�z
sin

k′
z �z

2

)2

(2-54)

The factor k′
x is the FDTD propagation constant in the cells along the x-axis, only

approximately the same as kx , the actual propagation constant in the structure. The y-
and z-axes have similar problems. If you take the limit as cell length approaches zero,
u → 0, and so on, then sin(au)/u → a. Because �t → 0 as the cell size shrinks for
the solution still to satisfy the Courant limit, Eq. (2-54) reduces to the expression(ω

c

)2 = k
′2
x + k

′2
y + k

′2
z (2-55)

Equation (2-55) is the normal propagation constant equation for a plane wave in space
and shows that the cell propagation constants converge to the correct values as the cell
size shrinks. If you formulate a problem in one or two dimensions, you remove terms
from the right side of Eq. (2-54) to determine the dispersion relationship.

Absorbing boundary conditions (ABCs) can cause numerical instabilities. ABCs
approximate infinite space to simulate radiation by the antenna into space. FDTD
problems must be placed in a finite number of cells because each cell requires com-
puter storage. Every FDTD problem uses a finite number of cells for the ABCs with
more cells required in the directions of maximum radiation. ABCs degrade as the
number of time steps increases and eventually leads to numerical instabilities. A lively
research on ABCs has produced good ones, but be aware that most have been found
to produce problems at some point. If you write your own analyses, you will need to
find appropriate ones. Commercial codes will give their limitations.

At one time, ABCs limited solution dynamic range, but ABCs are now available
that produce reflection coefficients from 10−4 to 10−6. Numerical dispersion limits the
dynamic range as well. Remember that the antenna will be modeled with small cubes
that limit the resolution of the results. The errors of modeling lead to solution errors
that limit the dynamic range.

2-6.6 Computer Storage and Execution Times

The antenna to be analyzed is modeled by a set of cubic cells. Choosing an appropriate
number is an art. Similarly, it will be necessary to have a meshing program. Using a
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two-dimensional model will greatly reduce computer storage and run time. Remember
that our purpose should be to gain insight unavailable from measurements. The calcu-
lations require the storage of three components of both the electric and magnetic fields
in each Yee cell. Because we solve the problem in the time domain, the components
are only real numbers, unlike frequency responses, which use complex numbers for
each component. The material properties of the cells can be indicated with short 1-
byte integers provided that there are no more than 256 different ones. Single-precision
storage of the components requires 30 bytes for each cell; double-precision storage
requires 54 bytes. A three-dimensional problem with 200 cells on a side contains 8 M
cells and would need 240 Mbytes of storage for single-precision and 432 Mbytes for
double-precision components.

At each time step approximately 10 floating-point operations (flops) are needed for
each component in each cell. We must run the time steps until the input pulse has
peaked and died out in each cell. This takes about 10 times the number of cells in the
longest direction (maximum number along one axis). The three-dimensional problem
with 200 cells on a side runs for 2000 time steps and requires 60 flops times the number
of cells. The solution needs 2000 × 8 M × 60 flops = 960 Gflops for completion.

2-6.7 Excitation

We specify the excitation of an antenna in the time domain since FDTD operates in
the time domain. If all we need is a single-frequency solution, a ramped sinusoidal
waveform can be applied. The waveform is tapered from zero in about three cycles and
the FDTD solution steps continue until a steady state is reached. It is more efficient to
use a waveform that gives a wide-frequency-range response after performing a discrete
Fourier transform on the radiating boundary to compute equivalent currents used at a
given frequency. The computer storage and run times are the same for the wideband
response as the single-frequency response.

A suitable wide-bandwidth excitation is the differentiated Gaussian pulse shown in
Figure 2-16:

Vinc(t) = −V0
t

τp

exp

[
− (t/τp)2 − 1

2

]
(2-56)

We calculate the frequency response of the differentiated Gaussian pulse from the
Fourier transform of Eq. (2-56):

Vinc(ω) = −jω
√

2π τ 2
pV0 exp

[
− (ωτp)2 − 1

2

]
(2-57)

The spectrum of Eq. (2-57) peaks for ωp = 1/τp. Figure 2-17 gives the normalized
frequency response and shows that the −20-dB-level normalized frequency extends
from 0.06 to 2.75. For example, if we wanted to center the frequency response at
10 GHz, the normalizing pulse time is easily found:

τp = 1

2π(10 × 109)
= 1.592 × 10−11 s = 15.92 ps

A check of Figure 2-17 shows that the antenna frequency response could be found from
2 to 22 GHz with only a 10-dB loss in dynamic range compared to the response at
10 GHz. A single time response computation yields a wide-frequency-range response.
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FIGURE 2-16 Differentiated Gaussian pulse time response used in FDTD analysis.
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FIGURE 2-17 Differentiated Gaussian pulse normalized frequency response.

A sinusoidal modulated Gaussian pulse produces a narrow-bandwidth excitation
useful in visualization because the bandwidth of the pulse can be controlled:

Vinc(t) = V0 exp

[
− (t/τp)2

2

]
sin ω0t (2-58)
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The unmodulated Gaussian pulse shown in Figure 2-16 has a low-pass frequency
response:

Vinc(ω) = √
2πτpV0 exp

[
− (ωτp)2

2

]
(2-59)

Figure 2-17 gives the low-pass frequency response of the Gaussian pulse with a −4.37-
dB response at ωp = 1/τp. The sinusoidal modulation centers the frequency response
of the Gaussian pulse around ω0, and the convolution of the two frequency responses
produces a two-sided response of the Gaussian pulse.

2-6.8 Waveguide Horn Example [19]

The literature contains solutions for the patterns of a number of antennas. Figure 2-18
shows the meshing of a commercial standard gain horn analyzed and compared to
measurement. The horn operates from 8.2 to 12.4 GHz. The horn has a radiating aper-
ture that is 110 mm wide and 79 mm high and a bell length of 228 mm. The 51-mm
length of the input waveguide and the details of the feed probe were included in
the model.

Placing a perfectly magnetic conductor through the midsection of the horn uses
symmetry to halve the number of cells to a uniform mesh of 519 × 116 × 183 Yee
cells. Ten cells were used on the outside for the ABCs around the sides of the horn
and 40 cells for the front ABCs in the maximum radiation direction. The model placed
20 cells between the edge of the horn and the equivalent current surface used for
pattern calculations. The longest side of the grid determined the number of time steps
at 10 times the number of cells = 5190 time steps. The model contains approximately
11 M Yee cells that require 330 Mbytes of computer storage. Assuming that the problem
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Coaxial
Line
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b
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FIGURE 2-18 FDTD model of a standard gain horn. (From [17], Fig. 7.17,  1998 Artech
House, Inc.)
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(a)

(b)

FIGURE 2-19 FDTD calculated electric field in the vertical symmetrical plane of a standard
gain horn: (a) early time with a pulse in the throat; (b) pulse leaving the mouth of the horn.
(From [17], Fig. 7.20,  1998 Artech House, Inc.)

takes 60 flops per cell for each time step, the solution required 3.43 Tflops of computer
calculations.

The initial calculation used a differentiated Gaussian pulse excitation with τp =
15.9 ps that centered the response at 10 GHz. The calculation produced patterns that
matched measurements. A second calculation used a sinusoidal modulated Gaussian
pulse with the time constant 79.6 ps. This pulse time constant gives a normalized
frequency of 2 GHz for the Gaussian pulse. The −3-dB frequency is 0.83 times the
normalizing frequency. The pulse is centered at 10 GHz with a 3-dB bandwidth of
3.32 GHz. Figure 2-19 shows the fields when the pulse reached the horn aperture.
Note the high fields in front of the horn and the amount of fields still radiating beyond
and behind the aperture. By using a sinusoidal modulated pulse, the visual display
contains nulls that improve its clarity.

2-7 RAY OPTICS AND THE GEOMETRIC THEORY OF DIFFRACTION

Ray optics can give you a good physical feel for radiation and spur design ideas, but we
need to question the accuracy of their use. Ray optics or geometric optics (GO) methods
come from the design of lens and optical reflectors where the wavelength is very short
compared to the size of the object being analyzed, whereas we may be interested
in analyzing or designing an antenna on a structure only a few wavelengths in size.
Below we show that GO is essentially correct over most of the radiation sphere and
that by using elements of the geometric theory of diffraction [GTD (UTD)], the pattern
prediction can be improved. In this case improvement means that we will increase the
area of the radiation pattern that becomes more accurate. You will discover that it takes
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an increasing amount of effort to improve small areas of the pattern prediction, and
at some point you should decide that it fails to give enough improvement to justify
the work. Your real design purpose is to determine antenna dimensions that produce
the desired antenna response. Of course, as the expense of the antenna increases, your
customer may demand better predictions of the final result, and then the cost of a better
analysis is justified. You need to accept a new approach. Even though a part of the
pattern prediction shows errors, obvious discontinuities, it only means that the pattern
is inaccurate in directions near them and that over most of the radiation sphere the
prediction is essentially correct.

Discussion of this method begins with simple examples given in two-dimensional
space that introduce the ideas behind GO and GTD. These examples can ignore the
details of rotation of polarization directions because the waves are either polarized with
the electric field normal to the page or located in the plane of the page. We consider
radiation blockage by objects, the reflection of rays by the objects, and the diffraction
of rays around edges that fills in the pattern in the shadow regions and across the
boundary of the last reflected ray.

After the discussion of simple examples, the key points of GTD will be given for
use in three-dimensional problems. This involves the rotation of coordinate systems so
that ray polarizations line up with planes of incidence for reflections, with edges for
diffraction and curvature directions on curved surfaces that shed rays around the object
into the shadow. You will need to investigate the references if you want to develop
your own routines, but this discussion will introduce you to the topic and give you
an appreciation of the method so that you can use available computer programs and
understand their limitations.

GO uses ray methods to approximate electromagnetics. It is exact only in the limit
of zero wavelength (infinite frequency), but we gain useful insight from it at any fre-
quency. It will not give good results close to physical boundaries; but when we include
the GTD, the results are accurate down to one-wavelength sizes and are useful at λ/4
sizes. GO gives us physical insight when we deal with reflectors. We must consider
three aspects to use GO fully: (1) ray reflections, (2) polarization, and (3) amplitude
variations along the ray path and through reflections.

2-7.1 Fermat’s Principle

Rays travel through a medium at the speed of light determined by the index of refrac-
tion: n = √

εrµr . We define the optical path length as
∫
C

n dl, where C is a prescribed
path in space. Fermat’s principle determines the paths of rays between two points. It
states that the optical path length is stationary along a valid ray path. An expression
is stationary when its first derivatives are zero and the optical path is a minimum (or
maximum). We use Fermat’s principle to trace ray paths through reflection or refraction
by searching for the minimum optical path lengths. We can find more than one possible
ray between points because Fermat’s principle requires only a local minimum. When
we exclude the boundaries of lenses, regions of homogeneous medium, rays travel in
straight lines.

2-7.2 H -Plane Pattern of a Dipole Located Over a Finite Strip

Figure 2-20 illustrates the geometry of this problem and the various regions of the
analysis. The diagram shows the end of the dipole rod with the two rods located
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FIGURE 2-20 GTD example using a two-dimensional model of a dipole located over an
asymmetrical ground plane.

normal to the page. The dipole pattern is omnidirectional in the page with the electric
field directed normal to the page. When we trace rays from the dipole to the finite
strip, we discover two significant directions on both sides of the strip. The dashed
boundaries labeled RB (reflection boundary) are the directions of the last rays reflected
from the strip. Similarly, the dashed boundaries labeled SB (shadow boundary) are the
last rays of radiation not blocked by the strip. The radiation in region I results from
the sum of the direct radiation from the dipole plus the radiation reflected by the strip.
Only direction radiation from the dipole occurs in the two parts of region II. Finally,
region III is totally blocked from any radiation by a direct or reflected ray. This region
receives rays diffracted around the edges.

If we add the direct and reflected rays in an analysis, we obtain the pattern given in
Figure 2-21, which also traces the actual pattern. The pattern, using only the direct and
reflected rays, accounts for the phasing between the direct radiation from the dipole and
an image dipole located below the strip. If you compare the two traces on Figure 2-21,
you see that the two patterns are similar near θ = 0, but the direct plus reflected ray
pattern has discontinuities at the SBs and RBs. Figure 2-22 gives the results for the
same analysis, but using a 5λ-wide ground-plane strip. When using the larger strip, the
two patterns match to about 80◦, and in the second case the simple analysis is correct
over most of the forward semicircle. Simple geometric optics gives good results for
large objects provided that you realize the patterns will contain discontinuities.

Removing the discontinuities requires extra effort. A discontinuity in the pattern
cannot exist because shadow and reflection boundaries occur in free space. It takes a
material boundary to produce a discontinuous field. But, for example, the tangential
electric field must be continuous across even material boundaries. Edge diffraction
solves the discontinuity problem. Figure 2-23 gives the pattern of the edge diffrac-
tion for both edges normalized to the total pattern. The edge diffraction has matching
discontinuities to the sum of the direct and reflected rays at the SBs and RBs. The
UTD (uniform theory of diffraction) technique [20, p. 55] calculated these diffrac-
tions. When these diffractions are added to the direct and reflected ray radiation, the
total pattern given in Figure 2-21 is obtained. The dipole, its image in the ground
plane, and the two edge diffractions form a four-element array where each element
has a unique pattern. Adding edge diffractions to the geometric optics fields removes
the discontinuities and allows calculation of the pattern behind the strip ground
plane.
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Total Pattern

Direct +
Reflected

FIGURE 2-21 H -plane pattern of a dipole over asymmetrical ground using direct and reflected
rays compared only to a full solution for the 1λ ground plane of Figure 2-20.

Total

Direct +
Reflected

FIGURE 2-22 H -plane pattern of a dipole over symmetrical ground using direct and reflected
rays compared only to a full solution for a 5λ ground plane.

2-7.3 E -Plane Pattern of a Rectangular Horn

Figure 2-24 illustrates the cross section of a horn or, in this case, a two-dimensional
approximation to a horn. The waveguide feeds the horn and produces a uniform aperture
distribution in the E-plane. In this model the direct GO radiation is a constant wedge
signal as shown in Figure 2-25 ranging between −15◦ and +15◦. The reflected pattern
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FIGURE 2-23 GTD edge diffraction of an H -plane pattern for an asymmetrical 1λ ground
plane under a dipole.

combines with the direct radiation and produces the same pattern. Figure 2-25 also
shows the diffraction patterns from the two edges. These peak along the plates and
exhibit a discontinuity at the same angle as the GO field. Each diffraction pattern has
a discontinuity on one side at 90◦ because the mouth of the horn blocks the diffraction
from the opposite edge. When we add the diffracted fields to the GO field, the pattern
shown in Figure 2-26 is obtained. By just adding the three components, we obtain
an accurate pattern of the horn over most of the angles of the plot. At 90◦ we see
discontinuities in the pattern caused by not considering enough terms in the GTD
calculation. You need to realize that these discontinuities only cause pattern errors at
nearby angles. The majority of the pattern is correct.

We need another term to correct the pattern near 90◦. The blockage of the diffraction
from one edge by the mouth of the horn causes a secondary diffraction at that edge.
We call this double diffraction. Some available programs do not implement double
diffraction because the general three-dimensional double diffraction takes considerable
calculation due to the extensive ray tracing required. In these cases you must accept
the pattern discontinuities. Some programs calculate double diffraction as an option,
but turning on this option will slow the calculations. Figure 2-27 gives the pattern
when double diffraction is included. Double diffraction reduces the discontinuity at
90◦, but a small discontinuity remains. Adding triple diffraction would reduce this
further, but the pattern area affected by the small discontinuity has shrunk. A new
discontinuity near 60◦ appeared in the pattern after adding double diffraction at the
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FIGURE 2-24 Geometry of a two-dimensional model of a rectangular horn used for GTD
analysis.

mouth of the horn. We could continue to add another term to remove this one or just
accept it.

2-7.4 H -Plane Pattern of a Rectangular Horn
The tangential electric fields vanish at the walls of the two-dimensional horn in the
H -plane. This affects the GO field and produces the following equation for them:

EGO = cos
π tan θ

2 tan α

e−jkR

√
R

(2-60)

Equation (2-60) includes the phasing term and square-root spreading factor of a two-
dimensional field. The horn walls tilt from the centerline by the angle α. Figure 2-28
plots the GO field and shows that it vanishes at the walls. We do not expect edge
diffraction because the field vanishes at the edges, but Figure 2-28 shows diffraction
patterns that peak in the direction of the walls.

We call this new term slope diffraction. This new type requires another set of coeffi-
cients not identical to the edge (or wedge) diffraction coefficients. While the amplitude
of the edge diffraction is proportion to the field incident on the edge, the amplitude of
slope diffraction is proportional to the derivative of the field in the direction normal
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FIGURE 2-25 E-plane pattern of a rectangular horn with a GO term (solid curve) and edge
diffractions (dashed curves).

FIGURE 2-26 Combination of GO and edge diffractions in the E-plane pattern of a rectan-
gular horn.

to the edge. We figure the same geometric factors for both edge and slope diffraction
but now must calculate the normal derivative of the incident electric field. Figure 2-29
plots the H -plane pattern of the horn. The pattern fails to predict a pattern behind it.
The E-plane diffraction produces a back hemisphere pattern for a real horn, but our
two-dimensional model does not include the E-plane.

2-7.5 Amplitude Variations Along a Ray

Power decreases in a general ray as the distance from the source increases. If we
expand the constant-phase surface (eikonal) about the ray in a Taylor series, we obtain
a surface described by its radii of curvature [20, p. 55]. The maximum and minimum
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FIGURE 2-27 E-plane pattern of a rectangular horn combining GTD terms of direct GO,
edge diffractions, and double diffractions between edges.

FIGURE 2-28 H -plane pattern of a rectangular horn with a GO term (solid curve) and edge
slope diffractions (dashed curves).

values lie in the orthogonal principal planes. These radii of curvature determine the
amplitude spread of the wave from point to point on the ray. We compute the ratio of
differential areas about the ray at two locations as

dA2

dA1
= ρ1ρ2

(ρ1 + d)(ρ2 + d)
(2-61)
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FIGURE 2-29 H -plane pattern of a rectangular horn by GTD analysis by combining direct
GO field and edge slope diffraction.
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FIGURE 2-30 Astigmatic ray.

where ρ1 and ρ2 are the principal radii of curvature and d is the distance between two
points on the ray (Figure 2-30). The electric field variation along the ray becomes

E0e
−jkd

√
ρ1ρ2

(ρ1 + d)(ρ2 + d)
(2-62)

for the astigmatic ray spreading from unequal radii of curvature. When d = −ρ1 or
d = −ρ2, GO fails because it predicts an infinite power density. We call these locations
caustics. Remember that the ray always has differential area and never has any real
area as implied by Figure 2-30. We have three special cases of the astigmatic ray:

1. Spherical wave, ρ1 = ρ:

E0e
−jkd ρ

ρ + d
(2-63)
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2. Cylindrical wave, ρ1 = ∞:

E0e
−jkd

√
ρ

ρ + d
(2-64)

3. Plane wave, ρ1 = ρ2 = ∞:
E0e

−jkd (2-65)

The plane wave does not spread but has constant amplitude as distance changes. Both
cylindrical and plane waves require infinite power, and they are therefore nonphysical,
but we find them convenient mathematically.

2-7.6 Extra Phase Shift Through Caustics

We cannot determine the ray amplitude at a caustic but can determine its amplitude
and phase on either side. Passage through a caustic causes an extra phase shift to
the ray [21, p. 31]. The denominator factors in the square root of Eq. (2-62) produce
a 180◦ sign change when the ray distance factor d passes through either ρ1 or ρ2.
The square root changes 180◦ to +90◦ (ejπ/2) or −90◦ (e−jπ/2), depending on the
direction of movement along the ray. When tracing a ray moving through a caustic in
the direction of propagation, you multiply by ejπ/2. The field is multiplied by e−jπ/2

for a ray traced in the opposite direction of propagation.

2-7.7 Snell’s Laws and Reflection

We derive Snell’s laws of reflection and refraction from Fermat’s principle. The two
laws of reflection are given as:

1. The incident ray, the reflected ray, and the normal of the reflecting surface at the
point of reflection lie in the same plane.

2. The incident and reflected rays make equal angles with the surface normal.

Implicit in Snell’s laws is the idea that locally the wavefront behaves like a plane
wave and that the reflector can be treated as a plane. Given the direction of the incident
ray S1, reflected ray S2, and the reflector normal n, Snell’s laws of reflection can be
expressed vectorially [22]:

n×(S2 − S1) = 0 n·(S1 + S1) = 0 (2-66)

We combine Eq. (2-66) to determine the ray directions before or after reflection:

S1 = S2 − 2(S2 · n)n S2 = S1 − 2(S1 · n)n (2-67)

Snell’s law of refraction can also be expressed vectorially as

n×(n2S2 − n1S1) = 0 (2-68)

where n1 and n2 are the index of refractions in the two mediums.
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2-7.8 Polarization Effects in Reflections

The electric field is orthogonal to the ray direction (a free-space wave) and is described
by a two-dimensional polarization space (Section 1-11). We can describe polarization
in any conveniently rotated two-dimensional basis vectors in the plane with the ray
vector as its normal. We will use a ray-fixed coordinate system that changes direction
after a reflection:

Ei = ai
||Ei|| + ai

⊥Ei⊥ (2-69)

where ai
|| is a unit vector in the plane of incidence and ai

⊥ is perpendicular to the plane
of incidence. We compute ai

⊥ from the normal to the plane n at the reflection point
and the incident ray unit vector Si :

ai
⊥ = Si × n

|Si × n|
ai

|| = ai
⊥ × Si

(2-70)

After reflection, we calculate the output ray-fixed polarization vectors using the output
ray Sr :

ar
⊥ = ai

⊥ and ar
|| = ar

⊥ × Sr

Ei|| is the incident electric field in the direction of ai
|| and Ei⊥ is in the direction of ai

⊥.
Of course, the direction of unit vector a|| changes from incident to reflected rays. The
electric field parallel to the reflector surface must vanish on the conductor surface:

Er⊥ = −Ei⊥ (2-71)

where Er⊥ is the reflected field along ai
⊥. We calculate the reflection properties of E||

from the corresponding magnetic fields parallel to the surface:

Hr|| = Hi|| (2-72)

By combining Eqs. (2-71) and (2-72), we obtain the dyadic relation for the ray-fixed
coordinate system: [

Er||
Er⊥

]
=

[
1 0
0 −1

] [
Ei||
Ei⊥

]
(2-73)

where Er|| and Ei⊥ are the reflected field components. At each reflection we rotate the
polarizations to align ai⊥ with the normal to the plane of incidence. We can express
Eq. (2-73) as a dyadic in terms of the incident and reflected wave polarization vectors
�R = ai

||a
r
|| − ai

⊥ar
⊥. Of course, the alternative method is to describe polarizations in a

fixed three-dimensional coordinate system, but it requires a 3 × 3 reflection matrix.

2-7.9 Reflection from a Curved Surface

A wave reflected from a curved surface changes its radii of curvature and principal
planes. The field along the reflected ray is given by

Er (s) = Ei0· �R
√

ρr
1ρ

r
2

(ρr
1 + s)(ρr

2 + s)
e−jks (2-74)
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where s is the distance along the ray from the reflection, ρ1 and ρ2 the reflected ray
radii of curvature, and �R the reflection dyadic. Ei0 the incident ray electric field. For
a flat surface we use images of the incident ray caustics for ρr

1 and ρr
2, but in general,

ρr
1 and ρr

2 become

1

ρr
1

= 1

2

(
1

ρi
1

+ 1

ρi
2

)
+ 1

f1

1

ρr
2

= 1

2

(
1

ρi
1

+ 1

ρi
2

)
+ 1

f2
(2-75)

where f1 and f2 are generalized focal lengths of the surface. The spreading factor of
Eq. (2-74) simplifies in the far field:

√
ρr

1ρ
r
2

(ρr
1 + s)(ρr

2 + s)
≈

√
ρr

1ρ
r
2

s

Kouyoumjian and Pathak [23] derived formulas for the focal lengths of a surface. We
start with a surface with principal radii of curvature R1 and R2 with directions u1 and
u2 at the point of reflection. For an incident ray with principal axes defined by unit
vectors xi

1 and xi
2, we define a matrix relation between the incident ray and surface

principal curvature directions:

θ =
[

xi
1 · u1 xi

1 · u2

xi
2 · u1 xi

2 · u2

]
(2-76)

where the determinant is |θ | = (xi
1 · u1)(xi

2 · u2) − (xi
2 · u1)(xi

1 · u2). Given the angle of
incidence θ i , the following are the focal lengths:

1

f1,2
= cos θ i

|θ |2
(

θ2
22 + θ2

12

R1
+ θ2

21 + θ2
11

R2

)

± 1

2

{(
1

ρi
1

− 1

ρi
2

)2

+
(

1

ρi
1

− 1

ρi
2

)
4 cos θ i

|θ |2
(

θ2
22 − θ2

12

R1
+ θ2

21 − θ2
11

R2

)

+4 cos2 θ i

|θ |4
[(

θ2
22 + θ2

12

R1
+ θ2

21 + θ2
11

R2

)2

− 4|θ |2
R1R2

]}1/2

(2-77)

With a single reflection, we need not compute the direction of the principal axes. We
need only the focal lengths. Multiple reflections require knowledge of the reflected-ray
principal plane directions. Define the following matrices to determine the directions of
the principal axes after reflection:

Qi
0 =




1

ρi
1

0

0
1

ρi
2


 C0 =




1

R1
0

0
1

R2




Qr = Qi
0 + 2(θ−1)TC0θ

−1 cos θi

br
1 = xi

1 − 2(n · xi
1)n br

2 = xi
2 − 2(n · xi

2)n
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where n is the surface normal at the reflection point. One principal-axis direction is

xr
1 =

(
Qr

22 − 1/ρr
1

)
br

1 − Qr
12br

2√(
Qr

22 − 1/ρr
1

)2 + (Qr
12)

2
(2-78)

We derive the other from the cross product of Eq. (2-78) and the reflected ray unit
vector:

xr
2 = −Sr × xr

1 (2-79)

We must reapply Eqs. (2-75) through (2-79) for every reflection.
We use Eqs. (2-75) through (2-79) for analysis, but except for computer optimiza-

tions, they cannot be applied directly to synthesis. If we limit the reflectors to figures of
rotation, the radii of curvature are given by the meridians and parallels and these prob-
lems reduce to two dimensions. Similarly, a cylindrical reflector fed with a cylindrical
wave [Eq. (2-64)] reduces the problem to two dimensions. The incident and reflected
waves remain in the single plane chosen for the reflector analysis.

2-7.10 Ray Tracing

Tracing rays through a reflector system is conceptually straightforward. Where a ray
strikes a reflector, we compute the normal to the surface. By using Eq. (2-67), we
solve for the reflected-ray direction. Equation (2-73) determines the polarization effects
when we express the incident and reflected rays in the ray-fixed coordinates. We use
geometric arguments to determine the amplitude variation along the ray through the
reflection instead of the general expressions given above. We experience difficulty
when we try to discover the reflection points for given field and source points. No
analytical expressions exist for calculating the reflection point of a general surface.
The usual computer routines search for the minimum optical path length (Fermat’s
principle) without using Eq. (2-67), since a local minimum will satisfy this equation.

2-7.11 Edge Diffraction

Keller [24] extended the idea of reflection to edge diffraction by applying a generalized
Fermat’s principle to the rays. Figure 2-31 illustrates the rays in edge diffraction and the
associated polarization directions. The figure shows the edge vector at the diffraction
point. The vector cross product between the edge vector and the incident ray points in
the direction of the incident plane normal. We measure the diffraction angle of incidence
in this plane between the incident ray and the edge normal. Because diffraction obeys
a generalized Fermat’s principle, the diffracted ray exits at the same angle, similar to
the reflected ray angles. The diffracted rays lie in a cone with the edge vector as its
axis. The diffracted rays spread the incident power into a cone. Figure 2-31 shows a
particular diffracted ray and how we determine the diffracted ray exiting plane.

We define diffracted ray polarization in terms of the incident and diffracted planes.
The vectors are parallel and perpendicular to the two planes. Given the edge unit vector
e, you compute the incident perpendicular polarization vector:

aφ′ = e × S′

sin β0
(2-80)
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FIGURE 2-31 Ray-fixed coordinates related to edge-fixed coordinates at the edge diffraction
point on a curved edge by showing planes of incidence and diffraction. (From [25], Fig. 5, 
1974 IEEE.)

where S′ is the incident ray and β0 is the angle between the edge tangent and the
incident ray. The diffracted ray perpendicular polarization is similar to the incident ray

aφ = − e × S
sin β0

(2-81)

where S is the diffracted ray unit vector. We have the following vector relations for
diffraction:

|e × S| = |e × S′| and e · S = e · S′ (2-82)
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We determine the parallel polarization vector along the ray-fixed coordinates by the
following cross products:

aφ′ × aβ ′
0
= S′ and aφ × aβ0 = S (2-83)

By using ray-fixed coordinates, the diffraction matrix reduces to 2 × 2.
When β0 = π/2, the parallel polarization components are parallel to the edge and

the electric field vanishes: Eβ ′
0
+ Eβ0 = 0. Acoustics calls this the soft boundary condi-

tion (Dirichlet); it operates on the parallel polarization components. The perpendicular
components satisfy the hard boundary condition (Neumann). At a diffraction point Qe

we describe diffraction by the matrix equation[
Ed

β0
(s)

Ed
φ(s)

]
=

[ −Ds 0
0 −Dh

][
Ei

β ′
0
(Qe)

Ei
φ′(Qe)

]√
ρ

s(s + ρ)
e−jks (2-84)

where s is the distance from the diffraction point. Diffraction locates one caustic on
the diffraction point. We compute the second caustic distance ρ from the incident ray
radius of curvature in the plane of incidence ρi

e and the edge curvature unit vector n̂e:

1

ρ
= 1

ρi
e

− n̂e · (ŝ′ − ŝ)

a sin2 β0
(2-85)

where a is the edge radius of curvature. When a → ∞ (straight edge), the second term
of Eq. (2-85) vanishes.

A number of factors determine the wedge diffraction coefficients. The diffracting
edge factors include (1) the angle between the faces, (2) the edge curvature, and (3) the
curvature of the faces. The ray angle factors are (1) the incident angle relative to the
edge tangent, (2) the diffraction angle to the shadow boundary, and (3) the angle to
the reflection boundary. The diffraction coefficients peak at the shadow and reflection
boundaries. UTD formulation uses characteristic lengths associated with incident and
diffracted ray caustics. These many factors are beyond the current discussion.

2-7.12 Slope Diffraction

The spatial rate of change of the field normal to the edge produces slope diffraction,
an added field component. This ray optics term also satisfies the generalized Fermat’s
principle with geometry determined by Eqs. (2-80) through (2-83), and (2-85). The
slope diffraction equation has the same form as Eq. (2-84):

[
Ed

β0
(s)

Ed
φ(s)

]
=

[−es 0
0 −eh

][
Ei

β ′
0
(Qe)

Ei
φ′(Qe)

]√
ρ

s(s + ρ)
e−jks (2-86)

where the diffraction coefficients es,h are related to the field derivative normal to the
surface:

es,h = 1

jk sin β0

(
∂Ds,h

∂φ′
∂

∂n′

)
(2-87)

The term ∂/∂n′ of Eq. (2-87) indicates the derivative of the incident fields given in
the vector of Eq. (2-86). Equation (2-87) has the term ∂Ds,h/dφ′ for the soft and hard
slope diffraction terms returned from a subroutine; it is only a notational derivative.
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2-7.13 Corner Diffraction

Every structural discontinuity diffracts waves. We derive edge diffraction from an
infinite wedge where the wedge terminations (corners) produce diffracted rays. Recall
from Section 2-4.2 that PTD added currents at edges to handle the effect of not having
an infinite surface; the formulation for corner diffraction uses equivalent currents to
derive these coefficients. We handle edge diffraction from each edge as always. Since
each corner arises from two edges, we compute separate corner diffraction for each
edge, two terms per corner.

Whereas edge diffraction is bound to a cone, corner diffraction radiates in all direc-
tions. The edge must be visible from both the source and receive points before corner
diffraction contributes. We must include corner diffraction in any three-dimensional
problem. As the source and receiver become farther and farther away from the object,
corner diffraction contributions dominate over edge diffractions since it is derived from
equivalent currents.

2-7.14 Equivalent Currents

GTD fails to predict fields at caustics. In many cases we consider these points unim-
portant, but for those cases where we need the fields, equivalent currents provide the
answer. We derive equivalent currents from edge diffraction, which then replaces it
and we use them instead of edge diffraction for all pattern points. The use of currents
reduces the problem to a PO solution and line integrals are required.

We relate the incident fields expressed in the ray fixed to equivalent currents:

I = 2j

ηk
Ei

β ′
0
Ds

√
2πk ejπ/4 (2-88)

M = 2j

k
Ei

φ′
0
Dh

√
2πk ejπ/4 (2-89)

The soft and hard diffraction coefficients Ds,h depend on the source and receiver
positions. Since we calculate the fields using vector potentials or dyadic Green’s func-
tions, the formulation has no caustics. They are only associated with a geometric
optics solution.

Equivalent currents allow the calculation of the fields directly behind a reflector near
the axis. The GTD solution produces a caustic as all points along the rim “light up”
for an axisymmetrical design. PTD uses equivalent currents in a similar but different
way to calculate correct fields in the same region. Equivalent currents derived from the
diffraction coefficients produce the entire solution, since the reflector blocks the incident
field. In PO we continue to include the direct field and the induced current radiation
on the reflector, but add the PTD current radiation. Realize that slope diffraction also
adds to the equivalent currents.

2-7.15 Diffraction from Curved Surfaces [26, 27]

In one analytical approach to surface-wave radiation we postulate waves bound to a
surface that radiate only from discontinuities. Surface waves on infinite structure do not
radiate but attenuate exponentially away from the surface, because they are bound to it.
We can formulate GTD as radiating from discontinuities, and this produces an approach
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for fields radiated on the shadowed side of a curved body. The continuous discontinuity
of the curved surface causes power to be radiated at every point in the shadow region.
These waves radiate tangentially from a wave traveling along a geodesic and bound to
the surface. Surface waves require a dielectric coating or a corrugated surface to slow
and bind the wave to the surface. The surface curvature slows and binds the wave to
the surface without the need for a dielectric or corrugated surface coating. The wave
that propagates along the surface sheds power in rays tangentially to it.

The rays travel along a surface geodesic from the attachment point to the radia-
tion point. The geodesic curve is a minimum distance path on the surface between
two points. In differential geometry it has a broader meaning, but for our purpose,
the minimum distance definition will serve. The curved surface diffraction satisfies
a generalized Fermat’s principle (minimum distance) as do all other terms of GTD.
The best approach uses another ray-fixed coordinate along the surface where the vec-
tors are normal and tangential to the surface at both the attachment and radiation
(shedding) points.

Curved surface diffraction considers three types of problems with different formu-
lations. Two of them start with an antenna mounted on the surface. We either calculate
the pattern in the presence of the curved object or calculate the coupling to a second
antenna also mounted on the curved object. The third case determines the field scattered
for a source located off the surface. All three use the ray-fixed coordinates. We start
with the surface normal n̂ and the tangent vector t̂ directed along the geodesic path.
A vector cross product defines the third direction of the local coordinate system. We
use the surface binormal b̂, and the three vectors form a triad: n̂ × b̂ = t̂. On a general
surface all three vectors change direction as the wave moves along the geodesic. We
use the term torsion for a path with a changing binormal. A soft dyadic diffraction
coefficient is used with fields aligned with the attachment point binormal and the tan-
gential shedding point binormal. We apply the hard dyadic diffraction coefficient fields
aligned along the normal vectors. No formulas exist for computing the attachment and
shedding points on a general curved surface given the source and receive points. We
usually start with a known diffraction and find other points by incrementing along the
curve by small steps.
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3
ARRAYS

We begin with arrays of antennas before discussing particular antenna elements to show
the relationship between antenna size and shape and the resulting pattern characteristics.
We ignore the feed network design initially and assume that the proper array feed distri-
bution will be obtained. At first, we assume a distribution of point sources and compute
the approximate array pattern. Working with simple models provides insight rather
than accuracy, and later we consider element pattern and interaction. In Chapter 12 we
discuss feed network design and analysis in the discussion of phased arrays.

The chapter begins with a mathematic description of an array and gives various
assumptions used to simplify the expressions. We analyze a simple two-element array to
gain insight into the radiation phenomenon and how far-field patterns can be found with
simple arguments. The discussion of a uniformly spaced linear array shows the Fourier
series relationship between array layout and the pattern space given in sin(angle) space.
The principal idea is that pattern beamwidth shrinks as the array length increases. If
we space the elements too far apart, multiple beam peaks or grating lobes form in
the pattern, and we show how to control these grating lobes and their relationship to
maximum scan angle, array layout, and element spacing.

Phased arrays scan the beam by controlling the relative phasing between the ele-
ments. We extend the linear array to planar layouts that produce narrow beams in both
principal planes. The planar array design is unchanged from the methods for linear
arrays, but the grating lobe analysis shows their unique properties, as they sometimes
form outside the plane of scan. We can divide the phased array into pieces to form
multiple scanning beams, but the beam shape is determined by the segment size and
shape used for each beam. By adding amplitude control the phased array can form
multiple beams with beamwidths determined by the entire size of the array.

Each element in an array receives a portion of the power radiated by the other
elements on transmittal, or scatters power into neighboring elements in reception. The
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radiation from each antenna excites currents on its neighboring elements that also
radiate, and we associate the total pattern with the antenna input. In an array the
effective element patterns change due to this scattering. Because of reciprocity, which
says that transmit and received patterns are identical, we can analyze the problem
either way. This leads to mutual coupling, which we describe and analyze by mutual
impedance (admittance, or scattering) matrices. This phenomenon causes the input
impedance of the elements to change as we scan the array. The mutual coupling can lead
to scan blindness when the feed reflection coefficient grows due to mutual coupling, and
the array totally reflects the signal into the feed network. If we want the exact pattern
designed for, we must compensate the feeding coefficients for the mutual coupling.

A discussion of array gain gives two methods of calculation. First, the effective area
and the associated gain of a planar array cannot exceed its area when we include the
extra half-element spacing area provided by the edge elements. When we space the
elements so that their individual effective areas no longer overlap, array gain is the
element gain multiplied by the number of elements. We can calculate gain by adding
up the input power instead of integrating the pattern to compute total radiated power.
We relate input power of elements to the self- and mutual resistances to determine gain
of linear and planar arrays using realistic elements. The chapter ends with a discussion
of three-dimensional arrays using arbitrarily oriented elements. We add this analysis
to the simple array formula to handle the polarization of rotated antennas. Related to
this problem is the pointing of an antenna on a positioner. We apply rotation matrices
to both problems.

An array radiates or receives from two or more antennas at the same frequency. To
calculate the field radiated from arrays we add the electric fields radiated from each
element. The amplitudes and phases of each antenna, determined by the feed network,
give us extra degrees of freedom to shape the pattern and design shifts from radiating
elements to the feed network.

A single antenna radiates an electric field with both polarization components:

E = Eθ(θ, φ)θ̂ + Eφ(θ, φ)φ̂

where Eθ and Eφ are the two complex components (amplitude and phase) referred
to some point on the antenna. If we move the antenna or the phase reference point,
we only change the antenna radiated phase. We assume that the movement is small
enough that the radiation approximation can still be used. Given r ′ as the location of
the antenna relative to the phase reference point, the added phase component is ejk·r′

,
where k = 2π/λ(sin θ cos φx̂ + sin θ sin φŷ + cos θ ẑ) and r′ = x ′x̂ + y ′ŷ + z′ẑ is the
location of the antenna; k · r′ is the phase distance from the antenna to the reference
plane through the reference point and is defined by the radiation (receiving) direction.
The electric field radiated from the moved antenna becomes

[Eθ(θ, φ)θ̂ + Eφ(θ, φ)φ̂]ejk·r′

We assume that nearby objects do not alter the patterns in the movement, but we can
alter element patterns if necessary.

Suppose that we have an array of antennas located at points r′
1, r′

2, and so on. We
obtain the total pattern by adding the electric fields radiated from each:

E =
N∑

i=1

[Eθi(θ, φ)θ̂ + Eφi(θ, φ)φ̂]ejk·r′
i (3-1)
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Bringing the antennas close together will change the patterns of each because every
antenna will block the radiation of the others and the distribution of currents on the
elements may be changed. The shape of small resonant antennas limits the possi-
ble distribution of currents, but the magnitude and phase may be changed due to
the coupling.

We make various approximations to Eq. (3-1). Changes in the patterns due to nearby
antennas are ignored, and isolated element patterns are used. We assume initially a
certain amplitude and phase distribution on the elements and ignore the problem of
the feed network. Polarization reduces to a single term for equally polarized elements,
such as dipoles, slots, or horns. If the antennas have identical element patterns, we can
separate Eq. (3-1) into a product.

E = [Eθ(θ, φ)θ̂ + Eφ(θ, φ)φ̂]
∑

Eie
jk·r′

i (3-2)

where Eθ and Eφ are the normalized patterns of the single element. Ei is the electric
field of the ith element, including the amplitude and phase of the feed distribution.

Equation (3-2) describes pattern multiplication that separates the pattern into an
element pattern and an array factor. The method requires that all antennas have the same
pattern and be orientated in the same direction. The array factor represents the pattern
from an array of isotropic pattern antennas. Because array factors can be calculated
by hand, we find them useful for gaining insight. We leave calculations using Eqs. (3-
1) and (3-2) to the computer. The element patterns themselves could be arrays and
we could use pattern multiplication to synthesize planar and volumetric arrays from
linear arrays.

3-1 TWO-ELEMENT ARRAY

Consider two elements lying on the z-axis and spaced a distance d centered on the
origin (Figure 3-1). If we rotate the isotropic pattern antennas around the z-axis, the
problem remains unchanged, which means that all great-circle (constant φ) patterns
are identical. On the z-axis, the element phase constant becomes ejkz′ cos θ . For simple
line arrays we can locate pattern nulls and peaks by simple arguments.

Example Two elements are spaced λ/2 and have equal amplitudes and phases. Locate
the nulls and peaks.

The phase reference planes can be placed at any convenient point. Consider the
pattern at θ = 90◦. We place the reference plane through the axis of the array. The
added phase factor is zero for both elements and we just add components. The equal
element phases add to give a beam peak. If we place a second reference plane through
the top element, the wave radiated from the bottom element travels across the array
λ/2 to the reference plane. Increasing the distance propagated decreases phase and it
changes by −180◦. The two out-of-phase signals cancel to produce a pattern null. The
array has symmetry about the x –y plane, which means that the array will have the
same pattern above and below the symmetry plane. We denote this configuration an
even-mode array. Figure 3-2 plots this pattern with a solid line. You should repeat
the example for an odd-mode array (phases 0◦ and 180◦) and convince yourself that
the null occurs at θ = 90◦ and the beam peak occurs at θ = 0◦ (180◦), plotted in
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FIGURE 3-1 Two-element array on a z-axis.

Figure 3-2 as a short-dashed curve. The solid and short-dashed curves have the same
directivity.

Example Suppose that the two elements are spaced λ/4, with the top element phase
−90◦ and the bottom element phase 0◦. Locate the beam peak and pattern null.

We start by placing a reference plane through the top element. The wave radiated
from the bottom element travels across the array, and its phase decreases by 90◦. Both
radiated waves have the same phase (−90◦) at the reference plane and add in phase
for a beam peak. Consider a second plane through the bottom element. The wave from
the top element loses 90◦ propagating across the array and the two waves are 180◦ out
of phase and cancel for a null.

The second example is an end-fire array. Figure 3-2 illustrates the end-fire pattern
with a long-dashed curve. All three patterns on the figure have the same directivity.
The phase distribution of an end-fire array matches those of a wave traveling in the
direction of the maximum. In these examples unequal amplitudes would limit the null
depth to the difference. Varying the element phases while maintaining equal amplitudes
changes the null directions.

Consider a general two-element array with equal amplitudes and a phase difference
between them. We split the phase shift into equal parts. The top-element phase is
−δ/2 and the bottom-element phase is δ/2. When we apply Eq. (3-2) with an isotropic
element pattern, we obtain the following electric field using Euler’s identity:

E(θ) = 2E0 cos

(
πd

λ
cos θ − δ

2

)
e−jkr

r
(3-3)
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Even Mode
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Odd Mode
l/2 Spacing

Endfire
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FIGURE 3-2 Two isotropic element array pattern: even-mode λ/2 spacing (solid curve);
odd-mode λ/2 spacing (short-dashed curve); end-fire λ/4 spacing (long-dashed curve).

θ is measured from the z-axis. If we spaced the elements along the x-axis and found
the pattern in the x –z plane, we substitute sin θ for cos θ in Eq. (3-3). In Chapter 4
we sample continuous distributions and position the elements along the x- or y-axis.
Pattern peaks occur when the argument of the cosine is nπ, the nulls when it is
(2n − 1)π/2.

cos θmax =
(

nπ + δ

2

)
λ

πd
(3-4)

cos θnull =
[
(2n − 1)

π

2
+ δ

2

]
λ

πd
(3-5)

If we subtract either Eq. (3-4) or (3-5) evaluated at two peaks or nulls, we get the
same equation:

cos θ1 − cos θ2 = (n1 − n2)
λ

d
(3-6)

Figure 3-3 illustrates the pattern of an equally phased two-isotropic-pattern-element
array spaced 5λ along the z-axis. Because array symmetry makes the patterns on the
right and left sides the same, we consider only one side. The wide element spacing
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FIGURE 3-3 Two-isotropic-element array-spaced 5λ pattern (solid curve); added central ele-
ment 10 dB higher power than array (dashed curve).

allows six solutions to Eq. (3-4) from 0 to 90◦ for the pattern peaks and five solutions
for Eq. (3-5) over the same range for the nulls because the magnitude of cos θ is
limited to 1. We call the multiple beams grating lobes. We usually choose the main
beam and call the others grating lobes, but they are just all lobes of the array. Figure 3-3
shows that we must space the elements close together to prevent grating lobes. With a
greater number of elements in the array, the amount of beam movement due to element
phasing adds another factor to the prediction of when grating lobes form. The amount
of phase scanning determines the maximum spacing allowed without the formation
of grating lobes. The n = 0 lobe forms at θ = 90◦ and we compute the n = 1 mode
direction from Eq. (3-4): θ = cos−1( 1

5 ) = 78.46◦. When we substitute these angles into
Eq. (3-3), we calculate a relative phase of 180◦ between them. The lobes have a phase
of zero for n even and 180◦ phase for n odd in the far-field approximation. Remember
we remove the exponential and 1/R factors from Eq. (3-3) for the far-field pattern. The
actual phase of any real point depends on the distance from the center of the array.

The dashed curve in Figure 3-3 shows what happens if we add the array pattern to
an isotropic radiator in the center. For a peak response of the array −10 dB relative
to the isotropic antenna, we get the 5.7-dB peak-to-peak ripple shown by using Scale
1-8. The array pattern either adds or subtracts from the isotropic radiator pattern. The
angular ripple rate is half that of the array lobes. Below we see that a two-element array
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spaced at an integer multiple of λ/2 has a 3-dB greater gain than a single element. We
feed half the power of the array into each element. By adding these factors we calculate
the array element level to be −16 dB below the main central radiating antenna.

When we mount an antenna over a finite ground plane, the diffraction from the edges
creates a two-element array. A 5λ-wide ground plane would produce the same pattern
ripple angular rate as shown in Figure 3-3. You will often observe a similar-amplitude
ripple in measured antenna patterns. Note the minimum angular distance between the
peak and minimum responses in the pattern. The extra signals occur along the line in
the pattern plane perpendicular to this direction. Use Eq. (3-6) to determine the distance
between the array elements and you should be able to identify the structure causing the
ripple. The scattering point could be on the test fixture. Consider whether the mounting
structure will be different in the final configuration. You can calculate the effect from a
single diffraction point by forming an array using the baseline of the primary radiator
and the diffraction point. Both configurations produce the same angular ripple rate.
The ripple peak occurs along that array axis, but Figure 3-3 shows that the angular
ripple rate will be reduced along this end-fire direction of the θ = 0 axis. If you make
a careful consideration of the angular rates, in various pattern planes, you should be
able to discover the cause. Always consider unexpected sources of diffraction.

You can consider the ripple using its beamwidth. To produce a symmetrical pattern
about zero, we use sin θ instead of cos θ in Eq. (3-3), which means that the array lies
along the x-axis. The −3-dB angle for the two-element uniform amplitude array can
be found from Eq. (3-3):

πd

λ
sin θ3 dB = π

4
θ3 dB = sin−1 λ

4 d
(3-7)

The beamwidth is twice Eq. (3-7). For large d we can approximate sin X ≈ X and
beamwidth = λ/2d . The 5λ spaced array has a beamwidth of 5.7◦ (0.1 rad). We can
look at a 5λ-wavelength ground-plane example that has a large-amplitude element
compared to the edge diffraction as two 2.5λ-spaced two-element arrays where one
element has a high amplitude. Each two-element array produces a pattern with an
11.4◦ beamwidth the value of the composite pattern in Figure 3-3. We often mount an
antenna in the center of a ground plane for measurement and observe patterns similar
to Figure 3-3. If in the actual application the antenna is mounted off center, we need
to add the patterns of arrays formed on both sides of the finite ground plane. The final
pattern will be the composite pattern from each array and be more complicated than
the simple case given above.

We calculate average radiation intensity by an integral:

Uavg = 4E2
0

η

∫ π/2

0
cos2

(
πd

λ
cos θ − δ

2

)
sin θ dθ

The directivity is
Umax

Uavg
= |2Emax|2

1 + sin(2πd/λ) cos δ/(2πd/λ)
(3-8)

where Emax = cos[(πd/λ) cos θmax − δ/2]. When d ≥ λ/2, Emax = 1. Figure 3-4 shows
the directivity versus spacing for the special cases δ = 0◦ and δ = 180◦ (even and odd
modes). The directivity varies because each antenna receives power from the other. The
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FIGURE 3-4 Directivity of even- and odd-mode two-isotropic-element arrays.

combination of the input power and the power transferred between elements changes
with spacing.

3-2 LINEAR ARRAY OF N ELEMENTS

Suppose that there are N isotropic radiators equally spaced along the z-axis and fed
with equal amplitudes. We assign a fixed phase shift δ between progressive elements.
The array factor field is

sin(Nψ/2)

N sin(ψ/2)
(3-9)

where ψ = kd cos θ + δ [1, p. 258]. We use this to plot a universal radiation pattern for
the array (Figure 3-5) for two to 10 elements. The abscissa ψ is plotted in degrees (360◦

is substituted for 2π in k). Both ends of the plot are lines of symmetry. The plot is peri-
odic (period 360◦). We see that the level of the first sidelobe (N = 2 has no sidelobe)
decreases as N decreases but approaches a limit of 13.3 dB of the continuous aperture.

Figure 3-6 demonstrates the periodic pattern for N = 6 and shows a projection to a
polar pattern when the progressive phase between elements is zero and the elements are
spaced λ/2. We can plot similar curves for other array distributions; all have a period
of 360◦. Figure 3-6 illustrates the use of a circle diagram, a method of constructing a
polar pattern from the universal pattern such as Eq. (3-9) for the uniform-amplitude
distribution. An array can be analyzed as a sampling of the continuous distribution that
produces a Fourier series of the distribution. A Fourier series has multiple responses.
In Chapter 4 we design large arrays by sampling continuous distributions. The pattern
angle of an array is measured either from the axis using cosine of pattern angle or
is measured broadside using sine. You should become comfortable with either nota-
tion since the sine and cosine of angles involves only a complementary operation of
the angles.
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FIGURE 3-5 ψ-space pattern of linear arrays with a uniform amplitude distribution.
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FIGURE 3-6 Circle diagram of a six-element uniform-amplitude array with λ/2 spacing.

Since cos θ (or sin θ ) is limited to ±1, the region along the abscissa of the universal
pattern used (the visible region) is found from the range of ψ :

−360◦
d

λ
+ δ to

360◦
d

λ
+ δ
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The circle diagram is constructed by first drawing a circle the same diameter as the
visible region below the universal diagram centered at δ, the progressive phase shift
between elements. Figure 3-6 has a δ = 0. Since the element spacing is λ/2, the range
is ±180◦. The polar pattern radius equals the amplitude of the universal pattern. Both
the universal pattern and the polar pattern use a logarithmic (dB) scale from 0 to
−40 dB. Projecting points vertically from the universal pattern to the visible region
performs the cosine or sine operation, and the polar pattern becomes the real pattern
in space. We project each point vertically until it intersects the dashed visible region
circle in two places and then draw lines from these points to the center. After you
project the nulls and peaks of the universal pattern to the dashed circle, it is easy to
sketch the polar pattern. The circle diagram helps us visualize patterns and the effects
of scanning, but no one would do serious design with it. Second, it is useful only for
small arrays because large arrays produce unwieldy diagrams.

When the spacing between elements is greater than λ/2, the visible region widens to
include more than one periodic main lobe and the array has multiple beams. To have
a beam centered at θ1, set the progressive phase difference between elements:

δ = −360◦
d

λ
cos θ1 (3-10)

End fire (θ1 = 0) occurs when

δ = −360◦
d

λ
(3-11)

We can use Figure 3-5 to compute beamwidth angles of arrays. Table 3-1 is a list of
the ψ-space angles of the 3- and 10-dB levels.

Example A six-element equally spaced uniform array has spacings of λ/2 and zero
progressive phase shift between elements (δ = 0◦). Calculate the 3-dB beamwidth.

We read from Table 3-1 the value ψ3 dB = 26.90◦. Because the pattern is symmetrical
in ψ space (Figure 3-6), the second ψ3 dB is −26.9◦.

kd cos θ1,2 + δ = ±ψ3 dB

360◦

λ

λ

2
cos θ1,2 = ±26.90◦ cos θ1,2 = ±26.9◦

180◦
θ1 = 81.4◦

θ2 = 98.6◦

TABLE 3-1 ψ-Space Angles of 3- and 10-dB Levels of an Equal-Amplitude Distribution
Array (deg)

N 3 dB 10 dB N 3 dB 10 dB N 3 dB 10 dB

2 90.00 143.13 11 14.55 24.21 20 7.980 13.29
3 55.90 91.47 12 13.33 22.18 24 6.649 11.08
4 40.98 67.63 13 12.30 20.47 28 5.698 9.492
5 32.46 53.75 14 11.42 19.00 32 4.985 8.305
6 26.90 44.63 15 10.65 17.74 36 4.431 7.382
7 22.98 38.18 16 9.98 16.62 40 3.988 6.643
8 20.07 33.36 17 9.39 15.64 50 3.190 5.314
9 17.81 29.62 18 8.87 14.77 64 2.492 4.152
10 16.02 26.64 19 8.40 14.00 100 1.595 2.657
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Remember that θ is measured from the axis of the array (z-axis) and the 3-dB
beamwidth is the difference (17.2◦). On Figure 3-6 the visible region ranges between
−180◦ and +180◦. There are four sidelobes in the visible region (Figure 3-6). Since
an array samples a continuous aperture distribution, the continuous distribution is Nd
long. We can estimate beamwidth by using a uniform amplitude distribution:

HPBW = 50.76◦ λ

Nd
= 16.92◦

This formula approximates the array beamwidth reasonably.

Example A six-element array has a progressive phase shift δ of 90◦ between elements.
Compute the 10-dB beam edge angles for λ/2 spacing.

Figure 3-7 shows the circle diagram analysis of this example. The line to the center
of the polar pattern has been shifted to 90◦ and the pattern spans 360◦ of the linear
scale. By projecting the nulls and peaks to the circle below, the pattern can easily be
sketched.

ψ10 dB = ±44.63◦
(Table 3-1)

kd cos θ1,2 = ±ψ10 dB − δ

360 sin q Spacing/l

Phase
Shift

Visible
Region

FIGURE 3-7 Six-element uniform-amplitude array with λ/2 spacing scanned with 90◦ pro-
gressive phase shift between elements.
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Solving for cos θ1,2, we have

cos θ1,2 = ±ψ10 dB − δ

kd
= ±44.63◦ − 90◦

180◦
θ1 = 104.6◦

θ2 = 138.4◦ beamwidth = 33.8◦

There are five sidelobes in the visible region (Figure 3-7). Equation (3-9) gives the
beam maximum direction:

cos θ0 = −δ

kd
= −90◦

180◦ θ0 = 120◦

The main beam is no longer symmetrical about the beam peak. The 3-dB pattern angles
are 110.5◦ and 130.5◦. The beamwidth (3-dB beamwidth = 20◦) increases with scan
angle. What element spacing would result in this beamwidth for broadside radiation
(δ = 0◦)?

360◦

λ
d cos θ1 = 26.90◦

(Table 3-1)

On solving for spacing, we have

d

λ
= 26.9◦

360◦ cos θ1

Remember that the beam is centered on θ = 90◦, so that θ1 = 90 − 20/2 = 80◦.

d

λ
= 26.9◦

360◦ cos 80◦ = 0.431

The effective spacing has been reduced by approximately the cosine of the scan angle
from θ = 90◦, broadside:

d

λ
cos 30◦ = 0.433

The accuracy of the cosine relation increases with more elements.

Example Determine the progressive phase shift between elements for an end-fire
array with 0.3λ element spacing and compute beamwidth for a uniform distribution
array with five elements.

Figure 3-8 illustrates this example using the circle diagram. End fire occurs when
[Eq. (3-11)]

δ = −360◦
(0.3λ)

λ
= −108◦

This is the progressive phase shift for all distributions with 0.3λ element spacing for
an end-fire pattern. Table 3-1 gives the ψ-space angle, ψ3 dB = ±32.46◦. Substituting
in the expression for ψ , we have

360◦
(0.3λ)

λ
cos θ1,2 = ±32.46◦

cos θ1,2 = ±32.46◦ + 108◦

360◦(0.3)

cos θ1 = 140.46

108
= 1.301 cos θ2 = 75.46

108
= 0.699
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FIGURE 3-8 Five-element uniform-amplitude array scanned to end fire.

θ1 is in invisible space, since | cos θ | ≤ 1; θ2 = 45.6◦. Symmetry about the z-axis sup-
plies us with the second angle θ1 = −45.6◦ and beamwidth is the difference: 91.2◦.
The end-fire array samples a traveling-wave distribution. The continuous uniform dis-
tribution phased for end fire with the same length has a 90.4◦ beamwidth.

Remember that we have been dealing with isotropic pattern antennas. For example,
broadcast towers, seen from above, approximate isotropic antennas in the horizontal
plane. The patterns of the individual antennas modify the results of isotropic antenna
arrays. In small arrays the element pattern is quite significant, but the beamwidths of
large arrays are determined mainly by the array factor. The beamwidths calculated
for array factors approximate the actual beamwidths only when the elements have
significant patterns. We must rely on computer solutions of specific cases, including
the element pattern, for better results.

3-3 HANSEN AND WOODYARD END-FIRE ARRAY [2]

The end-fire array directivity increases if the sum of the progressive phase shifts
between elements is decreased by approximately π. The equivalent traveling-wave
velocity slows in the structure relative to free space. The progressive phase shift
between elements becomes

δ = −kd − 2.94

N
� −kd − π

N
rad (3-12)
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FIGURE 3-9 Patterns of a normal end fire and a Hansen and Woodyard end-fire array of
isotropic elements.

where N is the number of elements in the array. The normal end-fire progressive
phase shift between elements, δ = −kd , places one edge of the visible region at the
origin of ψ space. This method shifts the edge to a lower portion of the curve. The
universal radiation curve peak (Figure 3-5) shifts into invisible space and the sidelobes
rise in proportion to the new beam peak, but the beamwidth narrows. Equation (3-12)
holds strictly only for large arrays, but the directivity increases for all arrays when it
is applied.

Example Suppose that eight elements are spaced λ/4 apart with a uniform ampli-
tude distribution. Compare the two endfire designs. The two patterns are compared in
Figure 3-9.

The results are as follows: The beamwidth decreases, and the directivity increases
by 2.5 dB. The sidelobes rise to 9 dB from 13 dB.

3-4 PHASED ARRAYS

Suppose that a wave approaches at an angle to the axis of an array located on the z

axis (Figure 3-10). The wave reaches the top element first and progresses down the
array in succession. If the signals are added directly, they will cancel each other to
some extent because they have a progression of phases. Figure 3-10 shows the results
of adding a series of time delays to equalize the path lengths in the lines where the
position zi along the axis determines the time delay τi for incident angle θ0:

τi = zi

c
cos θ0 + τ0



116 ARRAYS

Time delay

Incident
wave

t1

t2

t3

t4

t5

t6

FIGURE 3-10 Linear array scanned with time-delay networks.

and velocity of light c. We add an arbitrary time delay τ0 to keep all time delays, τi ,
positive. This feed network is frequency independent, as we vary the progression of
time delays to scan the beam.

Phase shifters replace the time-delay networks in phased arrays. They provide equiv-
alent beam scanning at a single frequency. To scan to an angle θ0, the required phase
shift is

−2π

λ
z cos θ0 modulo 2π (rad)

−360◦

λ
z cos θ0 modulo 360◦ (deg)

for elements located on the z-axis. For a general space array we must counteract the
phase difference to the reference plane, ejk·r′

, for the direction of scan so that the
phases of all elements are zero. To scan in the direction (θ0, φ0), we must add a phase
factor to every element, depending on its position. The phase factor on each element
of a general space array is

e−jk0 · r′
(3-13)

where

k0 = 2π

λ
(sin θ0 cos φ0x̂ + sin θ0 sin φ0ŷ + cos θ0ẑ)
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is the vector propagation constant in the direction of the beam and r is the element
location. Adding this phase factor to the element phases causes the product of the
exponential factors [Eq. (3-2)] to be 1 at the scan angle, and the components Ei add
in the scan direction.

Using phase shifters limits the frequency bandwidth. Given a fixed phase shift over
a small frequency range, increasing the frequency scans the beam toward broadside:

�θ = f2 − f1

f2
tan

(π

2
− θ0

)
rad (3-14)

where θ0 is the scan angle [3]. Limiting the allowable scanning with frequency to
plus or minus one-fourth of the local beamwidth defines the bandwidth of the array.
When the beam is scanned to 30◦ off the axis, the bandwidth is related directly to the
beamwidth at broadside (θ = 90◦):

bandwidth(%) � beamwidth (deg) at θ0 = 30◦

The beam shifts less with frequency near broadside, since the tangent factor in Eq. (3-
14) approaches zero. A general estimate is given by

bandwidth(%) � beamwidth (deg)

2 cos θ0
(3-15)

where the broadside beamwidth is used.

Example Given an array with 100 elements spaced at λ/2, determine the bandwidth
when scanned to 45◦.

The beamwidth is estimated from the aperture width:

HPBW = 50.76◦

100( 1
2 )

� 1◦

bandwidth(%) � 1

2 cos 45◦ = 0.7%

Any radar antenna would have a broader beamwidth because the sidelobes need to be
reduced, but this is a good first estimate.

The bandwidth can be increased by feeding subarrays with time-delay networks. The
subarrays continue to be scanned with phase shifters. Only a few time-delay networks
are needed, and the subarray beamwidth determines the bandwidth. In Chapter 12 we
discuss the problems caused by using subarrays.

3-5 GRATING LOBES

Phased arrays vary the progressive phase by Eq. (3-13) to scan the beam. When the
array element spacing is greater than λ/2, the appearance of secondary beam peaks
(grating lobes) limits the scan angle. The grating lobe attains full amplitude when

d

λ
(1 + cos θgr) = 1 θgr = cos−1

(
λ

d
− 1

)
(3-16)
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FIGURE 3-11 Ten-element array with 3λ/4 spacing scanned to 26◦, showing the onset of a
grating lobe.

Example The spacing of the elements of an array is 0.75λ. Determine the scan angle
when the grating lobe is full amplitude.

θgr = cos−1

(
4

3
− 1

)
= 70.5◦

At this point the grating lobe is the same amplitude as the main beam. The lobe does
not appear suddenly, but it grows as the visible region shifts and starts including the
second periodic main lobe. Figure 3-11 shows the grating lobe formation for an array
with 0.75λ element spacings on a circle diagram. The dashed circle of the visible
region spans more than one beam of the universal radiation pattern of the uniform
amplitude array.

Arrays with element spacing greater than λ always have grating lobes (multiple
main beams), but the pattern of the antenna elements may reduce the grating lobes to
acceptable levels and allow a wide element spacing.

3-6 MULTIPLE BEAMS

An array can form multiple beams. Equation (3-13) gives the phase coefficients to
multiply each element feed voltage Ei to scan it to a given angle. The array will form
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a second beam if we add a second distribution: Eie
−jk2·r′

i . The distribution Ei remains
constant for both beams. We add the two distributions to obtain both beams:

Ei(e
−jk1·r′

i + e−jk2·r′
i ) (3-17)

This multiplies the distribution Ei by a second distribution whose amplitudes and
phases are functions of the antenna position and the scan angles of the two beams.
Each beam uses the entire array to form its beam. In a phased array both phase and
amplitude must be varied to achieve multiple beams. An array, which can only vary
phase, must be divided into subarrays to form multiple beams, but its beamwidths will
depend on the subarray widths.

We can produce unequal beams with different amplitude distributions and pattern
shapes if needed. We can add as many beams as necessary by including the distribution
element factors with the scanning phase coefficients in Eq. (3-17). The element feeding
coefficients become the sum.

Example Compute the feed coefficients of a 15-element array with λ/2 spacings and
a uniform distribution scanned to 45◦ and 120◦ from the z-axis.

First center the array on the z-axis. The elements are located at

zi = (−8 + i)λ

2

To scan to 45◦, the element phase factors are

exp(−jkzi cos 45◦
) = exp

[
−j

360◦

λ

1√
2

(−8 + i)λ

2

]

To scan to 120◦, the element phase factors are ej90◦
(−8+i). The ninth-element (z9 = λ/2)

phase factors are e−j127.3◦
and ej90◦

. Assume a voltage magnitude of one-half for
each uniform-amplitude-distribution beam so that the center element has a magni-
tude of 1. We sum the distributions to calculate the feeding coefficient of the ninth
element:0.32ej161.4◦

. When converted to decibel ratios, Table 3-2 lists the feeding coef-
ficients for the array. We can estimate both beamwidths from Table 3-1. ψ3 dB = 10.65◦:

cos θ1,2 =




±10.65◦ + 127.28◦

180◦ θ1 = 40◦
, θ2 = 49.6◦

±10.65◦ − 90◦

180◦ θ1 = 116.2◦
, θ2 = 124◦

The pattern (Figure 3-12) has these beams.
The gain of each beam depends on the feed network. If a single input supplies power

to two beams, each beam can receive only half the input power and gain reduced 3 dB
for both beams. Butler matrices [4] and Blass beamforming networks [5] supply an
input for each beam. The inputs are isolated from each other and the transmitter power
in each port feeds only one beam, and therefore the full array gain is available to each
input. Similarly, we can place a receiver on each port and use the full effective area
for each.
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TABLE 3-2 Feeding Coefficients for a Dual-Beam 15-Element Array

Beamwidth Angle Element Beamwidth Angle
Element (dB) (deg) (dB) (deg)

1 −2.38 130.48 9 −9.91 161.36
2 −8.59 111.84 10 −1.99 142.72
3 −0.01 −86.80 11 −1.64 −55.92
4 −11.49 74.56 12 −11.49 −74.56
5 −1.64 55.92 13 −0.01 86.80
6 −1.99 −142.72 14 −8.59 −111.84
7 −9.91 161.36 15 −2.38 −130.48
8 0.00 0.0

FIGURE 3-12 Fifteen-element linear array pattern with simultaneous beams at θ = 45◦ and
120◦.

We will delay the important topics of array synthesis and sidelobe reduction until
after we have discussed aperture distributions. A trade-off is made between the
beamwidth and the sidelobe levels. The beamwidth narrows only by putting more
power into the sidelobes.

3-7 PLANAR ARRAY

The linear array only controls the pattern in one plane; it depends on the element
pattern to control the beam in the other plane. Planar arrays can control the beam
shape in both planes and form pencil beams. Whereas a linear array can only scan in
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a single plane, a planar array can scan to any angle in the upper hemisphere. Most
planar arrays rely on the element pattern or ground plane to eliminate the backlobe on
the opposite side of the plane. The planar array has N − 1 nulls that can be used to
control the pattern where N is the total number of elements.

A simple feed distribution uses the product of two linear arrays. This eliminates
many degrees of freedom of the array because an M × N array would be determined
by M − 1 + N − 1 nulls when we could have used M × N − 1 possible nulls. Figure
3-13 shows the spherical pattern of a uniformly spaced 8 × 8 planar array where all
elements are fed the same amplitude where a 90◦ beamwidth element eliminates the
backlobe. The pattern along either principal axis shows the steady sidelobe reduction
that starts with −13.2 dB. Diagonal plane sidelobes are the product of the sidelobes in
the principal planes. The first sidelobe in the diagonal plane is down 26.4 dB. An array
feed distribution, not a product of two linear arrays, can yield more equal sidelobes in
all pattern planes.

Figure 3-14 illustrates the pattern of the rectangular array when the element feeding
coefficients are phased to scan the beam along one principal plane. The main beam
broadens in the plane of scan as the effective array length is reduced but stays narrow
in the orthogonal plane. More sidelobes appear behind the main beam. We see a large
sidelobe growing on the horizon that will become a grating lobe when the array is
scanned further. The sidelobes in the plane orthogonal to the plane of scan move with
the main beam but roll into a cone that becomes tighter with increased scan.

FIGURE 3-13 Spherical radiation pattern of an 8 × 8-element uniform-amplitude and spaced
square planar array.
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FIGURE 3-14 Spherical radiation pattern of an 8 × 8-element square-planar array scanned
along a principal plane.
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FIGURE 3-15 Contour plot of the pattern of a 4 × 4-element square array in kxky-space
showing multiple beams and sidelobes.

Figure 3-15 shows a contour plot of the universal pattern of a 4 × 4 element rectan-
gular array. We denote this universal pattern kxky space because the principal axes have
sin θ factors similar to the universal pattern of a linear array. The array for Figure 3-15
has its y-axis element spacing 1.5 times wider than the x-axis spacing. The diagram
axes extend until multiple beams show on the figure. The main beams correspond
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to the center of the large “squares.” The visible region on the figure is a unit circle
with its center at the negative scan direction (−kx0, −ky0). This technique mirrors the
circle diagram of the linear array where the visible region is given by a linear region
centered at the negative scan direction. You should notice that the diagonal sidelobes
have smaller amplitudes than the principal plane sidelobes. We move the unit circle
as the array scans and the diagram shows those locations of scan that have multiple
beams (grating lobes). A grating analysis simplifies the diagram of Figure 3-15 to the
main beam locations.

When we place the two axes of the planar array at an angle instead of orthogonal,
we form a triangular array. Figure 3-16 gives the positions of a hexagon array made
with equilateral triangles. We derive the characteristics of this array from a linear
transformation of the rectangular array [6, p. 11-23ff]. Because the array has six-way
symmetry, Figure 3-17 the pattern of a uniform-amplitude 61-element hexagon array
shows the same six-way symmetry in the ring sidelobe around the main beam. If we
collapsed the hexagonal distribution to a line in one plane, the distribution has a taper
that reduces the sidelobes. The sidelobe amplitudes of the uniform hexagonal array are
lower that the principal-plane sidelobes of the rectangular uniform array. Figure 3-18
plots the spherical pattern of the hexagon array when scanned to 36◦. The first ring
sidelobe has a distorted six-fold symmetry. Similar to the scanned rectangular array
(Figure 3-14), the hexagon array moves more sidelobes into visible space in the area
opposite the scanned main beam. Figure 3-14 showed a grating lobe entering visible
space, but the hexagon array pattern in Figure 3-18 does not. The grating lobes of a
rectangular array can be found from a linear array when it is scanned along one of
the principal axes, but the hexagon array requires a more elaborate analysis. When we
scan the rectangular array off the principal axes, we can no longer use the grating lobe
analysis of linear arrays.

FIGURE 3-16 Position of elements in a hexagonal planar array.
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FIGURE 3-17 Spherical radiation pattern of a 61-element hexagonal array.

FIGURE 3-18 Spherical radiation pattern of a 61-element hexagonal array scanned along a
principal plane.
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3-8 GRATING LOBES IN PLANAR ARRAYS

The circle diagrams of the linear array can be used in principal planes of a rectangular
array to compute grating lobes. For the planar array we use a sin θ pattern space to see
the periodicity of the grating lobes and to analyze scanning in planes other than the
principal axes. The visible region is now limited to a unit circle in kxky-space where
kx = sin θ cos φ and ky = sin θ sin φ. kx is the pattern in the x –z plane, and ky is the
pattern in the y –z plane. Figure 3-19a shows the array layout, and Figure 3-19b shows
the corresponding kxky-plane grating lobe diagram. We reduce a contour plot of the
pattern response similar to Figure 3-15 to only the main beams for analysis of grating
lobes. The full contour plot is too busy. The narrower x-axis array spacing compared
to the y-axis spacing leads to wider-spaced grating lobes in the kx-plane than in the
ky-plane.

Beam scanning corresponds to movement of the unit circle in kxky-space. Each
small circle in kxky-space is a main beam in pattern space. When the unit circle
encloses more than one kxky-circle, the pattern has multiple main beams or grating
lobes. The kxky-plane diagram could also include sidelobe peaks or the contour plot
of the array pattern and illustrate the pattern change with scan. The kxky-plane is the
two-dimensional Fourier transform of the distribution that becomes the periodic two-
dimensional Fourier series because the distribution is discrete. Increasing frequency
or relative spacing between elements increases the unit circle diameter on an existing
kxky-diagram in a manner similar to the circle diagram.

When we scan the beam, we move the unit-circle center in kxky-space. We use
Eq. (3-13) to locate the unit-circle center on the diagram: k(sin θ0 cos φ0, sin θ0 sin φ0).
The off-center circle on Figure 3-19 corresponds to a scanned beam and encloses two
main beams. In this case the grating lobe does not lie in the scan plane and would fail
to show in a simple pattern cut through the scan plane. A rectangular array produces a
rectangular grating lobe diagram, while other periodic arrays lead to more complicated
grating lobe diagrams.

Figure 3-20 shows the layout of the hexagonal array and the corresponding grating
lobe diagram. The hexagonal array (or equilateral triangular array) can be found from
a linear transformation of the rectangular array. The grating lobe diagram can be found
from the transformation as well. The spacing along the x-axis A1 corresponds to the
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FIGURE 3-19 (a) Grating lobe diagram of a rectangular array; (b) distribution in k-space.
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FIGURE 3-20 (a) Grating lobe diagram of a hexagonal array; (b) distribution diagram.

vertical spacing B2 on the grating lobe diagram, and the spacing along the diagonal of
each diagram are related. In both cases the corresponding axes on the two diagrams
are perpendicular:

B2 = λ

A1 sin α
and B1 = λ

A2 sin α

The angle between the triangular axes α is 60◦ for the hexagonal array. By allowing a
grating lobe when the beam is scanned to 90◦, we can determine the maximum element
spacing without grating lobes:

λ

A1 sin 60◦ = 2 or
A1

λ
= 1

2 sin 60◦ = 0.577

Figure 3-20 shows the visible region unit circle with the beam broadside to the plane
and then scanned to 36◦ for an element spacing of λ. When scanned, the unit cir-
cle encloses three lobes. The three lobes do not lie in a plane. Figure 3-21 gives the

FIGURE 3-21 Spherical radiation pattern of hexagon-array grating lobes.



SCAN BLINDNESS AND ARRAY ELEMENT PATTERN 127

spherical pattern of the array when scanned to 36◦ and shows the three lobes in the
pattern. The array sidelobes have been reduced by sampling a circular Taylor distribu-
tion with the array so that the lobes show clearly. In Chapter 4 we discuss the use of
continuous aperture distributions to determine the feed amplitudes of planar arrays.

3-9 MUTUAL IMPEDANCE

Antennas in an array couple to each other because they receive a portion of the power
radiated from nearby elements. This affects the input impedance seen by each element,
which depends on the array excitation. We scan a phased array by changing the feeding
coefficients, and this changes the element input impedance called the scan impedance.
To first order, the coupling or mutual impedance is proportional to the element pattern
level along the array face, and we reduce coupling by using narrower-beamwidth ele-
ments. Mutual coupling can be represented by an impedance, admittance, or scattering
parameter matrix.

The first element of an N -element array has the impedance equation

V1 = Z11I1 + Z12I2 + Z13I3 + · · · + Z1NIN

If we know the radiation amplitudes, we calculate the ratio of the currents:

V1 = I1

(
Z11 + I2

I1
Z12 + I3

I1
Z13 + · · · + IN

I1
Z1N

)

The effective or scan impedance of the first element is

Z1 = V1

I1
= Z11 + I2

I1
Z12 + I3

I1
Z13 + · · · + IN

I1
Z1N (3-18)

It depends on the self-impedance and the excitation of all the other antennas. Scan
impedance was formerly called active impedance, but this led to confusion. The power
into the first element is

P1 = Re(V1I
∗
1 ) = I1I

∗
1 Re

(
Z11 + I2

I1
Z12 + I3

I1
Z13 + · · · + IN

I1
Z1N

)
(3-19)

By knowing the feeding coefficients and the mutual impedances, we can compute the
total input power and gain. In general, every antenna in the array has different input
impedances. As the feeding coefficients change in a phased array to scan the beam, so
will the impedance of elements. The scan impedance change with scan angle causes
problems with the feed network. We can repeat the same arguments for slots using
mutual conductance, since magnetic currents are proportional to the voltage across
each slot.

3-10 SCAN BLINDNESS AND ARRAY ELEMENT PATTERN
[7, pp. 339–355; 8, pp. 365–366]

Large arrays made from elements with wide beamwidths can exhibit scan blindness.
When a phased array is scanned, at certain angles the input reflection coefficient of
every element rapidly increases to 1. The array fails to radiate and forms a pattern
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null. Mutual coupling between elements causes the change of the scan impedance,
which leads to scan blindness, which is complicated and difficult to predict accurately
except where the array structure supports a surface wave. One approach says that scan
blindness occurs when a grating lobe first enters from invisible space and radiates
along the surface of the array. In this case we solve Eq. (3-16) for the scan angle of
the grating lobe:

| cos θgr| = λ

d
− 1 (3-20)

The angle in Eq. (3-20) is measured from the array plane (or axis). Scan blindness
occurs approximately at this angle, but it can be reduced to only a dip in the pattern if
the array is small or the mutual coupling between the elements is small, because they
have narrow beams.

The grating lobe causes a large increase in mutual coupling. Arrays made with
antennas that can support surface waves, such as microstrip patches on dielectric sub-
strates, can exhibit scan blindness when the electrical distance between the elements
equals the surface-wave propagation phase shift:

| cos θgr| = λ

d
− ksw

k
= λ

d
− P (3-21)

P is the relative propagation constant with a value > 1 for a surface wave (Section 10-
1). Scan blindness will occur at an angle near this value because of the complicated
nature of the coupling addition in the array.

We can build a small portion of the array and determine where scan blindness will
occur. Feed the center element and load all others with the feeder resistance. Each
element in an array will couple to its neighboring elements and we can associate
the combination of the element radiation and the coupled radiation of the neighbors
when loaded to the element. We call this the array element pattern or scan element
pattern (formerly called the active pattern). Elements near the edges will have different
effective patterns, but in a first-order solution we assume the pattern of the center
element for all and calculate the total pattern as the product of the element pattern and
the array factor. The array element pattern will exhibit dips where scan blindness will
occur in the full array. Because it is only a small portion of the array, the full scan
blindness will not occur. You should build a small array and test for scan blindness
whenever it is a possibility. For example, arrays that scan to large angles off broadside
using broad-beamwidth elements need to be tested with a small array before building
the complete array.

3-11 COMPENSATING ARRAY FEEDING FOR MUTUAL COUPLING

Mutual coupling (impedance) is a measure of how much one antenna receives radiation
from its neighbors in the array. Each element radiation changes the effective excitation
on its neighbors. In a large array not requiring exact patterns, the effects average out.
But when the array is small or you try to achieve low sidelobes, mutual coupling must
be compensated for in the array. Small antenna elements such as dipoles or slots are
resonant structures that radiate in only one mode. Mutual coupling only changes the
element excitation, not the shape of the current distribution on the element. In this case
we measure or calculate the mutual coupling matrix and use it to compute element
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excitation to achieve the desired excitation [9]. Find the coupling matrix by adding the
identity matrix to the S-parameter matrix of the antenna coupling:

C = I + S (3-22)

We compute the new feed excitation from the desired excitation and matrix inverse of
Eq. (3-22):

Vrequired = C−1Vdesired (3-23)

Because we assumed a single mode distribution on the antenna elements, S is inde-
pendent of scanning and Eq. (3-23) gives the compensation for all scan angles. The
compensation can be applied to the received signal in an adaptive array by matrix
multiplication in digital signal processing. The effects of these operations have been
illustrated [10]. Without compensation adaptive arrays, such as the MUSIC algorithm,
only generate small peaks, whereas compensation produces the expected large peaks.

Compensation for multimode elements starts with a moment solution [11] and uses
the pattern characteristics to solve for the feeding coefficients. We use the pattern
desired to compensate the feeding coefficients. We start with a matrix between the
pattern response and the currents on all the antenna elements found from a moment
method solution, where each array element has multiple current segments:

A(k) = FI (3-24)

A(ki) is an element of the column matrix that gives the pattern response at an angle
given by ki = x̂ sin θi cos φi + ŷ sin θi sin φi + ẑ cos θi or a given pattern angle (θi , φi).
The elements of the matrix F are the isotropic element phase terms, ejki ·rj , and I is
the column vector of the currents on the segments. We calculate excitation voltages by
inverting the mutual impedance matrix:

I = Z−1V (3-25)

We substitute Eq. (3-25) into Eq. (3-24) and note that the matrix V has only q nonzero
terms corresponding to the feed points. We specify q pattern points, which reduces F
to q × M for M current segments. The vector V has M − q zero elements and we
delete the corresponding columns in the matrix product FZ−1. This reduces the matrix
to q × q, denoted B:

A(k) = BV′

This uses the nonzero element V′. We solve for the feeding coefficients by inverting
the matrix B found from q pattern points:

V′ = B−1A(k) (3-26)

Choosing good pattern points is an art that requires pattern evaluation to verify whether
the final pattern is acceptable.

3-12 ARRAY GAIN

We can use the mutual impedance concept to determine the effective input power of
every element and thereby avoid having to integrate the pattern to calculate average
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radiation intensity. We represent the circuit relations of two antennas by a two-port
impedance matrix: [

V1

V2

]
=

[
Z11 Z12

Z21 Z22

] [
I1

I2

]

Symmetrical elements across the diagonal of the matrix are equal for antennas satisfying
reciprocity. The total input power is given by

Pin = Re(V1I
∗
1 ) + Re(V2I

∗
2 )

The general N -element array has an N × N matrix and N terms in the input power
sum. Given the feed coefficients, we have a relation between different Ii . For our
two elements,

I2 = I1e
jδ and V1 = (Z11 + Z12e

jδ)I1

The power into the first element is

Re(Z11 + Z12e
jδ)I1I

∗
1

By symmetry, the power into the second antenna is the same. The total input power
to the array is

Pin = 2 Re(Z11)I1I
∗
1

[
1 + Re(Z12e

jδ)

Re(Z11)

]

The factor Re(Z11)I1I
∗
1 is the power into an isolated element: 4πE2

0/η. The average
radiation intensity (100% efficient antenna) is Pin/4π:

gain = directivity = |2E(θmax)|2/η
Pin/4π

= |2E(θmax)|2
1 + [Re(Z12ejδ)]/[Re(Z11)]

(3-27)

By comparing Eqs. (3-27) and (3-8), we can identify

Re(Z12e
jδ)

Re(Z11)
= R12 cos δ

R11
= sin(2πd/λ) cos δ

2πd/λ

R12(d)

R11
= sin(2πd/λ)

2πd/λ

We can use this mutual impedance ratio to compute directivity of arrays of isotropic
elements of any number.

Example Calculate the directivity of a linear array of three equally spaced isotropic
elements with equal amplitudes and phases.

The powers into the elements are

P1 = P3 = 4πE2
0

η

[
1 + R12(d)

R11
+ R12(2d)

R11

]

P2 = 4πE2
0

η

[
1 + 2R12(d)

R11

]
Umax = 32E2

0

η
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The total power into the array is found from the sum:

Pt = P1 + P2 + P3 = 4πE2
0

η

[
1 + 4R12(d)

R11
+ 2R12(2d)

R11

]

directivity = Umax

Pt/4π
= 9

3 + [4R12(d)/R11] + [2R12(2d)/R11]

The directivity of the general N -element equally spaced linear array, excited by
equal-amplitude and equal-phase signals, is easily found by extending the development:

directivity = N2(element directivity)

N + 2
∑N−1

M=1
(N − M)[R12(Md)/R11]

(3-28)

The directivity attained in an array depends on the particular mutual impedance terms
of the radiators. The equation above only handles uniform-amplitude linear arrays. We
can extend the idea of mutual resistance to calculate input power to a general planar
array consisting of identical elements and determine gain.

By using a two-element array spaced along the x-axis we can integrate the pattern
to compute directivity and from that determine the ratio of mutual resistance to self-
resistance of the elements versus element spacing:

R12(x)

R11
= element directivity

2π

∫ 2π

0

∫ π

0
E2

e (θ, φ) cos2
(πx

λ
cos φ sin θ

)
sin θ dθ dφ − 1

(3-29)

Equation (3-29) uses the normalized element pattern in the integral. By using an
axisymmetrical element pattern, we calculate the ratio of resistances at a number
of different distances and interpolate on the table for the directivity (gain) analysis
of a planar (linear) array. If the element pattern is not symmetrical, the normalized
resistance must be calculated for a number of φ. Given the element excitations Ei

with elements located at the vector locations xi , we can derive an equation similar to
Eq. (3-28) for directivity of a planar array:

directivity =
∣∣∣∑N

i=1
Ei

∣∣∣2

(element directivity)∑N

i=1

∑N

j=1
[R12(|xi − xj |)/R11]Re[Ej/Ei]|Ei|2

(3-30)

Figure 3-22 illustrates the directivity calculated from Eq. (3-30) for linear arrays
with realistic elements, such as a microstrip patch with 90◦ beamwidths, as the element
spacing is varied. The graph shows directivity reduction when the element spacing
exceeds λ and grating lobes form a more pronounced characteristic as the number of
elements increases. When the second grating lobe occurs for wider element spacing, the
directivity exhibits only minor variations. Increasing the element directivity (decreased
beamwidth) reduces variation because the element pattern reduces the grating lobe.

We use Eq. (3-30) with a planar array to obtain Figure 3-23. This array consists of
217 elements arranged in a hexagonal pattern, with amplitudes found from sampling a
circular Taylor distribution (Sections 4-18 and 4-19) to lower the sidelobes. The 30-dB
circular Taylor distribution reduces the gain by 0.6 dB relative to a uniform distribution
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FIGURE 3-22 Directivity of a uniform-amplitude line array versus element spacing for 60◦

and 90◦ beamwidth elements.
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FIGURE 3-23 Directivity of a 217-element uniform-amplitude hexagonal array for various
element beamwidths versus spacing.

due to the amplitude taper across the array. Initially, the element spacing is 0.6λ, but
the element spacing has been allowed to grow in Figure 3-23 to show the effect. Figure
3-23 also illustrates the effect of increasing the element gain on the gain of a planar
array. When we space the elements less than λ, increasing the element gain has no
effect on array gain because the effective area of an antenna with a 90◦ beamwidth
exceeds the area between elements and collects all power incident on the array. If we
increase the element gain, the effective areas of the elements overlap and they share
the incident power. On Figure 3-23 the curves overlap for element spacing less than
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about λ. At the lower end of Figure 3-23 the gain increases by 6 dB as the element
spacing doubles. This shows that increasing the element gain will have no effect on
array gain when the present element covers the area associated with it.

When the grating lobe enters from invisible space as the element spacing increases,
those arrays with narrower-beam elements suppress the lobes and continue the general
gain increase. The array directivity (gain) drops as the element spacing increases for
the wide-beamwidth element with 90◦ beamwidth because of the grating lobe. At a
large element spacing the array gain becomes N times the element gain. We determine
array gain from the array area and the amplitude taper for closely spaced elements.
For wide element spacing, we calculate gain from the product of the number of ele-
ments and the element gain. Figure 3-23 shows a smooth transition between the two
regions.

3-13 ARRAYS USING ARBITRARILY ORIENTED ELEMENTS

When we mount arrays on vehicles, the elements are pointed in arbitrary directions.
Although Eq. (3-1) will calculate the pattern of any array, the element patterns are
usually measured in a coordinate system in a different orientation than in the array.
The idea of an array factor times the element pattern collapses and an analysis must
rotate the pattern direction into the coordinates of each element. We will use coordinate
rotations on the elements not only to specify them, but to calculate the pattern of the
array. In a later chapter we use the same concept to point a feed antenna at a reflector.

We rotate the pointing direction into the coordinate system of the orientated antenna
to determine what direction angles to use for the element pattern. We do this by using
a 3 × 3 rotation matrix on rectangular components:

[Xrotated Yrotated Zrotated] = [rotation matrix]


X

Y

Z


 (3-31)

A similar problem is rotating an object. Both cases use the same matrix. To rotate
an object we multiply the vector by the rotation matrix from the left to compute the
rotated coordinates. Rotating a position is given by the equation

[Xold Yold Zold][rotation matrix] =

Xrotated

Yrotated

Zrotated


 (3-32)

The rotation matrix can be found from the directions of the unit vectors when rotated.
It is given by

rotation matrix =

 rotated X-axis

rotated Y -axis
rotated Z-axis


 (3-33)

The method uses 3 × 3 matrices to perform the rotation by a multiplication with a
position or direction vector. Rotation about the X-axis is given by

 1 0 0
0 cos A sin A

0 − sin A cos A
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rotation about the Y -axis is given by
 cos B 0 − sin B

0 1 0
sin B 0 cos B




and rotation about the Z-axis is given by
 cos C sin C 0

− sin C cos C 0
0 0 1




We use products of these axis rotations to reorient an object or pointing direction.
Consider the rotation of a position by the product of three rotation matrices:

[Xold Yold Zold]R1R2R3 =

 Xrotated

Yrotated

Zrotated




The logical approach is to multiply the 3 × 3 matrices, R1, R2, and R3, before mul-
tiplying by the position vector. When we postmultiply R1 by R2, it rotates the axis
of rotation of R1. The postmultiplication by R3 rotates the rotation axis R2 and R1 is
rotated once more. We can take the rotations one by one from left to right and use the
rotation matrices about each of the principal axes provided that we convert the column
vector back to a row vector after each multiplication.

A convenient way to define the orientation of objects in space is to use spherical
coordinate angles, since they are the same as pattern angles. We line up the matrices
from right to left in this case. When rotating the coordinate system about an axis, the
other axes change direction. The next rotations are about these new axes. The three
rotations are often called the Euler angles. We use the following three rotations for
spherical coordinate pointing:

1. Z-axis rotation = φ

2. New Y -axis rotation = θ

3. New Z-axis rotation: aligns the polarization of the antenna

The last rotation takes some thought because the first two rotations have altered the
orientation of the antenna.

When calculating the pattern of the array for a particular direction, first compute
rectangular components of the direction vector and the two polarization vectors. Mul-
tiply the direction vector by k(2π/λ) and take the dot (scalar) product with the position
vector to calculate phasing of a particular element. You need to determine the pattern
direction in the rotated antenna’s coordinate system found by using Eq. (3-31). Mul-
tiply the rotation matrix by the unit direction vector placed to the right. When you
convert the output vector to spherical coordinates, you obtain pattern coordinates of
the rotated antenna. Both the pattern components of the rotated element and the unit
polarization vectors are needed. In the next operation you rotate the prime coordinate
polarization unit vectors into the rotated element coordinate system using the same
operation as the direction vector.
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You calculate final radiated components by projecting the rotated prime coordinate
polarization vectors on the element pattern unit polarization vectors:

Eθ = Eθ,elementθ̂element · θ̂rotated + Eφ,elementφ̂element · θ̂rotated

Eφ = Eθ,elementθ̂element · φ̂rotated + Eφ,elementφ̂element · φ̂rotated (3-34)

Since we measure element patterns on antenna positioners, it is convenient to consider
positioners as a series of coordinate system rotations.
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4
APERTURE DISTRIBUTIONS
AND ARRAY SYNTHESIS

Continuous apertures and arrays share similar characteristics. We compute the radiation
pattern of the aperture by using the Fourier transform. Array sampling of an aperture
distribution leads to a Fourier series analysis for its pattern. We rely on our familiarity
with signal processing to give us insights into these processes and their characteristics.
We apply aperture theory to the analysis of horns, lens, and reflector antennas, but
it also describes array antennas. Since we can design antennas only approximately
to produce particular aperture distributions, we often realize them by sampling with
an array.

We start with aperture efficiencies developed from the Huygens source approxima-
tion of Section 2-2. We apply this method to horns, lens, and reflector antennas for both
synthesis and tolerance analysis. The uniform and cosine distributions occur naturally
in horns and simple resonant antennas. We use aperture distributions to realize bounds
on antenna characteristics given size and excitation distribution.

Taylor developed an aperture distribution based on Dolph’s use of the Chebyshev
polynomials to produce the narrowest beamwidth for a specified sidelobe level for
an array. The Chebyshev array design produces equal-amplitude sidelobes that we
discover to be undesirable for large arrays because the equivalent aperture distribution
peaks at the ends and the average value of the sidelobes limits the directivity to 3 dB
above the sidelobe level. Large edge peaking of the distribution requires a feed network
containing a large ratio of coupling values. Mutual coupling between elements causes
unwanted excitation for a large ratio of element amplitudes and we lose control. Our
usual practice is to sample a Taylor distribution for large arrays. The distribution has
limited edge peaking, and large arrays can realize high gains.

Aperture distribution synthesis involves manipulating pattern nulls to achieve desired
characteristics. Taylor used the zeros of the Chebyshev array to alter the positions of the
inner nulls of the uniform distribution to lower sidelobe levels. Elliott extended this
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idea to iterate the positions of these nulls to produce a linear aperture that radiates
individually specified sidelobes. Schelkunoff developed a transformation between the
pattern of an array and a polynomial where we combine the roots (or zeros) of the
array polynomial in the complex plane with a mapped pattern variable that traverses
the unit circle to analyze array patterns. We synthesize arrays by manipulating these
polynomial zeros in the complex plane. Similar to Elliott’s method of null positioning
for the continuous linear aperture, Orchard (and Elliott) developed an iterative method
applied to array polynomial zeros to synthesize arrays. The method allows us to specify
sidelobes individually and to shape the main beam pattern by moving some zeros off
the unit circle. When designing shaped beams, improved synthesis by the Orchard
method reduces our use of both array sampling of the Woodward continuous aperture
method and direct Fourier series synthesis for linear arrays, but both earlier methods
give us insight. We consider the design of series feeding where elements are fed directly
from a transmission line for a linear array or continuous linear aperture. This requires
specification of the couplers or loading of the transmission line along the array because
a portion of the power is extracted at each position with the remaining power dissipated
in a load.

We repeat aperture analysis for circular apertures to show limitations of large reflec-
tor antennas and for use in sampling with an array. For planar arrays, we reduce many
rectangular apertures to the product of two linear distributions. A Chebyshev-type pla-
nar array with equal sidelobes can be designed so that the sidelobes in the diagonal
planes are not reduced unnecessarily. Convolution synthesis of planar arrays allows
manipulation of the pattern zeros in groups of smaller arrays similar to the Schelkunoff
method. Finally, we consider aperture blockage and phase errors that lead to gain
reduction and increased sidelobes.

4-1 AMPLITUDE TAPER AND PHASE ERROR EFFICIENCIES

When we use the Huygens source approximation, we calculate power radiated by
summing (integrating) the magnitude squared of the electric field in the aperture and
dividing by the impedance of free space. The average radiation intensity is the radiated
power divided by the area of a unit sphere, 4π. To complete the calculation, we compute
the maximum radiation intensity by dividing the maximum of the magnitude squared
of Eq. (2-24) by the impedance of free space and directivity (Umax/Uavg) becomes

π(1 + cos θ)2

λ2

∣∣∣∣∣∣
∫∫
s

Eejk · r′
ds ′

∣∣∣∣∣∣
2

max∫∫
s

|E|2 ds ′
(4-1)

Equation (4-1) can be used for directivity in any pattern direction, including the max-
imum of the numerator integral.

An aperture with a uniform amplitude and phase distribution has directivity 4πA/λ2,
where A is the area. We separate directivity reductions into individual terms due to
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aperture field amplitude and phase variations, and we express the general aperture
directivity as

directivity = 4πA

λ2
· ATL · PEL

where ATL is the amplitude taper efficiency (loss) and PEL is the phase error effi-
ciency (loss). Only amplitude variations contribute to ATL, and only phase variations
determine PEL.

We start with a uniform phase distribution in the aperture where the beam peak
occurs normal to the aperture (θ = 0◦) and PEL = 1. We obtain uniform phase fields
by using |E| in Eq. (4-1):

directivity = 4π

λ2


∫∫

s

|E| ds




2

∫∫
s

|E|2 ds

= 4πA

λ2
· ATL

where kx = ky = 0 on the boresight (θ = 0◦). On solving for ATL, we derive

ATL =


∫∫

s

|E| ds




2

A

∫∫
|E|2 ds

(4-2)

We have forced a constant phase everywhere in the aperture to separate out the
amplitude taper effects. We account for nonuniform phase with PEL. The phase error
efficiency can be found from

PEL(θ, φ) = directivity(θ, φ)

(4πA/λ2) · ATL

where we use directivity (θ , φ) and PEL (θ , φ) depends on the pattern direction (θ, φ):

PEL(θ, φ) = (1 + cos θ)2

4

∣∣∣∣∣∣
∫∫
s

Eejk · r′
ds

∣∣∣∣∣∣
2


∫∫

s

|E| ds




2 (4-3)

k = k(sin θ cos φx̂ + sin θ sin φŷ + cos θ ẑ)

For an aperture in the x –y plane,

k · r′ = k(x ′ sin θ cos φ + y ′ sin θ sin φ)
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We determine maximum PEL to relate it and ATL to directivity. Traditionally, we use
the boresight value (θ = 0◦) and Eq. (4-3) reduces to

PEL =

∣∣∣∣∣∣
∫∫
s

E ds

∣∣∣∣∣∣
2


∫∫

s

|E| ds




2 (4-4)

Unless specified, PEL will be Eq. (4-4) and we use Eq. (4-3) for scanned apertures.
Equations (4-2) and (4-4) separate the effects of amplitude and phase variations in

the aperture on the directivity at the boresight. If these efficiencies are expressed in
decibels, the directivity becomes

directivity(dB) = 10 log
4πA

λ2
+ ATLdB + PELdB

Expressed in decibels, the efficiencies are called losses: amplitude taper loss (ATL)
and phase error loss (PEL). It is important to remember that these are the losses at
the boresight. A linear phase taper across the aperture scans the beam, but Eq. (4-4)
predicts the boresight loss, which could be a null of the pattern. ATL is independent
of phase variations that cause squinting of the beam.

4-1.1 Separable Rectangular Aperture Distributions

If the distribution in a rectangular aperture is separable,

E(x, y) = E1(x)E2(y)

the efficiencies also are separable.

ATL = ATLxATLy and PEL = PELxPELy (4-5)

Given a rectangular aperture with an x-axis excursion of ±a/2,

ATLx =

[∫ a/2

−a/2
|E1(x)| dx

]2

a

∫ a/2

−a/2
|E1(x)|2dx

(4-6)

PELx =

∣∣∣∣
∫ a/2

−a/2
E1(x) dx

∣∣∣∣
2

[∫ a/2

−a/2
|E1(x)| dx

]2 (4-7)

The formulas for the y-axis are the same except for the substitution of y for x.
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4-1.2 Circularly Symmetrical Distributions

If a circular aperture has a circularly symmetrical distribution, we easily reduce Eqs.
(4-2) and (4-4) to

ATL =
2

[∫ a

0
|E(r)|r dr

]2

a2

∫ a

0
|E(r)|2r dr

(4-8)

PEL =

∣∣∣∣
∫ a

0
E(r)r dr

∣∣∣∣
2

[∫ a

0
|E(r)|r dr

]2 (4-9)

where a is the radius.
We need a short word on formulas using integrals. They look formidable and seem

to have little immediate practical use. In the catalog of distributions to follow, results
will be given. A general distribution must be solved by numerical integration. One
of the Newton–Cotes methods, such as Simpson’s rule or the Rhomberg integration,
can be used when evenly spaced values are known. With a known function for the
distribution, we use the Gauss–Legendre technique, whereby the method selects the
required function values. It is sometimes easier to calculate the integrals numerically
instead of writing routines for special functions that arise with circular apertures. Exact
expressions are ideal; but unless a distribution is forced by a mode on the structure,
it is difficult to achieve the exact distribution. We need only approximations to the
accuracy of practical interest.

4-2 SIMPLE LINEAR DISTRIBUTIONS

We assume that rectangular apertures have separable distributions so that we can deal
with one coordinate at a time. We compute the pattern in the plane containing the line.
By drawing the pattern in kx (or ky)-space, we can calculate patterns independent of
the aperture size in a way similar to that used for arrays in Chapter 3. In Chapter 2
we derived the kx-space pattern for a uniform distribution:

a sin(kxa/2)

kxa/2
(4-10)

where a is the aperture width and kx = k sin θ cos φ. We suppress cos φ and consider
only patterns in the φ = 0◦ plane. Figure 4-1 shows the k sin θ space pattern of a
uniform distribution. The pattern does not repeat at 2π intervals (radians) as the array
does, but the sidelobes continue to decrease at a rate of 1/x. The first sidelobe is
13.2 dB below the peak. The aperture size a, along with the scanning variable sin θ0,
determines the visible region in Figure 4-1. It ranges between ±ka/2 centered on ka/2
sin θ0, since the maximum value of sin θ = 1.
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FIGURE 4-1 kx-space pattern of uniform line-source distribution.

Example An aperture is four wavelengths long. Determine the number of sidelobes
between θ = ±90◦ when sin θ0 = 0 (boresight).

The maximum value in (k sin θ )-space is

2π

λ

4λ

2
= 4π or 12.57

There are three sidelobes on each side of the main beam (Figure 4-1) in the visible
region. The first sidelobe occurs when ka/2 sin θ1 = 4.5, or

θ1 = sin−1 4.5λ

aπ
= 21◦

We found the half-power beamwidth in Chapter 2:

HPBW = sin−1 0.4429λ

a
(4-11)

valid when we ignore the obliquity factor, (1 + cos θ )/2. When we approximate x =
sin x (radians) for small angles, we obtain

HPBW = 50.76◦ λ

a
(4-12)

We use this as the standard and describe other HPBW by their beamwidth factors.
The beamwidth factor of the uniform distribution is 1.00. We also consider the null
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beamwidth (BWnull) of the distribution. The first null occurs at ±π in the k sin θ

pattern:

BWnull = 2 sin−1 λ

a
≈ 114.59◦ λ

a

We also establish a beamwidth factor for the null beamwidth. When we scan the beam
to a direction θ0, the visible region centers at πa/λ sin θ0 in (k sin θ )-space.

Example Compute beam edges when θ0 = 30◦ and a = 6λ for a uniform distribution.

a

λ
(sin θ1,2 − sin θ0) = ±0.4429

sin θ1,2 = ±0.4429

6
+ 0.5

θ1 = 35.02◦
θ2 = 25.23◦

The beamwidth is the difference, 9.79◦. If we take the beam center as the average
between the 3-dB beam edges, we get 30.12◦ for the beam center. By using the cosine of
the beam center times the aperture size, we get 5.19λ, the projected aperture dimension.
On substituting this in Eq. (4-11), we calculate HPBW = 9.79◦. The actual beam peak
is at θ = 30◦, but the pattern is asymmetrical about θ0.

Other simple geometrical distributions on a linear aperture follow the same Fourier
transform relation as the uniform distributions with differing transforms in (k sin θ )-
space. Table 4-1 lists the properties of some common distributions.

Example Compute the beamwidth of a 7λ aperture with a cosine distribution.
From Table 4-1, the beamwidth factor = 1.342. The taper increases the beamwidth

over that of a uniform distribution:

HPBW = 1.342
50.76λ

a
= 9.73◦ or HPBW = 2 sin−1

(
1.342

0.4429λ

a

)
= 9.74◦

We can add distributions and calculate the pattern from the sum of the transforms.
Adding a pedestal (uniform distribution) to the cosine-squared distribution decreases

TABLE 4-1 Common Linear Distribution Characteristics

Distribution fx

First Sidelobe
(dB)

HPBW
Factor

BWnull

Factor
ATR
(dB)

Uniform
sin(kxa/2)

kxa/2
13.2 1.000 1.000 0

Triangular

[
sin(kxa/4)

kxa/4

]2

26.5 1.439 2.000 1.25

Cosine 2π
cos(kxa/2)

π2 − (kxa)2
23.0 1.342 1.5 0.91

Cosine2 sin(kxa/2)

(kxa/2)[1 − (a/2λ)]2
31.5 1.625 2.000 1.76
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the beamwidth and the sidelobes of the cosine-squared distribution. The aperture dis-
tribution is given by

E(x) = PD + (1 − PD) cos2 πx

a
|x| ≤ a

2

where PD is the voltage pedestal level. The first sidelobe of the uniform distribution lies
within the null beamwidth of the cosine-squared distribution. The phase of sidelobes
with respect to the main beam alternates between 180◦ and 0◦, and the sidelobe of
the pedestal subtracts from the main lobe. The second sidelobe of the pedestal occurs
in almost exactly the same k-space location as the first sidelobe of the cosine-squared
distribution. These lobes cancel each other to some extent. Table 4-2 gives the required
pedestal measured relative to the peak of the distribution for a given maximum sidelobe
level. The minimum sidelobes (43.2 dB) occur for a pedestal level of −22.3 dB. At
lower pedestal levels, the sidelobes rise and the beamwidth factor increases at a constant
rate as the pedestal level decreases.

The amplitude taper efficiency of the cosine squared on a pedestal is

ATL = 2(1 + PD)2

3 + 2PD + 3PD2 ratio (4-13)

Amplitude distributions based on simple functions have limited use. The uniform and
cosine distributions or close approximations occur naturally, but the others must be
forced on an aperture. An array can sample a distribution to achieve results similar
to those for an aperture. A sampled cosine squared on a pedestal is handy for quick
tolerance studies of array feed networks, but is far from optimum. Table 4-2 lists the
pedestal to achieve a given sidelobe level for this distribution. We consider distributions
that allow close control of sidelobes and achieve minimum beamwidths.

The rate of decrease of the far-out sidelobe depends on the functional relation of the
distribution at the edges [1]. If α is the exponent of the distribution approximation xα

e ,
where xe is the distance from the edge, then the sidelobes decay as U−(1+α), where U

TABLE 4-2 Pedestal Level to Achieve a Given
Maximum Sidelobe Level for a Cosine Squared on a
Pedestal Distribution

Sidelobe
(dB)

Pedestal
(dB)

Beamwidth
Factor

ATL
(dB)

30 −12.9 1.295 0.79
32 −14.2 1.325 0.89
34 −15.7 1.357 0.99
36 −17.3 1.390 1.10
38 −18.7 1.416 1.18
40 −20.0 1.439 1.25
42 −21.4 1.463 1.32
42.7a −21.9 1.471 1.34
43.2b −22.3 1.476 1.36

a Hamming distribution.
bMinimum sidelobe level.
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is a linear function of the k-space variable. Both the triangular and cosine distributions
have α = 1, and the far-out sidelobes decay as 1/U 2. The cosine-squared distribution
sidelobes decay as 1/U 3, since α = 2. In the case of a cosine squared on a pedestal, the
edge functional relation is a step (pedestal, α = 0) and the far-out sidelobes decay as
1/U . The sidelobes of the pedestal eventually overtake the cosine-squared distribution
sidelobes, decreasing as 1/U 3. To achieve uniform sidelobes, α must be −1, which
occurs only when the distribution edges are Dirac delta functions, which requires
infinite energy in the aperture or design reduction to discrete sources (an array).

We must accept a trade-off between radiated power in the main beam and in the
sidelobes. When we narrow the main beam in a fixed size aperture, more power radiates
in the sidelobes. We achieve minimum beamwidth in the main beam when all the
sidelobes radiate the same power (maximum radiated power in the sidelobes for a given
level) and all sidelobes are at the same level. This case leads to the Dolph–Chebyshev
array [2], impossible to duplicate in a continuous aperture.

4-3 TAYLOR ONE-PARAMETER LINEAR DISTRIBUTION [3]

The uniform distribution has k-space zeros at (Figure 4-1) ±nπ, n = 1, 2, 3, . . . . Taylor
defines a new variable U to replace k sin θ :

sin πU

πU
(4-14)

where U = (a/λ)(sin θ − sin θ0) and a is the aperture width. The nulls (zeros) are
then located at integer values of U . Taylor adjusted the inner zeros of the uniform
distribution to lower the sidelobes while retaining the outer zeros at their locations
in the uniform distribution. The zeros are modified by a parameter B the boundary
between the two regions in U -space:

Un =
√

n2 + B2 (4-15)

The pattern has different expressions in two regions:

F(U) =




sinh π
√

B2 − U 2

π
√

B2 − U 2
|U | ≤ B (4-16a)

sin π
√

U 2 − B2

π
√

U 2 − B2
|U | ≥ B (4-16b)

The high value of Eq. (4-16a) at the boresight depresses the sidelobes of the uniform
distribution, and the parameter B controls all the parameters of the distribution. We
compute B from the desired sidelobe level (SLR) by an iterative solution of the equation

SLR = 13.26 + 20 log
sinh πB

πB
(4-17)

Scale 4-1 gives the Taylor single-parameter distribution B for a given sidelobe level.
The aperture distribution over the range −0.5 to 0.5 is given by the equation

I0[πB
√

1 − (2x)2]

I0(πB)
(4-18)
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Design Sidelobe Level, dB

Taylor Single Parameter, B

SCALE 4-1 Taylor single-parameter B for a sidelobe level.

Design Sidelobe Level, dB

Taylor Single Parameter Edge Taper, dB

SCALE 4-2 Taylor single-parameter edge taper for a given sidelobe level.

Design Sidelobe Level, dB

Taylor Single Parameter Taper Loss, dB

SCALE 4-3 Taylor single-parameter amplitude taper loss for a given sidelobe level.

Design Sidelobe Level, dB

Taylor Single Parameter HPBW Factor

SCALE 4-4 Taylor single-parameter HPBW factor for a given sidelobe level.

Using Eq. (4-18), we calculate aperture edge taper as a function of sidelobe level, given
by Scale 4-2. By inserting the expression for the aperture distribution [Eq. (4-18)] into
Eq. (4-6), we calculate amplitude taper loss as a function of sidelobe level (Scale 4-3).
The HPBW factor can be found from Eq. (4-16) or read easily from Scale 4-4.

Figure 4-2 compares the U -space patterns of the Taylor one-parameter and uniform
distributions. Synthesizing aperture distributions and arrays concentrates on the place-
ment of pattern nulls. The one-parameter distribution scaled the locations of the nulls
(zeros) by using Eq. (4-15). You should notice that the nulls approach those of the
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30-dB Taylor One-Parameter Line Distribution

Uniform Distribution
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FIGURE 4-2 U -space pattern of 30-dB Taylor one-parameter linear distribution versus uni-
form distribution.

uniform distribution as U increases. Except for a shift near U = 0, the pattern falls off
at a 1/U rate for far-out sidelobes.

You can use the one-parameter Taylor distribution to estimate the characteristics
of a linear distribution for a given sidelobe level. A comparison of this distribution
to the cosine squared on a pedestal (Table 4-3) shows that it is not as efficient for
moderate sidelobe levels. The cosine squared on a pedestal distribution achieves low
sidelobes by canceling sidelobes in two distributions and cannot be extended to any
sidelobe level, whereas the one-parameter distribution can produce designs for any
sidelobe level. More important, it demonstrates the systematic use of U -space pattern
null placement for design. Taylor improved on this distribution by considering the
zeros of the Dolph–Chebyshev array to flatten the first few sidelobes of the pattern
response and achieved a more efficient distribution.

TABLE 4-3 Comparison Between the Taylor
One-Parameter Distribution and Cosine Squared on
Pedestal Linear Distribution for Selected Sidelobe
Levels

Distribution
Pedestal

(dB)
ATR
(dB)

HPBW
Factor

30-dB one-parameter −21.13 0.96 1.355
30-dB cos2 + pedestal −12.9 0.79 1.295
36-dB one-parameter −28.49 1.30 1.460
36-dB cos2 + pedestal −17.3 1.10 1.390
40-dB one-parameter −32.38 1.49 1.524
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4-4 TAYLOR n LINE DISTRIBUTION [1]

The Taylor n line-source distribution modifies the location of the inner pattern zeros
(nulls) of a uniform distribution to approximate the Dolph–Chebyshev array. The dis-
tribution contains a pedestal α = 0 and retains the 1/U fall-off for the far-out sidelobes.
We can modify any number of inner zeros of the pattern to approximate the uniform
sidelobe-level array, but we force the aperture voltage to peak at the ends in approx-
imating the Dirac delta functions. We limit the number of altered zeros to keep the
distribution practical. After a point, shifting more zeros reduces beamwidth negligibly.

We manipulate the location of pattern zeros to obtain desired patterns. Both aperture
and array syntheses depend on zero locations. The number of array elements determines
the number of independent zeros (n − 1), but a continuous aperture has an infinite
number of independent zeros. Practical consideration of the distribution edge shape
limits the number, but we are free to move zeros. For a given aperture size, we can
move zeros out of the invisible region into the visible region and narrow the main beam
as much as we want while maintaining low sidelobes. The invisible region represents
stored energy in the aperture. When a zero moves out of the invisible region, the
amount of stored energy and the Q of the antenna increase. The overall efficiency
of the antenna decreases while the antenna becomes more and more narrowband. We
call these arrays superdirective because their directivity exceeds that of a uniform
distribution. The Taylor line-source distribution retains the zeros in the invisible region
and prevents superdirectivity. There is no limit to the directivity achievable on paper
for a given aperture, but the theoretical distributions are unrealizable except for very
small levels of superdirectivity. The costs of superdirectivity are decreased bandwidth
and efficiency.

We will modify the location of the first n − 1 pairs of inner nulls to lower the
sidelobes. Choosing the zeros symmetrically about the origin of U -space gives us a
constant phase distribution. We remove the inner zeros by dividing them out of the
uniform distribution U -space pattern:

sin πU

πU
∏n−1

N=1

(
1 − U 2/N2

)
We then add new nulls Un without becoming superdirective:

F(U) =
sin πU

∏n−1

N=1

(
1 − U 2

U 2
N

)

πU
∏n−1

N=1

(
1 − U 2

N2

) (4-19)

Because we want to approximate the DoIph–Chebyshev response, we choose the inner
zeros from the array:

UN = n

√
A2 + (N − 1

2 )2√
A2 + (n − 1

2 )2
N = 1, 2, . . . , n − 1 (4-20)
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where A relates to the maximum sidelobe level:

cosh πA = b (4-21)

in which 20 log b = sidelobe level. Equation (4-19) gives us the U -space (k-space)
pattern of the distribution with modified zeros. We determine the aperture distribution
by expanding it in a Fourier cosine series:

E(x) =
∞∑

m=0

Bm cos 2mπx |x| ≤ 0.5 (4-22)

where the aperture size has been normalized. We calculate the pattern of the distribution
from the Fourier transform:

f (kx) =
∫ 1/2

−1/2
E(x)ejkxx dx or f (U) =

∫ 1/2

−1/2
E(x)ej2πUx dx

We substitute Eq. (4-22) for E(x) and reverse the order of summation and integration:

f (U) =
∞∑

m=0

Bm

∫ 1/2

−1/2
cos 2mπx cos 2πUx dx (4-23)

Since the aperture function is an even function, the odd-function part of the integral is
zero, as reflected in Eq. (4-23). We calculate coefficients Bm by matching the patterns
at integer values of U . The integral [Eq. (4-23)] is zero unless U = m:

B0 = f (0)
Bm

2
= f (m) m = 1, 2, . . . , n − 1

Since we have only modified the location of the first n − 1 zeros of the U -space pattern,
f (m) = 0 for m ≥ n and the Fourier cosine series has only n components:

E(x) = f (0) + 2
n−1∑
m=1

f (m) cos 2mπx (4-24)

The coefficients are given by

f (0) = 1

f (m) =
(−1)m

∏n−1

N=1

(
1 − m2/U 2

N

)
−2
∏n−1

N=1,N �=m

(
1 − m2/N2) m = 1, 2, . . . , n − 1 (4-25)

Equation (4-19) computes the U -space pattern of the Taylor distribution but requires
L’Hospital’s rule at integer values of U . The finite number of coefficients Bm makes
Eq. (4-23) more convenient since the integral is easily solved:

f (U) = B0
sin(πU)

πU
+ 1

2

n−1∑
i=1

Bi

[
sin[π(U − i)]

π(U − i)
+ sin[π(U + i)]

π(U + i)

]
(4-26)
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Example Design the Taylor line-source distribution with 30-dB maximum sidelobes
and n = 6.

We use Eq. (4-21) to calculate A:

b = 1030/20 = 31.6228

A = cosh−1 b

π
= 1.3200

We substitute this constant into Eq. (4-20) to compute the five (n − 1) nulls:

No. 1 2 3 4 5

Null UN 1.4973 2.1195 2.9989 3.9680 4.9747

The first null value gives us the BWnull factor (1.4973). The null beamwidth has
been increased almost 50% relative to the uniform distribution. The coefficients of the
Fourier cosine aperture distribution are found from Eqs. (4-24) and (4-25) (Table 4-4).

Coefficients of the series are normalized so that the distribution is 1 at x = 0, and the
amplitude distribution is found by plotting the Fourier cosine series. We calculate the
U -space pattern by using Eq. (4-26). We calculate the half-power point and compare it
to the uniform distribution to determine the HPBW factor, 1.2611. By using Eq. (4-6),
we calculate ATL = 0.66 dB for the distribution.

The U -space plot (Figure 4-3) of the example above shows the 30-dB sidelobe
level. The first sidelobe is at 30 dB, and lobes after that fall away from 30 dB. With
a higher value of n, the first unchanged zero, more sidelobes would be nearer 30 dB.
The dashed curve gives the pattern of a uniform distribution. Notice that the inner
five nulls have been shifted to lower the sidelobes. At the sixth null and higher, the
Taylor distribution has the same nulls as the uniform distribution. The n distribution has
a narrower beamwidth than the one-parameter distribution (Figure 4-2) and a higher
taper efficiency of 0.66 dB versus 0.96 dB. Figure 4-4 shows the normalized aperture
voltage for 30-dB-maximum sidelobe Taylor distributions. The one-parameter design
produces a lower pedestal than the two n designs. The n = 20 design voltage peaks as
it approaches the edge. This peaks because the Taylor n distribution approximates the
Dolph–Chebyshev array that peaks at the edge of the array.

The amplitude taper efficiency was calculated for a number of designs and is given
in Table 4-5. The corresponding beamwidth factors are listed in Table 4-6 together with

TABLE 4-4 Fourier Cosine Series Coefficients for
Taylor Distribution: 30 dB, n = 6

No. Bm Bm Normalized Function

1 1.0000 0.64672 1
2 0.5733 0.37074 cos 2πx

3 −0.0284 −0.01838 cos 4πx

4 −0.000213 −0.000138 cos 6πx

5 0.005561 0.003597 cos 8πx

6 −0.003929 −0.002541 cos 10πx
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FIGURE 4-3 U -space pattern of 30-dB Taylor n = 6 linear distribution versus uniform
distribution.
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FIGURE 4-4 A 30-dB Taylor linear aperture distribution comparison.

the null beamwidth factors (location of first zero in U -space) in Table 4-7. ATL depends
on the sidelobe level (Table 4-5) more than the number of modified zeros. Both the 20-
and 25-dB sidelobe levels show that there is an optimum number of zeros. The edge
of the distribution peaks toward the Dirac delta function and reduces the amplitude
taper efficiency. More than three modified zeros are needed to reduce the sidelobes
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TABLE 4-5 Amplitude Taper Losses of Taylor
Line-Source Distributions

Sidelobe Level (dB)

n 20 25 30 35 40 45 50

4 0.17 0.43 0.69 0.95
5 0.15 0.41 0.68 0.93 1.16
6 0.15 0.39 0.66 0.92 1.15 1.37
7 0.15 0.37 0.65 0.91 1.15 1.36 1.56
8 0.16 0.36 0.63 0.90 1.14 1.36 1.55

10 0.19 0.34 0.61 0.88 1.13 1.35 1.55
12 0.24 0.34 0.59 0.86 1.11 1.34 1.54
16 0.35 0.35 0.57 0.84 1.09 1.32 1.53
20 0.46 0.27 0.56 0.82 1.07 1.30 1.51

TABLE 4-6 Beamwidth Factor of Taylor Line-Source Distribution

Sidelobe Level (dB)

n 20 25 30 35 40 45 50

4 1.1043 1.1925 1.2696 1.3367
5 1.0908 1.1837 1.2665 1.3404 1.4065
6 1.0800 1.1752 1.2611 1.3388 1.4092 1.4733
7 1.0715 1.1679 1.2555 1.3355 1.4086 1.4758 1.5377
8 1.0646 1.1617 1.2504 1.3317 1.4066 1.4758 1.5400

10 1.0545 1.1521 1.2419 1.3247 1.4015 1.4731 1.5401
12 1.0474 1.1452 1.2353 1.3189 1.3967 1.4695 1.5379
16 1.0381 1.1358 1.2262 1.3103 1.3889 1.4628 1.5326
20 1.0324 1.1299 1.2203 1.3044 1.3833 1.4576 1.5280

TABLE 4-7 Null Beamwidth Factor of Taylor Line-Source Distributions

Sidelobe Level (dB)

n 20 25 30 35 40 45 50

4 1.1865 1.3497 1.5094 1.6636
5 1.1696 1.3376 1.5049 1.6696 1.8302
6 1.1566 1.3265 1.4973 1.6671 1.8347 1.9990
7 1.1465 1.3172 1.4897 1.6632 1.8337 2.0031 2.1699
8 1.1386 1.3095 1.4828 1.6569 1.8306 2.0032 2.1739

10 1.1270 1.2978 1.4716 1.6471 1.8231 1.9990 2.1740
12 1.1189 1.2894 1.4632 1.6392 1.8161 1.9934 2.1705
16 1.1086 1.2783 1.4518 1.6277 1.8051 1.9835 2.1623
20 1.1023 1.2714 1.4444 1.6200 1.7975 1.9760 2.1553

below 40 dB; hence, the blanks represent unrealizable designs. The beamwidth factor
(Table 4-6) reduces with increasing n, but it depends mainly on the sidelobe level.

Example Compute beamwidths and ATL of an 8λ-wide aperture with n = 8, 40-dB
sidelobes, and a Taylor line-source distribution design.
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From Table 4-6,

HPBW = 1.4066(50.76◦
)

8
= 8.92◦

From Table 4-7,

BWnull = 1.8306(114.59◦
)

8
= 26.22◦

From Table 4-5, ATL = 1.14 dB. A square aperture with the same distribution in
both directions has

directivity = 10 log
4πA

λ2
− 2ATL = 26.77 dB

4-5 TAYLOR LINE DISTRIBUTION WITH EDGE NULLS

Rhodes [4] has shown that it is impossible to have a step discontinuity of the fields at
the edge of a physical aperture. Given the radius of curvature of the edge, ρ, the field
varies as

Ed ∼ C2

ρ
d polarized perpendicular to the aperture edge

Es ∼ C1

ρ
d2 polarized parallel to the aperture edge

where C1 and C2 are constants and d is the distance from the edge. Without the
possibility of an edge pedestal, a traditional Taylor line source cannot be realized with
a physical aperture. We can sample the distribution with an array or closely approximate
it, but we cannot achieve the exact distribution. A Taylor distribution with a null at
the edge can be realized in an aperture.

Rhodes [5] extended the Taylor line source by modifying the U -space pattern zeros
of the cosine distribution. Since α = 1, the far-out sidelobes drop off as 1/U 2 and the
distribution is zero on the edges. The zeros of the cosine distribution occur at

(N + 1/2)π N = 1, 2, 3, . . . k space

When the Taylor U -space variable is used, the modified U -space pattern becomes

f (U) =
cos πU

∏n−1

N=1

(
1 − U 2/U 2

N

)
[1 − (2U)2]

∏n−1

N=1
(1 − U 2/(N + 1

2 )2)

(4-27)

We remove the inner n − 1 zeros at N + 1
2 and substitute new ones given by

UN = ±(n + 1
2 )

√
A2 + (N − 1

2 )2√
A2 + (n − 1

2 )2
N = 1, 2, . . . , n − 1 (4-28)
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When we compare Eqs. (4-28) and (4-20), we see that the nulls are shifted by (n + 1
2 )/n

between the two Taylor distributions. When n is large, the nulls are close to the same
for the two distributions.

To determine the amplitude distribution in the aperture, we expand the aperture
fields in a Fourier cosine series,

E(x) =
∑

Bm cos(2m + 1)πx |x| ≤ 0.5 (4-29)

Like the Taylor line source, there are only n terms in the series whose coefficients are
found by equating the pattern from the Fourier transform of Eq. (4-29) to Eq. (4-27).
The coefficients are given by

B0 =
2
∏n−1

N=1

(
1 − 1

4/U 2
N

)
∏n−1

N=1

[
1 − 1

4/(N + 1
2 )2]

Bm =
(−1)m(m + 1

2 )
∏n−1

N=1

[
1 − (m + 1

2 )2/U 2
N

]
[1 − (2m + 1)2]

∏n−1

N=1,N �=m

[
1 − (m + 1

2 )2/(N + 1
2 )2] m = 1, 2, . . . , n − 1

(4-30)

The U -space pattern can be found using the coefficients Bm:

f (U) = C0

n−1∑
i=0

Bi

[
sin[π(U − i − 1

2 )]

π(U − i − 1
2 )

+ sin[π(U + i + 1
2 )]

π(U + i + 1
2 )

]

C0 = 2
n−1∑
i=0

Bi

sin[π(i + 1
2 )]

π(i + 1
2 )

(4-31)

Example Design the Taylor line-source distribution with edge nulls for 30-dB max-
imum sidelobes and n = 6.

We use Eq. (4-21) to calculate A:

b = 1030/20 = 31.6228

A = cosh−1 b

π
= 1.32

the same as the pedestal edge Taylor line-source distribution. We substitute this constant
into Eq. (4-28) to compute the five modified nulls:

No. 1 2 3 4 5

Null UN 1.6221 2.2962 3.2488 4.2987 5.3892

The null locations have increased by (n + 1
2 )/n = 6.5/6 = 1.0833 from the pedestal

Taylor line-source design. The null beamwidth factor has also increased by this factor
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as well. The coefficients of the Fourier cosine aperture distribution are found from
Eq. (4-30) Table 4-8.

The normalized coefficients sum to 1 at x = 0. Equation (4-27) determines the U -
space pattern given the nulls. On finding the half-power point and comparing it with
the uniform distribution half-power point, we compute the beamwidth factor: 1.3581.
Tables 4-9 to 4-11 give results for this Taylor line source. As n increases, the results
approach the result of the pedestal Taylor line source. Since the maximum sidelobe
of the cosine distribution is 23 dB, a distribution must have peaking toward the edges
to raise the sidelobes above that level. In all distributions the voltage approaches zero
linearly at the edges.

TABLE 4-8 Fourier Cosine Series Coefficients for
Taylor Distribution with Edge Nulls: 30 dB, n = 6

No. Bm Bm Normalized Function

1 0.50265 0.94725 cos πx

2 0.023087 0.04351 cos 3πx

3 0.017828 0.02220 cos 5πx

4 −0.010101 −0.02075 cos 7πx

5 0.007374 0.01390 cos 9πx

6 −0.003245 −0.006116 cos 11πx

TABLE 4-9 Amplitude Taper Losses of a Taylor
Line Source with Edge Null Distribution

Sidelobe Level (dB)

n 25 30 35 40 45 50

4 0.86 1.13 1.36 1.55 1.71 1.84
6 0.67 0.97 1.24 1.47 1.66 1.84
8 0.56 0.87 1.14 1.39 1.60 1.79

12 0.45 0.74 1.02 1.28 1.51 1.71
16 0.41 0.68 0.96 1.22 1.45 1.66
20 0.39 0.64 0.92 1.17 1.41 1.62

TABLE 4-10 Beamwidth Factor of a Taylor Line
Source with Edge Null Distribution

Sidelobe Level (dB)

n 25 30 35 40 45 50

4 1.3559 1.4092 1.4815 1.5443 1.5991 1.6470
6 1.2666 1.3581 1.4407 1.5153 1.5831 1.6448
8 1.2308 1.3242 1.4097 1.4882 1.5608 1.6280

12 1.1914 1.2850 1.3716 1.4522 1.5276 1.5984
16 1.1705 1.2635 1.3500 1.4308 1.5068 1.5785
20 1.1576 1.2502 1.3363 1.4170 1.4930 1.5649
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TABLE 4-11 Null Beamwidth Factor of a Taylor
Line Source with Edge Null Distribution

Sidelobe Level (dB)

n 25 30 35 40 45 50

4 1.5184 1.6980 1.8715 2.0374 2.1949 2.3433
6 1.4371 1.6221 1.8060 1.9875 2.1656 2.3395
8 1.3913 1.5755 1.7604 1.9450 2.1284 2.3097
12 1.3431 1.5242 1.7075 1.8918 2.0765 2.2610
16 1.3182 1.4971 1.6786 1.8616 2.0455 2.2298
20 1.3031 1.4805 1.6605 1.8424 2.0254 2.2091

4-6 ELLIOTT’S METHOD FOR MODIFIED TAYLOR DISTRIBUTION
AND ARBITRARY SIDELOBES [6, pp. 162–165]

Elliott’s method separates the distribution nulls into right- and left-hand values in U -
space that allows different sidelobe levels in the two regions. By applying a differential
expression, the null positions in U -space can be found from the solution of a set of
linear equations to produce designs with arbitrary sidelobes. Consider Eq. (4-19) and
factor the null location term:

1 − U 2

U 2
N

=
(

1 + U

UN

)(
1 − U

UN

)
=
(

1 + U

UNL

)(
1 − U

UNR

)

We associate UNL with a nulls on the left side of the origin and UNR with the right
side or a positive pattern angle. If we also separate the term in the denominator of
Eq. (4-19), we can independently pick the number of nulls to be moved on either side
of the pattern:

F(U) = C0

sin πU
∏nL−1

N=1
(1 + U/UN)

∏nR−1

N=1
(1 − U/UN)

πU
∏nL−1

N=1
(1 + U/N)

∏nR−1

N=1
(1 − U/N)

(4-32)

Equation (4-32) allows different Taylor distributions on the two sides. We add a nor-
malization factor C0 when we use different distributions. The pattern peak will shift
off zero for unbalanced distributions. Since the two sides are not independent, a simple
selection of the two levels will not produce the desired sidelobes. Table 4-12 lists the
U -space locations of the pattern peaks and sidelobe level for a design with 35- and
30-dB sidelobes. The left distribution lowered the sidelobes on the right and the right
one raised the left sidelobes. A few manual iterations produced suitable left and right
distributions to give the desired sidelobes. The main beam shifts a little bit. A linear
progressive phase shift across the aperture can shift the pattern to broadside.

We expand the aperture distribution in a complex exponential series similar to
Eq. (4-22):

E(x) =
nR−1∑

i=−nL+1

Bie
−j2πix |x| ≤ 0.5 (4-33)
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TABLE 4-12 Modified Taylor Distribution Sidelobes for Independent Left and Right
Sidelobe Design Using n = 6 for Both Sides

Left-Side−35-dB
U -Space

Right Side−30-dB
Sidelobe (dB)

Left-Side−36-dB
U -Space

Right-Side−28.6-dB
Sidelobe (dB)

−5.4849 −35.70 −5.4874 −36.00
−4.4905 −35.06 −4.4976 −35.44
−3.5275 −34.66 −3.5399 −35.11
−2.6313 −34.44 −2.6510 −34.97
−1.8997 −34.39 −1.9293 −34.99
−0.0511 0 −0.0758 0

1.7546 −31.05 1.7141 −30.05
2.5372 −31.45 2.5119 −30.55
3.4697 −32.00 3.4544 −31.19
4.4584 −32.74 4.4498 −32.02
5.4711 −33.75 5.4676 −33.13

We calculate the coefficients by the same method used for Eq. (4-25):

B(0) = 1

B(m) =
(−1)|m|∏nL−1

N=1 (1 + m/UN)
∏nR−1

N=1
(1 − m/UN)

−
∏nL−1

N=1,N �=m
(1 + m/N)

∏nR−1

N=1,N �=m
(1 − m/N)

m = −nL + 1, . . . , −1, 1, 2, . . . , nR − 1 (4-34)

We derive the pattern from the integral of the finite complex exponential:

f (U) = C0

nR−1∑
i=−nL+1

Bi

sin[π(U − i)]

π(U − i)
(4-35)

We include the normalization factor C0 for unequal left and right sidelobes.
We control the sidelobes by adjusting the location of the nulls in the U -space pattern.

We can iterate the null positions to produce individually selected sidelobes. The peak
of each sidelobe given in Table 4-12 was found through a one-dimensional search
between pairs of nulls. A search based on the Fibonacci numbers [7, p. 280] computes
the peak with the minimum number of evaluations of the pattern using Eq. (4-35).
We denote the pattern peaks by U

p
m starting with the peak between −nL and U−nL+1,

those between nulls, the peak near 0, and the last peak between UnR−1 and nR for
nL + nR − 1.

We adjust the U -space nulls by the differentials δUN found from the solution of a
matrix equation. The terms of the matrix are the differential term of a Taylor series
expansion of the numerator of Eq. (4-32) evaluated at the pattern peaks:

am,n = U
p
m/U 2

N

1 − U
p
m/UN

N = −nL + 1, . . . ,−1, 1, . . . , nR − 1

am,0 = 1 (4-36)
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The vector of differential nulls is

δU = [δU−nL+1, . . . , δU−1, δC/C0, δU1 . . . , δUnR−1]T

where δC/C0 is the change in the pattern normalization. We form a vector using
the ratio of the desired pattern peak fd(U) to the actual pattern fa(U) with terms
[fd(U

p
m)/fa(U

p
m)] − 1. We solve the matrix equation for the null shifts:

[am,n]−1

[
fd(U

p
m)

fa(U
p
m)

− 1

]T

= [δUN ] (4-37)

We calculate new distribution nulls UN + δUN , substitute the new nulls into Eq. (4-34) to
determine the new expansion coefficients Bm, and evaluate the pattern using Eq. (4-35)
between the new nulls to compute new pattern peaks. We iterate the process until the
sidelobe levels are satisfactory. Notice that f (U ) is a voltage.

The Taylor linear distribution produces a pattern with only approximately equal
sidelobes. Table 4-13 lists the iteration to produce a distribution with a pattern that
has five 30-dB sidelobes. The solution starts with a 30-dB, n = 6 Taylor distribution.
In two iterations the method found a distribution with exactly the desired sidelobes.
Table 4-14 gives the results of repeating the example of Table 4-12 of the design for 35-
and 30-dB sidelobes. This method can produce a linear distribution with individually

TABLE 4-13 Iteration of Distribution Nulls for a Pattern with 30-dB Sidelobes

Taylor Distribution First Iteration Second Iteration

Null U -Space Sidelobe Null U -Space Sidelobe Null U -Space Sidelobe

1.4973 1.7557 −30.22 1.4708 1.7258 −30.00 1.4729 1.7284 −30.00
2.1195 2.5387 −30.46 2.0827 2.4987 −29.99 2.0859 2.5027 −30.00
2.9989 3.4709 −30.89 2.9490 3.4215 −29.96 2.9541 3.4274 −30.00
3.9680 4.4591 −31.53 3.9075 4.4072 −29.86 3.9152 4.4147 −30.00
4.9747 5.4718 −32.48 4.9145 5.4424 −29.63 4.9242 5.4471 −29.99

TABLE 4-14 Iteration for 35- and 30-dB Sidelobes in Linear Distribution

Left-Side−36-dB Right-Side−28.6-dB Second Iteration

U -Space Sidelobe (dB) Null U -Space Sidelobe (dB) Null

−5.4874 −36.00 −4.9964 −5.4798 −35.00 −4.9778
−4.4976 −35.44 −4.0169 −4.4859 −35.00 −4.0043
−3.5399 −35.11 −3.0845 −3.5348 −35.00 −3.0829
−2.6510 −34.97 −2.2583 −2.6555 −35.00 −2.2670
−1.9293 −34.99 −1.7008 −1.9410 −35.00 −1.7143
−0.0758 0 −0.1037 0

1.7141 −30.05 1.4495 1.6615 −30.00 1.4023
2.5119 −30.55 2.0883 2.4475 −30.00 2.0249
3.4544 −31.19 2.9801 3.3839 −30.00 2.9049
4.4498 −32.02 3.9574 4.3839 −30.00 3.8780
5.4676 −33.13 4.9699 5.4313 −29.98 4.9001
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selected sidelobes. It may be necessary to design an intermediate distribution if the
change in sidelobes is too great for the simple iteration scheme to converge. We will
design linear arrays by a similar technique of manipulating pattern nulls to produce
arbitrary sidelobes.

4-7 BAYLISS LINE-SOURCE DISTRIBUTION [8]

The Bayliss distribution produces a pattern null on a boresight while controlling the
height of the sidelobes. The second dashed curve in Figure 4-5 below is a Bayliss
difference pattern also designed to give 30-dB sidelobes when combined with the
Taylor distribution. As in the Taylor distribution, the first few sidelobes are nearly the
same height, to minimize the beamwidth of the two beams split about the boresight.

A monopulse tracking system uses an auxiliary pattern with a boresight null coin-
cident with the beam peak of the main pattern. The tracking system drives the antenna
positioner until the signal in this difference channel nulls so that the main channel (sum)
points at the emitter or radar target. The accuracy of the pointing angle is improved,
since a null is a more exact direction than the broad sum pattern peak. Noise and
receiver sensitivity, along with the slope of the difference pattern, limit the tracking
accuracy. Stronger signals can be tracked farther into the null. Because the phase of a
pattern shifts by 180◦ when passing through a null, phase relative to the sum pattern
(a reference signal) can be used to give direction. Without monopulse or some other
sequential lobing technique, such as conical scan, radar cannot track effectively.
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FIGURE 4-5 Taylor and Bayliss line distributions to give 30-dB sidelobes (n = 6).
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Any odd-function distribution produces a null on a boresight. A uniform distribution
that switches phase by 180◦ in the center has the best amplitude taper efficiency but
high sidelobes (10 dB). These high sidelobes allow interfering or noise signals to enter
the receiver. The Bayliss distribution adjusts the inner nulls of the U -space pattern to
lower the sidelobes. Adjusting the zeros to correspond to the Dolph–Chebyshev array
does not lower the sidelobes to the same level as it did in the Taylor distribution.
Further adjustments of the four inner zeros are required. Bayliss found the proper
location through a computer search. We locate the zeros by

UN =




(n + 1
2 )

√
ξ 2
N

A2 + n2 N = 1, 2, 3, 4

(n + 1
2 )

√
A2 + N2

A2 + n2 N = 5, 6, . . . , n − 1

(4-38)

By using the U -space pattern, we have

f (U) = U cos πU

∏n−1

N=1

(
1 − U 2/U 2

N

)
∏n−1

N=0

[
1 − U 2/(N + 1

2 )2
] (4-39)

The coefficients were fitted to polynomials depending on the sidelobe level. Given
S = |sidelobe level(dB)|:

A = 0.3038753 + S(0.05042922 + S(−0.00027989

+ S(0.343 × 10−5 − S(0.2 × 10−7)))) (4-40a)

ξ1 = 0.9858302 + S(0.0333885 + S(0.00014064

+ S(−0.19 × 10−5 + S(0.1 × 10−7)))) (4-40b)

ξ2 = 2.00337487 + S(0.01141548 + S(0.0004159

+ S(−0.373 × 10−5 + S(0.1 × 10−7)))) (4-40c)

ξ3 = 3.00636321 + S(0.00683394 + S(0.00029281

+ S(−0.161 × 10−5))) (4-40d)

ξ4 = 4.00518423 + S(0.00501795 + S(0.00021735

+ S(−0.88 × 10−6))) (4-40e)

The location of the pattern peak was also fitted to a polynomial:

Umax = 0.4797212 + S(0.01456692 + S(−0.00018739

+ S(0.218 × 10−5 + S(−0.1 × 10−7)))) (4-41)

We obtain the aperture distribution by a Fourier sine series having only n terms:

E(x) =
∑

Bm sin(m + 1
2 )2πx |x| ≤ 0.5 (4-42)
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where

Bm = (−1)m(m + 1
2 )2

2j

∏n−1

N=1

[
1 − (m + 1

2 )2/U 2
N

]
n−1∏

N=0,N �=m

[
1 − (m + 1

2 )2/(N + 1
2 )2] (4-43)

The phase constant (−j ) has little effect on the coefficient Bm except to balance the
phase ±90◦ about the null.

Example Design a Bayliss distribution with 30-dB sidelobes and n = 6.
Use Eq. (4-40) to compute the coefficients.

A = 1.64126 ξ1 = 2.07086 ξ2 = 2.62754 ξ3 = 3.43144 ξ4 = 4.32758

We substitute these constants into Eq. (4-38) to calculate the five (n − 1) nulls:

No. 1 2 3 4 5

Null UN 2.1639 2.7456 3.5857 4.5221 5.4990

Equation (4-41) computes the beam peak of the split-beam pattern in U space:

Umax = 0.7988
ka

2
sin θmax = πUmax = 2.5096

where a is the aperture width. We substitute these zeros into Eq. (4-43) to determine
the coefficients of the Fourier sine series of the aperture distribution (Table 4-15). By
evaluating the series across the aperture, the coefficients can be normalized to give a
maximum aperture voltage of 1.
We use Eq. (4-39), after substituting the zeros, to evaluate the pattern. The 3-dB pattern
points can be found by searching the pattern:

ka

2
sin θ1 = 1.27232

ka

2
sin θ2 = 4.10145

Figure 4-5 contains the plot of a Bayliss distribution (n = 6) designed to have
sidelobes 30 dB below the Taylor distribution with 30-dB sidelobes. The losses to the
difference pattern are about 2 dB higher than the sum pattern. We design the Bayliss

TABLE 4-15 Fourier Cosine Series Coefficients for
Bayliss Distribution: 30 dB, n = 6

No. Bm Bm Normalized Function

0 0.13421 0.85753 sin πx

1 0.081025 0.51769 sin 3πx

2 −0.0044151 −0.028209 sin 5πx

3 0.001447 0.0092453 sin 7πx

4 −0.0003393 −0.0021679 sin 9πx

5 −0.000014077 −0.00008994 sin 11πx
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distribution to have 28-dB sidelobes. If designed for 30-dB sidelobes as in the example
above, then, relative to the sum Taylor distribution, the sidelobes would be 32 dB down
from the sum pattern peak. The last nulls show that the unmodified zeros of the Taylor
distribution occur at ±nπ, whereas the unmodified zeros of the Bayliss distribution
occur at ±(n + 1

2 )π.
By using Eq. (4-6), we calculate amplitude taper efficiency of the pattern at the

beam peak. When we evaluate the phase error efficiency by using Eq. (4-7), the result
is zero because of the boresight null. We use Eq. (4-3) to evaluate the phase error
efficiency at the beam peak:

PEL =

∣∣∣∣
∫ a/2

−a/2
E(x)ejk sin θmaxx dx

∣∣∣∣
2

[∫ a/2

−a/2
|E(x)| dx

]2 (4-44)

Table 4-16 lists results of calculations on Bayliss distributions with n = 10 for various
sidelobe levels. Lower sidelobe levels produce higher distribution losses and push the
beam peak out. The position of the beam peak is independent of n, since the first four
zeros are fixed by Eq. (4-40). Like the Taylor distribution, the sidelobe level determines
most of the parameters of the Bayliss distribution. Changing n has less effect than it
has for the Taylor distribution. The values of parameters for distribution with n �= 10
will differ little from those in Table 4-16.

Example Compute the beam peak and beam edges for an 8λ-wide aperture excited
in a Bayliss distribution with n = 10 and 30-dB sidelobes.

2π

λ
sin θmax

8λ

2
= 2.5096

sin θmax = 2.5096

8π

sin θ1 = 1.263

8π
sin θ2 = 4.071

8π

θmax = 5.73◦
θ1 = 2.88◦

θ2 = 9.32◦

TABLE 4-16 Characteristics of a Bayliss Line-Source Distribution with n = 10
Parameters

3-dB Edge
Sidelobe Beam Peak,

Level (dB) ka/2 sin θmax ka/2 sin θ1 ka/2 sin θ2 ATL (dB) PEL (dB)

20 2.2366 1.140 3.620 0.50 1.81
25 2.3780 1.204 3.855 0.54 1.90
30 2.5096 1.263 4.071 0.69 1.96
35 2.6341 1.318 4.270 0.85 2.01
40 2.7536 1.369 4.455 1.00 2.04
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4-8 WOODWARD LINE-SOURCE SYNTHESIS [9]

In the preceding sections, methods to determine distributions that give the minimum
beamwidth for specified sidelobe levels were discussed. Some applications require
shaped beams extending over a range of angles. The Woodward synthesis samples
the desired k-space pattern at even intervals to determine the aperture distribution. No
integrals are required to compute coefficients.

The technique is based on the scanned pattern of a uniform amplitude distribution.
Express the pattern in terms of U -space so that when scanned to U0, it becomes

sin π(U − U0)

π(U − U0)

with the nulls of the pattern occurring at integer values of U − U0.

U = a

λ
sin θ U0 = a

λ
sin θ0

The visible region extends between +a and −a, centered about U0.
Figure 4-6 shows two patterns, scanned to U0 = 1 and U0 = 2. The peak of the

curve scanned at U0 = 2 occurs at one of the nulls of the pattern scanned to U0 = 1.
If we allow only integer values of U0, the pattern scanned to U0 solely determines the
pattern at the point U0 in U -space. The two curves (Figure 4-6) in the regions below
U = 0 and above U = 3 cancel each other to some extent when the distributions are
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added. We form the aperture distribution from a sum of 2a/λ + 1 independent sample
points of scanned apertures:

E(x) =
N∑

i=−N

Eie
−j (i/a)x (4-45)

where N = integer part (a/λ). Each term is a uniform amplitude distribution scanned
to an integer value of U . The amplitudes Ei are determined by the sample values of
the U -space pattern at those points.

Example Design a 10λ aperture with a constant beam between θ = 0◦ and θ = 30◦.
The nonzero portion of the U -space pattern extends from U1 = 10 sin 0◦ = 0 to U2 =
10 sin 30◦ = 5.

When we sample the U -space pattern, we discover six nonzero terms:

i 0 1 2 3 4 5

Ei 0.5 1.0 1.0 1.0 1.0 0.5

At U1 = 0 and U2 = 5, we use the average value. The aperture distribution is

0.5 + e−jx/a + e−j2x/a + e−j3x/a + e−j4x/a + 0.5e−j5x/a

The U -space pattern of this distribution (Figure 4-7) shows some ripple in the beam
and the reduction to 6 dB at the beam edges. If we increased the sample level at the
edges, U = 0 and U = 5, the pattern would increase to that level.
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FIGURE 4-7 U -space pattern of Woodward–Lawson sampling for constant beam from 0 to
30◦ (10λ aperture).
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A cosecant-squared power pattern can be designed by the same method as in the
preceding example. When an antenna with this pattern on the ground points its max-
imum toward the horizon, it delivers a constant signal to an aircraft that maintains a
constant altitude. The pattern falloff matches the range decrease as the aircraft flies
toward the antenna. The voltage pattern is given by

E = E0
sin θmax

sin θ

where θmax is the angle of the pattern maximum. In U -space this becomes

E(U) = E0
Um

U

The amplitudes of the scanned apertures decrease as 1/U .

Example Design a 10λ aperture with a cosecant-squared pattern from θ = 5◦ to
θ = 70◦ with the maximum at 5◦.

There are 2a/λ + 1 possible sample points (21). The nonzero portion of the U -space
pattern extends from Umin = 10 sin 5◦ = 0.87 to Umax = 10 sin 70◦ = 9.4. We sample
only at integer values of U , which gives us nine nonzero terms: Um = 0.8716. The
coefficients are given in Table 4-17.

The sum [Eq. (4-45)] for this distribution contains nine terms.

E(x) =
9∑

i=1

Eie
−j (i/a)x

Figure 4-8 shows the amplitude and phase of this aperture distribution. The pattern
obtained by summing the scanned aperture distributions (Figure 4-9) shows ripple
about the desired pattern. Increasing the aperture size increases the number but does
not change the level of ripples. The aperture distribution (Figure 4-8) has a negative
phase slope to scan the beam off broadside.

4-9 SCHELKUNOFF’S UNIT-CIRCLE METHOD [10]

Schelkunoff’s unit-circle method consists of the manipulation of the zeros (nulls) of
the array pattern to achieve a desired pattern for a line array. The method is similar
to designing networks by specifying the placement of poles and zeros in the complex
plane, but the array has only zeros to manipulate. We can use the representation to
describe any uniformly spaced array.

TABLE 4-17 Woodward Synthesis Coefficients of
10λ Cosecant-Squared Pattern

i Ei i Ei i Ei

1 0.8716 4 0.2179 7 0.1245
2 0.4358 5 0.1743 8 0.1089
3 0.2905 6 0.1453 9 0.0968
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FIGURE 4-8 Aperture distribution of Woodward–Lawson sampling for cosecant-squared pat-
tern (10λ aperture): (a) aperture amplitude distribution; (b) aperture phase distribution.

Consider a uniformly spaced array along the z-axis with the pattern angle θ measured
from the axis. The array response will be symmetrical about the z-axis. If we define
the variable ψ = kd cos θ + δ, where δ is a fixed progressive phase shift between
elements, d the element spacing, and k the wave number (2π/λ), the pattern of the
array is given by

E = I0 + I1e
jψ + I2e

j2ψ + I3e
j3ψ · · · (4-46)
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FIGURE 4-9 U -space pattern of 10λ aperture Woodward–Lawson sampling for a
cosecant-squared pattern.

where Ii , a phasor, is the excitation of the ith element in the array. We simplify the
notation further by defining

W = ejψ (4-47)

We then write Eq. (4-46) as

E = I0 + I1W + I2W
2 + I3W

3 + · · · + IN−1W
N−1 (4-48)

where N is the number of elements in the array. We use the first element as our phase
reference point. This array factor (isotropic elements) is a polynomial with N − 1 roots
(zeros) for N elements.

We denote the roots as Wi and rewrite Eq. (4-48) as

E = E0(W − W1)(W − W2) · · · (W − WN−1)

We can ignore the normalization E0 and compute array pattern magnitude as

|E(W)| = |W − W1||W − W2| · · · |W − WN−1|
where |W − Wi| is the distance from the root Wi to W in the complex plane. W

is limited to the unit circle [Eq. (4-47)] because it always has unit value. Both the
spacing of the elements and the progressive phase shift δ determine the limits of the
phase of W :

θ = 0◦
ψs = kd + δ start

θ = 180◦
ψf = −kd + δ finish (4-49)
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FIGURE 4-10 Unit circle in the W -plane.

As θ increases, ψ decreases and W progresses in a clockwise rotation along the unit
circle (Figure 4-10). We have no 2π limitation on either ψs or ψf . The element spacing
determines the number of times W cycles the unit circle as θ varies from 0 to 180◦.
If ψs − ψf , 2kd, exceeds 2π, there is a possibility of more than one main beam
(grating lobes).

The zeros Wi , suppress the pattern when W moves close to one or more of them. The
pattern rises to form a lobe when W is far from the zeros. The main-beam peak occurs
at the point with the maximum product of the distances from the zeros. Whenever W

passes through that point, another main beam forms. A uniformly fed array has the
W -space polynomial

f (W) = 1 − WN

1 − W
for N elements

The zeros of f (W) are the N zeros of WN = 1 with the zero at W = 1 removed:
Wi = ej2πi/N . These are spaced uniformly on the unit circle.

Figure 4-11 shows the unit circle diagram of a 10-element array fed with uniform
phase and amplitude. W starts at −1 since d = λ/2, and it progresses clockwise around
the unit circle one revolution to the same point as θ varies from 0 to 180◦. At θ = 90◦,
the product of the distances from the zeros is a maximum. A lobe forms within the
space between each pair of zeros. As W moves from the start to the main beam at
W = 1, it starts at a zero and passes through four additional zeros. These zeros Wi

correspond to the nulls in the pattern from θ = 0◦ to θ = 90◦. An equal number of
nulls occur as W moves through the range θ = 90 to 180◦.

A uniform-amplitude end-fire array can be represented on the same unit-circle dia-
gram. With antenna elements spaced λ/4, the excursion from start ψs to finish ψf is
only π(2kd). A progressive phase shift δ of −kd through the array forms an end-fire
pattern. From Eq. (4-49), ψs = 0◦ and ψf = 180◦. The end-fire array pattern has only
five nulls, including the null at θ = 180◦ as θ ranges from 0 to 180◦, since only five
zeros occur in the visible region.
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FIGURE 4-11 Unit-circle representation of a 10-element array with λ/2 spacings.

The Hansen and Woodyard increased-directivity end-fire array corresponds to a
shift in the start and stop locations on the unit circle. The excursion from start to
finish remains π determined by element spacing. Equation (4-49) calculates the start:
ψs = 90◦ − 108◦ = −18◦. The pattern has five nulls from θ = 0 to 180◦.

A binomial array has all its zeros at W = −1 and its pattern has no sidelobes,
since they occur for points on the unit circle between zeros. Only one beam forms
as W traverses the unit circle. The W -space polynomial is f (W) = (W + 1)N−1. For
an array of given size we can manipulate the location of the nulls either to reduce
sidelobes or to place pattern nulls. We reduce a sidelobe by moving the zeros on both
sides of it closer together, but either the main-lobe beamwidth increases or the other
sidelobes rise. We form a null in the array pattern by moving one of the zeros to that
point on the unit circle corresponding to W at the null angle. Given a desired null θn,

Wi = ej(kd cos θn+δ) (4-50)

Equation (4-50) gives the phase angle kd cos θn + δ of the zero required on the unit
circle in W -space.

In the case of an end-fire array in which the spacing between elements is less than
λ/2, we can shift zeros from invisible space into visible space to narrow the beam and
reduce sidelobes. We thereby form large lobes in invisible space that represent energy
storage in the array. The large energy storage reduces the bandwidth and efficiency of
the array. This super-directivity method has limited success, although we can produce
beautiful patterns on paper.

Example Design a four-element array of broadcast towers to give nearly uniform
coverage for θ = ±45◦ with nulls at θ = 270◦ and 135◦ [11, p. 69].

We will align the array with θ = 0◦ to obtain symmetry for the ±45◦ requirement.
We actually need only three elements, since only two nulls are specified. Using λ/4
spacings, we set δ = −90◦ to get an end-fire array. Equation (4-50) gives the zeros of
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the polynomial required for the pattern nulls.

W1 : ψ = 360◦

λ

λ

4
cos(270◦

) − 90◦ = −90◦

W2 : ψ = 360◦

λ

λ

4
cos(135◦

) − 90◦ = −153.64◦

We determine the polynomial from the roots:

f (W) = (W − e−j90◦
)(W − e−j153.64◦

)

= W 2 + 1.6994Wej53.18◦ + ej116.36◦

We normalize the phase to the first element of the array [constant term of f (W)]:

f (W) = W 2e−j116.36◦ + 1.6994We−j148.18◦ + 1

At this point the polynomial representation of the array f (W) does not include the
progressive phase factor δ = −90◦. We add the factor to the polynomial by adding
−90◦ to the phase of the second element (W term) and −180◦ to the third element
(W 2 term):

f (W) = W 2e−296.36◦ + 1.6994We−j148.18◦ + 1

The coefficients of the polynomial are the voltage (or current) components of the
array. No null develops at θ = 180◦ because the two available nulls (N − 1) were
used. Adding the fourth element gives us the freedom to improve the response flatness
in the ±45◦ region of θ . Figure 4-12 shows a unit-circle representation and pattern to
give a nearly equal ripple response between ±45◦ and the required nulls. We increase

FIGURE 4-12 Four-element linear array with pattern nulls at θ = 90, 135, and 180◦. The
elements are spaced at 0.35λ to give a flat response ±45◦.
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TABLE 4-18 Four-Element 0.35λ Spaced-Array
Coefficients for Uniform Beam ±45◦

No.
Amplitude

(dB)
Phase
(deg)

1 −9.50 0.0
2 −4.11 −103.3
3 −4.11 138.4
4 −9.11 35.1

the spacing to 0.35λ and place the pattern nulls at 90◦, 135◦, and 180◦. W starts at +1
on the unit circle or ψs = 0◦ and determines δ:

ψs = 0 = kd + δ or δ = −kd = −360◦

λ
0.35λ = −126◦

We compute the phase of the zeros from Eq. (4-50):

ψ1 = 360◦
(0.35) cos(90◦

) − 126◦ = −126◦

ψ2 = 360◦
(0.35) cos(135◦

) − 126◦ = −215.1◦
(144.9◦

)

ψ3 = 360◦
(0.35) cos(180◦

) − 126◦ = −252◦
(108◦

)

By following the same steps as above, we compute the phase and amplitude of the
array elements (Table 4-18).

4-10 DOLPH–CHEBYSHEV LINEAR ARRAY [2]

The Chebyshev polynomials have equal ripples in the region x = ±1, and the amplitude
varies between +1 and −1. Outside that region the polynomial value rises exponen-
tially:

Tm(x) =



(−1)m cosh(m cosh−1 |x|) x < −1
cos(m cos−1 x) −1 ≤ x ≤ 1
cosh(m cosh−1 x) x > 1

The order of the polynomial m equals the number of roots. Dolph devised a method
of relating the Chebyshev polynomials to the array factor polynomial for a broadside
array. We scale the polynomial to make the equal-ripple portion the sidelobes and
the exponential increase beyond x = 1 becomes the main beam. Take an array fed
symmetrically about the centerline that has either 2N + 1 or 2N elements. We expand
the array factor in a polynomial with factors cos(ψ /2), where ψ = kd cos θ + δ. The
beam peak occurs when ψ = 0. If we make this correspond to a value x0, where the
Chebyshev polynomial has a value R, the sidelobes will be equal to the ripple at the
level 1/R. By substituting x = x0 cos(ψ/2), we use the Chebyshev polynomial for the
array polynomial with

Tm(x0) = R or x0 = cosh
cosh−1R

m
(4-51)
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where 20 log R is the desired sidelobe level in decibels. The zeros of Tm(x) are given
by

xp = ± cos
(2p − 1)π

2m
(4-52)

By using the equation xp = x0 cos(ψ/2) = x0(e
jψ/2 + e−jψ/2), we calculate the angles

of the symmetrical zeros in the W -plane:

ψp = ±2 cos−1 xp

x0
(4-53)

Both values of xp [Eq. (4-52)] give the same ψp pair. Given the zeros in the W -plane,
we multiply out the root form of the polynomial to calculate feeding coefficients of
the array.

Example Design a 10-element array with 25-dB sidelobes.
The array has nine nulls, so we pick m = 9 for the Chebyshev polynomial.

[Eq. (4-51)] R = 1025/20 = 17.7828 x0 = 1.0797

We need only the first five zeros, since they are symmetrical about zero. We calculate
them from Eq. (4-52), divide them by x0, and use Eq. (4-53) for their angles on the unit
circle of the W -plane (Table 4-19). We multiply out the root form of the polynomial for
the voltage (current) feeding coefficients of the array. Because the roots are symmetrical
about the real axis, all phase angles are zero. We obtain the following coefficients:

Nos. 1, 10 2, 9 3, 8 4, 7 5, 6

Coefficient (dB) −8.07 −5.92 −2.84 −0.92 0.0

Figure 4-13 shows the unit-circle representation and pattern of the array with λ/2
spacing.

We can estimate the beamwidth of a Chebyshev array by using a beamwidth
broadening factor and the beamwidth of a same-length uniformly fed array [12]. The
beamwidth broadening factor is given by

f = 1 + 0.632

[
2

R
cosh

√
(cosh−1 R)2 − π2

]2

(4-54)

TABLE 4-19 Chebyshev Polynomial Roots and
W -Plane Roots for 10-Element 25-dB Sidelobe Array

p Xp

ψp

(deg)

1 0.9848 ±48.41
2 0.6428 ±106.93
3 0.3420 ±143.06
4 0.0 180.00
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FIGURE 4-13 Ten-element Chebyshev array designed for 25-dB sidelobes.

Equation (4-54) is valid in the range of sidelobe levels from 20 to 60 dB and for
scanning near broadside.

Example Compute the broadside beamwidth of a Dolph–Chebyshev array with 61
elements, a 30-dB sidelobe level, and λ/2 spacings.

Equation (4-54) gives the value 1.144 for f using R = 1030/20.
We estimate the beamwidth of the uniform array from HPBW = 50.76◦

λ/Nd =
1.66◦, where d is the element spacing:

HPBWarray = (f )HPBWuniform = 1.144(1.66◦
) = 1.90◦

We use the beam-broadening factor to estimate the array directivity:

D = 2R2

1 + (R2 − 1)f λ/Nd
(4-55)

Example We calculate the directivity of the 61-element array above from Eq. (4-55).
D = 52.0 (17.2 dB).

If we take its limit as Nd → ∞, Eq. (4-55) becomes 2R2. An infinite Dolph–
Chebyshev array has a gain 3 dB more than the sidelobe level.

4-11 VILLENEUVE ARRAY SYNTHESIS [13]

Villeneuve devised a method similar to the Taylor distribution that modifies the n − 1
inner zeros of a uniform amplitude array to lower sidelobes. Since the positions of
the outer zeros remain fixed, the outer pattern sidelobes decrease as 1/U . The uniform
distribution W -plane zeros are located uniformly around the unit circle except for
W = 1:

ψp = 2πp

Ne

(4-56)
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The inner zeros correspond to the Chebyshev zeros [Eq. (4-53)] except that we multiply
them by a constant factor α dependent on the number of elements, the sidelobe level,
and n:

α = nπ

Ne cos−1
{
(1/x0) cos

[
(2n − 1)π/2m

]} (4-57)

The order of the Chebyshev polynomial m = Ne/2. We use Eq. (4-51) to compute x0.

Example Design a 10-element Villeneuve array containing 10 elements for 25-dB
sidelobes and n = 4.

We determine α = 1.00653 using Eq. (4-57). The inner three W -plane zeros are
found by multiplying the Chebyshev zeros by α, which occur in pairs, and the next
three zeros are found from the uniform amplitude array using Eq. (4-56):

ψp : ±48.73 ± 73.82 ± 107.63 ± 144 180

Figure 4-14 illustrates the W -plane and pattern of the 10-element Villeneuve array:

Nos. 1, 10 2, 9 3, 8 4, 7 5, 6

Coefficient (dB) −8.44 −5.85 −2.91 −0.91 0.0

The sidelobes drop off instead of staying constant: −25.08, −25.19, −25.43, −26.14.

4-12 ZERO SAMPLING OF CONTINUOUS DISTRIBUTIONS [14]

We sample continuous distributions, such as the Taylor line source, for large arrays.
By using that method, we avoid the numerical difficulties of multiplying out long
polynomials. When a small array samples an aperture distribution, its pattern fails to
follow the pattern of the distribution. We improve the pattern by matching the zeros of
the array to the distribution nulls. The array ψ-space pattern repeats at 2π intervals,
but the k-space pattern of the aperture has no repeat. We space elements by λ/2 to

FIGURE 4-14 Ten-element Villeneuve array designed for 25-dB sidelobes, n = 4.



174 APERTURE DISTRIBUTIONS AND ARRAY SYNTHESIS

span the total ψ-space nonrepeating region. We then equate an array with λ/2 spacings
to an aperture of the same length regardless of the actual spacings between elements.
Since the array samples a continuous distribution, the aperture is Nd long, where d is
the distance between array elements and we consider the array element to be sampling
d/2 on both sides of its location.

Consider the U -space pattern of a uniform aperture distribution: sin πU/πU . The
aperture zeros occur at integer values of U . The corresponding zeros of the uniformly
fed array are Wi = ej2πi/N , where i = 1, 2, . . . , N − 1. The Taylor distribution modi-
fies the location of the zeros of the uniform distribution to Ui , and the sampled zeros
of the array must move to follow this pattern:

Wi = ej2πUi/N (4-58)

Example Given a Taylor line source with 30-dB sidelobes and n = 6, compute the
zeros of an array with 12 elements to sample the distribution.

The array spans 12/2 in U -space. We calculate zeros of the distribution from
Section 4-4 and the angles of the array zeros from Eq. (4-58):

Ui ±1.473 ±2.1195 ±2.9989 ±3.9680 ±4.9747 6

ψi ±44.19 ±63.58 ±89.97 ±119.04 ±149.24 180

We multiply out the root form of the polynomial to compute the array feeding coef-
ficients. The array has 30-dB first sidelobes. A straight sampling of the distribution
gives an array whose sidelobes exceed 30 dB.

Figure 4-15 shows the unit-circle diagram of a zero-sampled Taylor line source with
25-dB sidelobes and n = 5. The method places the zeros on the unit circle close enough
together to limit the sidelobe peaks to less than 25 dB when W for a given pattern
direction lies between the zeros. The array has higher sidelobes than the equivalent

FIGURE 4-15 Twelve-element array designed by zero-sampling 25-dB Taylor distribution:
pattern of normal array (solid curve); pattern with null filling by moving three zeros off unit
circle (dashed curve and triangles).
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aperture, but closer to the specified 25 dB, because the finite array cannot control
sidelobes as well as the continuous aperture.

Aperture 25.29 25.68 26.39 27.51 29.63

12-Element Array 25.03 25.07 25.18 25.44 26.41

The dashed plot of Figure 4-15 illustrates pattern behavior when W -space zeros are
moved off the unit circle. We can fill pattern nulls and generally shape the pattern.
When we place all zeros on the unit circle in the complex plane, it can be proved that
the array excitations will have amplitude symmetry about the centerline. Moving the
zeros off the unit circle disturbs this symmetry. We can eliminate all pattern nulls by
moving all the W -plane zeros off the unit circle. If we start with a uniformly fed array
and move all the zeros to the same radius, the distribution taper across the array will
be linear in decibels. In the next two sections we explore techniques for moving the
zeros systematically to produce shaped patterns from an array.

4-13 FOURIER SERIES SHAPED-BEAM ARRAY SYNTHESIS

The preceding methods seek the narrowest beamwidths for a given sidelobe level.
Arrays can also produce shaped beams. We discussed the Woodward line-source
method for shaped beams in Section 4-8. We obtain good approximations by sam-
pling the line-source distribution with an array. Beyond sampling a line source, we can
apply Fourier series to design an array directly. An array for a shaped beam must be
much larger than is required for the beamwidth. The extra size of the array gives us
the degrees of freedom necessary for beam shaping. Increasing the array size increases
the match between the specified and the actual beam shape.

Because the array pattern is periodic in k-space, we can expand the pattern in a
Fourier series. The array pattern for a symmetrically fed array is given by either

f (ψ) = 1 + 2
m∑

n=1

In

I0
cos

2nψ

2
N odd (4-59)

or

f (ψ) = 2
m∑

n=1

In

I0
cos

(2n − 1)ψ

2
N even (4-60)

where m = (N − 1)/2 (odd) or m = N/2 (even) with ψ = kd cos θ + δ. Equations (4-
59) and (4-60) are Fourier series expansions of the pattern in ψ-space. The elements
farthest from the centerline produce the highest harmonics in the series.

In an asymmetrically fed array, we express Eqs. (4-59) and (4-60) as a sum of
exponential terms:

f (ψ) =




m∑
n=−m

ane
jnψ N odd

m∑
n=1

ane
j(2n−1)ψ/2 + a−ne

−j (2n−1)ψ/2 N even

(4-61)
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Suppose that we have a desired pattern in k-space given by fd(ψ). We expand it in
an infinite Fourier series of the same form as Eq. (4-61) with m = ∞. We equate the
first m coefficients of the two Fourier series to approximate the desired pattern. As in
any Fourier series method, we solve for the coefficients by using the orthogonality of
the expansion functions when integrated over a period:

an =




1

2π

∫ π

−π

fd(ψ)e−jnψ dψ N odd

1

2π

∫ π

−π

fd(ψ)e−j (2n−1)ψ/2 dψ N even

(4-62)

a−n = 1

2π

∫ π

−π

fd(ψ)ej(2n−1)ψ/2 dψ N even (4-63)

We determine the array coefficients directly from the Fourier series coefficients.

Example Design a 21-element array with λ/2 element spacing with a constant beam
2b wide centered in ψ-space.

We use Eq. (4-62) to compute coefficients an:

an = 1

2π

∫ b

−b

e−jnψ dψ = sin nb

πn

Suppose that the constant beam is 45◦ at broadside: 67.5◦ ≤ θ ≤ 112.5◦. Then

b = 360◦

λ

λ

2
cos 67.5◦ = 68.88◦

We can ignore the constant factor i/π and expand to compute the array coefficients
(Table 4-20).

The method fails to some extent when we try it on arrays with spacings greater than
λ/2. The integral does not cover the total visible region. We can, however, use it with

TABLE 4-20 Fourier Series Synthesis Coefficients
of 21-Element Array for Pattern of Figure 4-16

n an

Amplitude
(dB)

Phase
(deg)

0 1.0000 0.00 0
±1 0.9328 −0.60 0
±2 0.3361 −9.47 0
±3 −0.1495 −16.50 180
±4 −0.2488 −12.08 180
±5 −0.0537 −25.40 180
±6 0.1336 −17.48 0
±7 0.1209 −18.35 0
±8 −0.0240 −32.40 180
±9 −0.1094 −19.22 180
±10 −0.0518 −25.72 180
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spacings less than λ/2 with good results. As we increase the number of elements in
the array, the match to the desired pattern improves. Of course, tapering the desired
pattern reduces the higher harmonics and the subsequent need for more elements.

Example Suppose that we want to scan the beam of the 21-element array with λ/2
element spacing to 60◦ with a 45◦ beamwidth. The beam edges are 37.5◦ and 82.5◦.

We could calculate coefficients by integrating Eq. (4-62) directly with this require-
ment, but we can use δ, the progressive phase shift between elements, to simplify the
problem. The beam edges in ψ-space are

180◦ cos(37.5◦
) + δ and 180◦ cos(82.5◦

) + δ

142.8◦ + δ 23.49◦ + δ

We pick δ to center the beam in ψ-space: b = 142.8◦ + δ, −b = 23.49◦ + δ. On solv-
ing, we have δ = −83.15◦ and b = 59.65◦. We use the formula sin(nb)/πn to compute
coefficients of the array and then add the progressive phase shift through the array.
Figure 4-16 shows the array pattern.

When we scan the beam to end fire, we must account for the symmetry about
θ = 0◦. Because we limit the spacings to less than λ/2 to prevent grating lobes, we
have an unspecified region of ψ-space that we can choose in any convenient manner.

Example Design a 21-element end-fire array with a 90◦ beamwidth and 0.30λ spacings.

FIGURE 4-16 Twenty-one-element array designed by the Fourier series method to scan to
60◦ with a 45◦ beamwidth.
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For an end-fire array we pick δ = −kd = −108◦. This places the edge of the visible
region on the ψ-space origin. We are free to specify the invisible region that will be
included in the integral [Eq. (4-62)]. We specify the invisible region as the mirror
image of the portion in the visible region and solve for b:

−b = 360◦
(0.3) cos(45◦

) − 108◦ = −31.63◦

We use the sin(nb)/πn formula to calculate array coefficients and then apply the
progressive phase shift δ to the coefficients obtained to get the proper phase to scan
to end fire.

We cannot control the sidelobes of an array designed using Fourier series expansion.
The initial specification calls for no sidelobes. Sampling a Woodward linear aperture
with an array also fails to give control of the sidelobes. The Woodward linear distri-
bution cannot control sidelobes; it provides only ease of design. In the next section we
explore a method with direct control of sidelobes of an array.

4-14 ORCHARD METHOD OF ARRAY SYNTHESIS [15]

In Section 4-6 we manipulate the nulls of a continuous linear distribution to control the
sidelobes of the radiated pattern individually. In Section 4-9 we show that the nulls of
the linear aperture pattern can be related directly to the roots of Schelkunoff polynomial
representation of the linear array pattern in W -space. The unit circle method gives us a
tool for array synthesis expanded in the Orchard method for the design of arrays with
arbitrary patterns. We apply an iterative technique on the W -space zeros to produce the
pattern desired. We control all the sidelobes individually and produce shaped patterns
for the main beam. The finite size of the array limits the control of the main beam shape
as we saw in the Fourier series expansion method. Each array element corresponds to
a term in the Fourier series expansion.

We start with the Schelkunoff transformation of the array pattern:

f (W) = C0

N∏
n=1

(W − Wn) (4-64)

A normalization constant C0 has been added. We write Wn = exp(an + jbn). Expansion
of Eq. (4-64) produces the feeding coefficients of an array with N + 1 elements:

W = ejψ with ψ = kd cos θ + δ

θ is measured from the array axis. The effect of δ on the unit circle method is to
rotate the starting and finishing points when varying W to calculate the pattern using
Eq. (4-64). An equally valid method is to rotate the zeros about the origin of the
complex plane, which leaves the ψ-space pattern shape unchanged. When designing a
shaped beam, we need to rotate the main beam peak to the proper location to calculate
the amplitudes because our specification will be in terms of the pattern angle θ relative
to the peak.
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Figure 4-11 illustrates that the pattern amplitude is the product of distances from
each zero to the pattern W point. Expansion of Eq. (4-64) in terms of the product of
distances to W gives

|f (W)|2 = C2
0

N∏
n=1

[1 − 2ean cos(ψ − bn) + e2an] (4-65)

The Orchard method requires the specification of each sidelobe and additional values
located at the minimum ripple points in the shaped region. For a single-beam unshaped
pattern, we only specify sidelobes, and all an will be zero since all zeros Wn will be on
the unit circle. We restrict the array to λ/2 spaced elements when applying the method
so that the entire unit circle is used in the pattern. An array with N zeros has N pattern
peaks which lie between the zeros in the W -plane. When we include the normalization
constant C0 to specify the main beam peak and all the zeros, we have N + 1 unknowns
to find. Without loss of generality we specify the last zero as WN = −1 or ψ = π to
reduce the number of unknowns to N . Since we rotate the zeros after we determine the
proper zero spacing for specified sidelobes, we place the main beam between WN−1

and WN = −1. Before starting the iteration technique, we generate a list of sidelobe
levels with the main beam as the last one.

The method expands the pattern in a multiple-variable Taylor series using bn, an, and
the normalization constant as variables. To facilitate calculating the partial derivatives,
we express Eq. (4-65) in decibels:

G =
N−1∑
n=1

10

ln(10)
ln[1 − 2ean cos(ψ − bn) + e2an] + 10 log10[2(1 + cos ψ)] + C

(4-66)

The second term of Eq. (4-66) is due to the zero WN = −1 and C is the normalization
constant of the main beam. The logarithm to the base 10 has been expressed as a
natural logarithm for the calculation of derivatives:

∂G

∂an

= Mean[ean − cos(ψ − bn)]

1 − 2ean cos(ψ − bn) + e2an
(4-67)

∂G

∂bn

= − Mean sin(ψ − bn)

1 − 2ean cos(ψ − bn) + e2an
(4-68)

∂G

∂C
= 1 (4-69)

The variable M = 20/ln(10). The multiple-variable Taylor series involves three types
of terms:

G(bn, an, C) = G0(bn0, an0, C0) +
N−1∑
n=1

∂G

∂bn

(bn − bn0)

+
N−1∑
n=1

∂G

∂an

(an − an0) + (C − C0) (4-70)
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Every nonzero value of an fills in the pattern null at ψ = bn. If we specify the desired
pattern amplitude at every sidelobe peak, the main beam, and at points between the
sidelobe peaks equal to the number of nonzero an, we form a square matrix equation.
The solution gives the changes in bn, an, and C. Since we expanded Eq. (4-66) as a
linear approximation, the solution of Eq. (4-70) gives only an approximate solution.
In a few iterations the method converges and we obtain an acceptable pattern.

Suppose that the shaped pattern is limited to a range in W -space so that there are
only L nonzero an. Given the desired pattern Sm(ψm) at ψm and the current pattern
G0(ψm), one row of the matrix is

[
∂G(ψm)

∂b1
, . . . ,

∂G(ψm)

∂bN−1
,
∂G(ψm)

∂a1
, . . . ,

∂G(ψm)

∂aL

, 1

]

We need N + L rows or pattern points to solve Eq. (4-70) for changes in bn, an, and
C:

[δb1, . . . , δbN, δa1, . . . , δaL, δC]T

We require a search routine to locate the pattern peaks between the pattern nulls or
minima between peaks in the shaped region for given values of bn and an after we
normalize to the current pattern peak. We subtract these from the levels desired:

[S(ψ1) − G0(ψ1), . . . , S(ψN+L) − G0(ψN+L)]T

After solving the square matrix equation, we update the W -plane zeros:

b1 = b1 + δb1

...

bN−1 = bN−1 + δbN−1

...

a1 = a1 + δa1

...

aL = aL + δaL

C = C0 + δC

The iteration alters the beam peak and its location. The pattern peak is normalized
after iteration, and for a shaped pattern a new zero rotation is found to line up the
beam peak for the pattern-shaping function.

Example Design an eight-element array with its beam peak at 90◦ and specified
sidelobes before the peak of 25, 30, and 25 dB and 20, 25, and 30 dB after the peak.

The sidelobes values begin with the first sidelobe after the peak and rotate to the
peak:

−20 − 25 − 30 − 25 − 30 − 25 0
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FIGURE 4-17 Eight-element array designed using Orchard synthesis for individually specified
sidelobes, λ/2 spacings.

The solution converges in four iterations after starting with uniformly spaced zeros on
the unit circle. Figure 4-17 shows the unit-circle zeros on the left and the corresponding
pattern on the right with λ/2 element spacing:

W -Space
Zero (deg) 178.14 142.72 99.26 58.01 −62.18 −96.89 −130.37

Pattern
Null (deg) 8.25 37.54 56.53 71.20 110.21 122.57 136.41

The feeding coefficients for the final design are given in Table 4-21.

Although the Orchard method requires the elements to be spaced λ/2 during syn-
thesis, the completed design can be used at another element spacing. Figure 4-18 gives
the unit-circle diagram of the same array with a 0.7λ element spacing. The range of
W now exceeds 2π and the sidelobe regions of the unit circle have been used more
than once. Sidelobes 3 and 4 occur twice in the pattern. Of course, if we scan the
array too far, the pattern would have grating lobes. Figure 4-19 plots the pattern of
an end-fire array with λ/4-element spacing using the same zeros. Only a portion of
the unit circle is used, and not all sidelobes are realized. Figure 4-20 illustrates the
end-fire case with the elements spaced so that the final position of W occurs at a
null. The pattern contains all six sidelobes. The unit-circle analysis mirrors that of

TABLE 4-21 Coefficients of Eight-Element Array of Figure 4-17 Designed by Orchard
Synthesis

Magnitude Phase Element Magnitude Phase
Element (dB) (deg) (dB) (deg)

1 −8.69 8.70 5 0 3.79
2 −3.90 3.22 6 −1.06 7.41
3 −1.06 1.29 7 −3.90 5.48
4 0 4.91 8 −8.69 0
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FIGURE 4-18 Eight-element array designed using Orchard synthesis for individually specified
sidelobes, 0.7λ spacings.

FIGURE 4-19 Eight-element array designed using Orchard synthesis for individually specified
sidelobes, λ/4 spacings scanned to end fire.

FIGURE 4-20 Eight-element array designed using Orchard synthesis for individually specified
sidelobes, 0.42λ spacings scanned to end fire.
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the circle diagram in Chapter 3, where increasing the element spacing increases the
visible region. In this case the visible region corresponds to rotation about the unit
circle. Expansion of Eq. (4-64) produces the array feeding coefficients independent
of element spacing, and the progressive phase shift between elements δ affects phase
but not amplitude. The four examples given in Figures 4-17 to 4-20 have the same
sequence of feed magnitudes.

We can use Orchard synthesis to generate a difference pattern similar to the Bayliss
line distribution and control all the sidelobes. A difference pattern has two main beams.
Using the same example of an eight-element array, we modify the sidelobe list to
include side-by-side main beams. We eliminate the −25-dB lobe next to the original
main beam from the values above:

−20 − 25 − 30 − 25 − 30 0 0

When we apply the synthesis by placing the last main beam at 90◦, we obtain a pattern
with two main beams with the null between them at 101.6◦, corresponding to a W -
plane null at −36.3◦. We rotate all W -plane zeros by 36.3◦ to place the null between
the two main beams at 90◦. Figure 4-21 shows the W -plane and polar pattern for the
final design. Note the placement of the W -plane zero at W = +1. Table 4-22 lists the
feeding coefficients.

FIGURE 4-21 Difference pattern array using eight-elements designed by Orchard synthesis.

TABLE 4-22 Coefficients of Eight-Element Difference Pattern Array of Figure 4-21
Designed by Orchard Synthesis

Magnitude Phase Magnitude Phase
Element (dB) (deg) Element (dB) (deg)

1 −6.32 5.39 5 −6.91 178.35
2 −0.35 1.28 6 0.0 184.6
3 0.0 0.8 7 −0.35 184.12
4 −6.91 7.05 8 −6.32 180
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We fill in the null between the different lobes to form a flat-topped beam for
the eight-element array and use a constant-amplitude shaping function for the pat-
tern desired. The beamwidth of the flat lobe is determined by the lobe spacing, and
only certain sizes are possible. Remember that an array is a Fourier series approx-
imation to the pattern desired. With only eight elements the match is poor between
the pattern desired and the approximate pattern. We use one nonzero an to move the
W -plane zero off the unit circle that forms the pattern null between the two beams and
add another pattern specification:

−20 − 25 − 30 − 25 − 30 0 0 − 1

The last number gives the pattern level at the null relative to the shaped pattern level.
This last term uses Eq. (4-67) for its columns. The constant beam design uses a 22◦-
wide beam centered at 90◦ for the pattern shape function. We start with an = 0.01
before iterating. The iteration using the matrix equation computes a1 = 0.4435, which
can be either positive or negative without changing the pattern. Rotation of the W -plane
zeros placed the zero for minimum ripple along the positive real axis and produced a
symmetrical pattern about θ = 90◦. Figure 4-22 contains the final design W -space zeros
and polar pattern. The iterations produced the sidelobe levels specified (Table 4-23).

FIGURE 4-22 Flat-topped beam eight-element array designed by Orchard synthesis.

TABLE 4-23 W -Plane Zeros of Eight-Element
Flat-Topped Beam of Figure 4-22 Designed by
Orchard Synthesis

W -Space
Zero (deg)

W -Space
Radius

Pattern
Null (deg)

165.51 1.0 23.15
123.99 1.0 46.46

84.33 1.0 62.06
0 0.6418 90

−91.65 1.0 120.61
−115.39 1.0 129.87
−161.18 1.0 153.57
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TABLE 4-24 Coefficients of Eight-Element Array for Flat-Topped Beam of Figure 4-22
Designed by Orchard Synthesis

Magnitude Phase Magnitude Phase
Element (dB) (deg) Element (dB) (deg)

1 −12.95 −174.39 5 −1.15 1.54
2 −10.78 178.85 6 0.0 4.37
3 −24.69 167.92 7 −2.26 3.95
4 −7.90 −1.47 8 −9.10 0.0

The radius of the fourth term could be 1/0.6418 = 1.5581 without affecting the pattern
result. Inserting the zeros into Eq. (4-64) and expanding the polynomial produces the
feeding coefficients (Table 4-24).

The Fourier series example for a constant beam centered at 60◦ with a 45◦ beamwidth
using 21 elements spaced λ/2 (Figure 4-16) was repeated using Orchard synthesis.
Fourier series synthesis could not control the sidelobes. First, we need to figure out
how many array lobes cover the shaped pattern region. Place the zeros uniformly
around the unit circle in the W -plane and determine how many of the roots are within
the beam. For a 21-element array six beams and five zeros lie in the ψ = π cos θ

angular region of the constant beam found using Eq. (4-71):

beams = N(cos θmin − cos θmax)

2
(4-71)

The solution to Eq. (4-71) is an integer given N as the number of W -plane zeros. All
sidelobes were set at −30 dB and the ripple at −0.9 dB below the constant beam:

Lobes 1–14 15–20 21–25

Sidelobe (dB) −30 0.0 −0.9

Figure 4-23 gives the final result of the synthesis, an improvement over Figure 4-16,
with its uncontrolled sidelobes.

FIGURE 4-23 Twenty-one-element array designed by Orchard synthesis to scan to 60◦ with
a 45◦ beamwidth.
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We must consider the element excitations. The zeros not lying on the unit circle
can be either inside or outside the circle and produce the same pattern. Different
combinations of zero locations lead to different element amplitudes. The last example
has five zeros displaced from the unit circle, which produces 25 = 32 combinations. We
need to check the amplitude distribution that results from each case (Table 4-25). Arrays
with a large range of amplitudes are difficult to produce. In some cases the range of
amplitude available is limited, such as waveguide slot arrays. Mutual coupling between
elements also makes it difficult to achieve the desired low amplitudes on some elements
because nearby elements will excite them, and compensation for mutual coupling may
prove difficult. Figure 4-23 shows one of the combinations of root placements that
produced the minimum amplitude variation in the array.

The Fourier series synthesis gave an amplitude variation of 32.4 dB, whereas the
Orchard synthesis variation is 13.29 dB. This synthesis produced better patterns with
less amplitude variation. Decreasing the ripple depth increases the amplitude variation
of the array.

Csc2θ cos θ Pattern This pattern produces constant round-trip signals versus the ele-
vation angle for radar. The pattern from the array axis is given by csc2(θ − 90◦

) cos(θ −
90◦

). The peak occurs beyond 90◦ and decreases for greater angles. The shaped pattern
function requires the rotation of the W -plane zeros at each step so that the pattern peak
calculated from the zeros occurs at the proper angle. The changing zero locations move
the beam peak location at each iteration.

Example Design a 16-element csc2(θ − 90◦
) cos(θ − 90◦

) beam array to operate from
100 to 140◦ and have 30-dB sidelobes.

Equation (4-71) determines that five beams cover the pattern region and sets the
number of nonzero an as 4. The 16-element array has 15 zeros, with the first 10
specified as −30 dB, five for the shaped-beam region, and four for the minima between
the shaped-beam peaks. We specify the shaped-beam lobes relative to the shape levels.
The last lobe is the beam peak.

TABLE 4-25 Coefficients of 21-Element Array for Flat-Topped Beam of Figure 4-23
Designed by Orchard Synthesis

Amplitude Phase Amplitude Phase
Element (dB) (deg) Element (dB) (deg)

1 −11.85 −65.47 12 −3.48 −115.31
2 −6.89 −146.85 13 −3.01 −158.73
3 −6.23 126.55 14 −2.97 134.01
4 −11.34 4.64 15 −4.93 49.59
5 −5.12 −158.19 16 −7.51 −40.53
6 0.0 108.08 17 −9.64 −111.80
7 −0.01 23.97 18 −9.44 −159.41
8 −6.33 −65.70 19 −8.06 142.99
9 −9.73 86.93 20 −9.26 73.66

10 −2.09 −4.11 21 −13.29 0.0
11 −1.75 −70.12
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Lobe 11 12 13 14 15 16 17 18 19

Amplitude (dB) 1.0 0.8 0.6 0.4 0.2 −0.9 −0.7 −0.5 −0.2

Allowing the ripple to increase in the lower levels of the shaped pattern region
decreases the range of element amplitudes. The method converged in 11 iterations to
the design given in Figure 4-24. All 24 = 16 combinations of an placements inside
and outside the unit circle were checked (Table 4-26). The amplitude variation ranged
from 11.47 to 25.47 dB.

Figure 4-25 illustrates the design repeated with eight elements (Table 4-27). Although
the sidelobes could be controlled at −30 dB, the shaped pattern region shows less pattern
control than with 16 elements.

Extensions to the Orchard method make various improvements. By adding balancing
zeros inside and outside the unit circle in the W -plane, the feeding coefficients of the
array can be made real with only 0 or 180◦ phases [16]. This adds elements to the
array and changes the shape of the beam somewhat. The coefficients are real only if
the pattern is symmetrical about θ = 90◦. To implement the method you add a term

FIGURE 4-24 Sixteen-element array with csc 2θ cos θ pattern designed by Orchard synthesis.

TABLE 4-26 Coefficients of 16-Element Array for csc2θ cos θ Beam of Figure 4-24
Designed by Orchard Synthesis

Magnitude Phase Magnitude Phase
Element (dB) (deg) Element (dB) (deg)

1 −11.47 −149.27 9 −1.19 149.09
2 −9.84 −100.16 10 −2.71 −177.54
3 −8.07 −69.72 11 −3.53 −131.64
4 −4.79 −40.25 12 −7.82 −52.50
5 −2.65 −0.56 13 −9.46 100.34
6 −2.04 34.20 14 −4.30 −157.29
7 −0.82 65.82 15 −4.55 −76.99
8 0.0 107.07 16 −8.72 0.0
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FIGURE 4-25 Eight-element array with csc 2θ cos θ pattern designed by Orchard synthesis.

TABLE 4-27 Coefficients of Eight-Element Array for csc2θ cos θ Beam of Figure 4-24
Designed by Orchard Synthesis

Magnitude Phase Magnitude Phase
Element (dB) (deg) Element (dB) (deg)

1 −11.62 130.02 5 0.0 −122.98
2 −8.61 −170.78 6 −2.05 −79.05
3 −12.62 179.21 7 −5.73 −44.44
4 −2.61 −173.92 8 −11.54 0.00

to Eqs. (4-67) and (4-68) for the extra elements located off the unit circle. A design
of a flat-topped beam centered at 90◦ using the balanced zeros produced a design
with more than 30 dB of variation between the elements similar to a Fourier series
expansion that had about the same range of amplitudes. The range of amplitudes in the
array can be reduced by placing all the zeros off the unit circle [17, p. 124]. We give
up the nulls between the lobes and must now search a large set of possible solutions to
select a design with the least amplitude variation. A genetic algorithm sorts through the
large set of zero combinations inside/outside all that satisfy the pattern requirements
to discover the best design.

4-15 SERIES-FED ARRAY AND TRAVELING-WAVE FEED SYNTHESIS

A series-fed array uses couplers along a line that distribute power to the elements
from a single transmission line. A single wave travels along the line with each element
removing a portion of the power. A matched load absorbs the remaining power at
the end to prevent the reflection of a wave traveling toward the source end. A second
backward traveling wave would produce another beam with reduced amplitude indistin-
guishable from a sidelobe. The coupling could be a physical coupler or it could be just
a series or shunt load across the transmission line. Waveguide slots are an example of
loads on a transmission line. An array using couplers can have phase shifters between
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the couplers and the elements to form a phased array. A second configuration for a
phased array places phase shifters in the transmission line between the couplers. This
case uses the simple control of identical phase shifters set to the same value to scan the
beam. The phase shifters are the progressive phase δ along the array used for scanning.

The array distribution is given by the sequence of radiated powers, Pi . The traveling
wave or nonresonant array dissipates a ratio of the input power R in the load:

N∑
i=1

Pi = Pin(1 − R)

We normalize the distribution to the sum of radiated power: P0 =
∑N

i=1
Pi . The ele-

ment power becomes Pi(1 − R)/P0 and we use the normalized power distribution to
calculate coupling values:

C1 = P1 remaining power = 1 − P1

The coupling to the second element removes power from the remaining power:

C2 = P2

1 − P1
remaining power = 1 − P1 − P2

The general expression is

Ci = Pi

1 −
∑i−1

j=1
Pj

(4-72)

If the element electrical model consists of a shunt conductance on a transmission
line, such as waveguide slots, the power radiated by each slot = |Vinc|2gi and the
normalized gi = Ci . Similarly, an electrical model of an element as a series resistance
on a transmission line can be solved in a similar manner. Power radiated = |Iinc|2ri

and the normalized ri = Ci .
Some array feeders have significant losses between the elements and we must

account for these losses when designing the couplers. Suppose that the feeder has iden-
tical losses Lf = 1 − 10−attenuation/10 between couplers. The power balance equation
becomes

Pin

total
= RPin

load
+ (N − 1)Lf RPin

losses to load
+
∑N

i=1
Pi

antennas
+ Lf

∑N

j=2
(j − 1)Pj

losses to antennas

Pin =
Lf

∑N

j=2
(j − 1)Pj +

∑N

i=1
Pi

1 − R − (N − 1)Lf R

As before, we must normalize the power at each element to the input power Pi/Pin. The
coupling to the first element is C1 = P1 and the power left is 1 − P1. The transmission
medium attenuates the signal between the first and second elements and we compute
the power at the second element = (1 − P1)(1 − Lf ). We determine the coupling value
from the ratio

C2 = P2

(1 − P1)(1 − Lf )
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and the element removes P2 power. The remaining power travels to the next element
but is attenuated by (1 − Lf ). The power removed, P2, is subtracted from the power at
that point and the remaining power is attenuated before reaching the next extraction:

C3 = P3

[(1 − P1)(1 − Lf ) − P2](1 − Lf )

C4 = P4

{[(1 − P1)(1 − Lf ) − P2](1 − Lf ) − P3}(1 − Lf )
etc.

The total loss due to attenuation is found from the sum of the normalized powers:

loss(dB) = 10 log

(
N∑

i=1

Pi

)

Continuous Traveling Wave As the wave propagates along the antenna, it loses power
continuously. The slots or holes must radiate more and more of the remaining power if
the distribution is to be uniform. In general, the holes or slots must load the waveguide
increasingly as the wave travels to the termination. The power at any point in the guide
is

P(z) = P0 exp

[
−2
∫ z

0
α(z) dz

]
(4-73)

where P0 is the power at z = 0 and α(z) is the attenuation distribution (nepers/length).
Suppose that we have a desired amplitude distribution, A(z) (voltage):

Pin =
∫ L

0
|A(z)|2 dz +

∫ L

0
ρL(z) dz + Pload (4-74)

where Pload is the power lost in the termination, |A(z)|2 the radiated power distribution,
and ρL(z) the ohmic loss in the walls. Let the power into the termination be a ratio of
the input power Pload = RPin; then

Pin = 1

1 − R

∫ L

0

[|A(z)|2 + ρL(z)
]
dz (4-75)

The power anywhere along the leaky wave antenna is

P(z) = Pin −
∫ L

0
|A(z)|2 + ρL(z) dz (4-76)

We differentiate this to get

dP (z)

dz
= −[|A(z)|2 + ρL(z)] (4-77)

We differentiate Eq. (4-73) to relate α(z) to P(z):

1

P(z)

dP (z)

dz
= −2α(z) (4-78)
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We substitute Eq. (4-75) into Eq. (4-76) for Pin. By combining Eqs. (4-76) and
(4-77) into Eq. (4-78), we derive the required attenuation distribution [18, p. 153]:

α(z) =
1
2 |A(z)|2

[1/(1 − R)]
∫ L

0
|A(z)|2 + ρL(z)dz −

∫ z

0
|A(z)|2 + ρL(z)dz

(4-79)

If we assume a lossless transmission line, ρL(z) = 0 and Eq. (4-79) simplifies.

Example Design the attenuation distribution for a uniform distribution along a loss-
less transmission-line leaky wave antenna.

Substitute A(z) = 1 and ρL(z) = 0 into Eq. (4-79) and perform the integrations:

α(z) =
1
2

[L/(1 − R)] − z
=

1
2 (1 − R)

L[1 − z(1 − R)/L]

Given R = 0.05 (5% of the power into the load) for a structure with length 10λ. The
initial and final attenuation constants are

αi(0) = 0.95

20
= 0.0475 Np/λ or 0.413 dB/λ

αf (L) = 0.95

2LR
= 0.95 Np/λ or 8.25 dB/λ

We reduce the variation between the initial and final values by dissipating more power
in the termination. Given R = 0.1,

αi(0) = 0.045 Np/λ or 0.39 dB/λ

αf (L) = 0.45 Np/λ or 3.9 dB/λ

If we take the ratio of the attenuations at the ends, we have α(L)/α(0) = 1/R.

We can normalize Eq. (4-79) to the interval ±2 and use the linear distributions
given above where x = z/L and ρL(z) = 0. Figure 4-26 shows the attenuation distri-
bution for a Taylor distribution with 30-dB sidelobes and n = 8 for various levels of
power dissipation in the load. Table 4-28 lists the bounds on α(x)L for various Taylor
distributions. Changing the number of modified zeros has only a minor effect on the
bounds. A cos2 on a pedestal distribution with a 30-dB sidelobe level has very similar
bounds on the attenuation. The 40-dB sidelobe level design requires a greater variation
of attenuation than the 30-dB cases. Long structures may not be able to provide the
low levels of radiation above the ohmic losses for an effective design. In all cases
we decrease the attenuation range on an antenna by decreasing the antenna efficiency
though absorbing more power in the termination.

4-16 CIRCULAR APERTURES

Many common apertures conform to circles. The two-dimensional Fourier transform
relation for the pattern holds for any aperture rim shape and becomes for the circle

f (θ, φ) =
∫ 2π

0

∫ a

0
E(r ′, φ′)ejkr ′ sin θ cos(φ−φ′)r ′ dr ′ dφ′ (4-80)
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FIGURE 4-26 Leaky wave attenuation distribution for Taylor distribution with 30-dB side-
lobes, n = 8.

TABLE 4-28 Maximum and Minimum Normalized Attenuation α(z )L of a Leaky Wave
Taylor Distribution

30 dB

Termination
n = 6 n = 12 40 dB, n = 8

Power (%) Maximum Minimum Maximum Minimum Maximum Minimum

5 27.08 0.59 26.04 0.63 31.61 0.12
6 25.38 0.58 24.54 0.63 29.63 0.12
8 22.70 0.57 22.06 0.61 26.52 0.12

10 20.66 0.56 20.08 0.60 24.12 0.11
12 19.00 0.55 18.46 0.59 22.18 0.11
15 17.00 0.53 16.52 0.57 19.81 0.11
20 14.42 0.50 14.04 0.53 16.78 0.10
25 12.42 0.46 12.09 0.50 14.44 0.10
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where a is the radius, r ′ the radial coordinate, and φ′ the angle coordinate of the
aperture point. The integral leads to a kr -space.

When the distribution has circular symmetry, the φ′ integral can be evaluated easily,
which reduces Eq. (4-80) to

f (kr) = 2π

∫ a

0
E(r ′)J0(kr ′ sin θ)r ′ dr ′ (4-81)

where J0(x) is the zeroth-order Bessel function of the first kind. All great-circle patterns
(constant φ) are identical. For a uniform distribution,

f (kr) = 2J1(ka sin θ)

ka sin θ

plotted in Figure 4-27. The zeros occur at the zeros of J1(x). The 3-dB pattern point
of the uniform distribution is

ka sin θ1 = 1.6162 sin θ1 = 0.5145
λ

D

HPBW = 2 sin−1 0.5145λ

D

(4-82)
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FIGURE 4-27 kr -space pattern of uniform circular aperture distribution.
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where D is the diameter. For large apertures we can approximate sin θ by θ (rad).
Converted to degrees, the half-power beamwidth becomes

HPBW = 58.95◦ λ

D
(4-83)

Example Compute the beamwidth of a uniform distribution circular aperture with
10.5λ diameter.

The beamwidths are found from Eqs. (4-82) and (4-83):

HPBW = 2 sin−1 0.5145

10.5
= 5.62◦

HPBW = 58.95◦

10.5
= 5.61◦

The first zero of J1(x) gives the k-space pattern null point.

ka sin θnull = 3.8317

BWnull = 2 sin−1 1.2197λ

D
� 139.76◦ λ

D

(4-84)

We can also define a null beamwidth factor and relate the beams of other distri-
butions to the uniform circular distribution beamwidth [Eq. (4-84)]. All other circular
distributions relate to Eq. (4-82) or (4-83) through a beamwidth factor. The uniform
distribution has a unity beamwidth factor.

4-17 CIRCULAR GAUSSIAN DISTRIBUTION [19]

A truncated Gaussian distribution has a simple functional relation:

E(r) = e−ρr2 |r| ≤ 1 (4-85)

We can easily calculate the edge taper through the conversion between logarithms:

edge taper(dB) = 8.686ρ (4-86)

We determine amplitude taper efficiency by substituting Eq. (4-85) into Eq. (4-8) and
carrying out the integrations:

ATL = 2(1 − e−ρ)2

ρ(1 − e−2ρ)
(4-87)

Table 4-29 lists designs for various sidelobe levels in terms of the single parameter:
edge taper. Equation (4-86) relates the parameter ρ to the edge taper.

Example Estimate the beamwidth of the pattern radiated from a circular distribution
with a 13-dB edge taper and radius of three wavelengths.
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TABLE 4-29 Circular-Aperture Gaussian Distribution, e−ρr2
(|r | < 1)

Sidelobe
Level (dB)

Edge
Taper (dB) ATL (dB)

Beamwidth
Factor

20 4.30 0.09 1.0466
22 7.18 0.24 1.0800
24 9.60 0.41 1.1109
25 10.67 0.50 1.1147
26 11.67 0.59 1.1385
28 13.42 0.76 1.1626
30 14.93 0.92 1.1839
32 16.23 1.06 1.2028
34 17.32 1.18 1.2188
35 17.81 1.23 1.2263
36 18.75 1.34 1.2405
38 21.43 1.65 1.2820
40 24.42 2.00 1.3296

We use linear interpolation in Table 4-29 to determine the beamwidth factor. From
Eq. (4-82),

HPBW = 2 sin−1 1.1568(0.5145)

6
= 11.38◦

From Eq. (4-83),

HPBW = 58.95◦
(

1.1568

6

)
= 11.36◦

The amplitude taper efficiency is calculated from Eq. (4-87):

ρ = 13

8.686
= 1.497

ATL = 2(1 − e−1.497)2

1.497(1 − e−2.993)
= 0.847 (−0.72 dB)

We obtain the same value by interpolating in Table 4-29.

Sidelobes below 40 dB are difficult to obtain with this distribution. The inner side-
lobes continue to decrease with a decreasing edge level, but the outer lobes fail to
reduce and dominate over the first few sidelobes. Table 4-29 results from a search
because no direct method exists for computing the edge taper for a specified side-
lobe level.

4-18 HANSEN SINGLE-PARAMETER CIRCULAR DISTRIBUTION [20, 21]

This distribution leads directly from sidelobe level to a single parameter H that relates
through closed-form expressions to all other distribution parameters. The pattern of
a uniform distribution is modified close in to the main beam. By using the U -space
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variable of Taylor, we have U = (2a/λ) sin θ , where a is the radius. The pattern has
different expressions in two regions:

f (U) =




2I1(π
√

H 2 − U 2)

π
√

H 2 − U 2
|U | ≤ H

2J1(π
√

U 2 − H 2)

π
√

U 2 − H 2
|U | ≥ H

(4-88a)

(4-88b)

I1(x) is the first-order modified Bessel function of the first kind.
The high function value of Eq. (4-88a) at the boresight reduces the sidelobes of the

uniform distribution [Eq. (4-88b)], 17.57 dB, below the level at U = H . The sidelobe
level is

SLR = 17.57 + 20 log
2I1(πH)

πH
(4-89)

Given the sidelobe level [positive (dB)], we use Eq. (4-89) in an iteration scheme to
determine H .

The aperture distribution is given by

E(r) = I0(πH
√

1 − r2) |r| ≤ 1 (4-90)

where I0 is the zeroth-order modified Bessel function of the first kind. Equation (4-8)
can be integrated for this circularly symmetrical distribution [Eq. (4-90)] to derive the
amplitude taper efficiency:

ATL = 4I 2
1 (πH)

π2H 2[I 2
0 (πH) − I 2

1 (πH)]
(4-91)

Table 4-30 lists the parameters of the Hansen distribution for various sidelobe levels.
At the top, Tables 4-29 and 4-30 are very similar. Any sidelobe level can be achieved
with this distribution, subject to tolerance problems generated by any low-sidelobe
design. The distribution is not optimum, but it is convenient.

4-19 TAYLOR CIRCULAR-APERTURE DISTRIBUTION [22]

Similar to the line source, the Taylor circular-aperture distribution modifies inner zeros
of the uniform amplitude and phase circular-aperture k-space pattern to approximate
the Dolph–Chebyshev distribution. By use of the variable πU = ka sin θ the uniform
distribution pattern is found to be J1(πU)/πU . We remove n − 1 inner zeros and add
those of the Dolph–Chebyshev distribution:

f (U) =
J1(πU)

∏n−1

N=1
(1 − U 2/U 2

N)

πU
∏n−1

N=1
(1 − U 2/S2

N)

(4-92)
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TABLE 4-30 Hansen Single-Parameter Circular-Aperture Distribution

Sidelobe
Level (dB) H

Edge
Taper (dB) ATL (dB)

Beamwidth
Factor

20 0.48717 4.49 0.09 1.0484
22 0.66971 7.79 0.27 1.0865
24 0.82091 10.87 0.48 1.1231
25 0.88989 12.35 0.60 1.1409
26 0.95573 13.79 0.72 1.1584
28 1.08027 16.59 0.96 1.1924
30 1.19770 19.29 1.19 1.2252
32 1.30988 21.93 1.42 1.2570
34 1.41802 24.51 1.64 1.2876
35 1.47084 25.78 1.75 1.3026
36 1.52295 27.04 1.85 1.3174
38 1.62525 29.53 2.05 1.3462
40 1.72536 31.98 2.24 1.3742
45 1.96809 38.00 2.68 1.4410
50 2.20262 43.89 3.08 1.5039

Given a zero of J1(x), J1(x1N) = 0, let x1N = πSN . By retaining approximately the
same number of zeros in the visible region as in the uniform distribution, we avoid
superdirectivity. The new zeros UN are modified zeros of the uniform distribution:

UN = Sn

√
A2 + (N − 1

2 )2√
A2 + (n − 1

2 )2
(4-93)

where A relates to the maximum sidelobe level, cosh πA = b and 20 log b = sidelobe
level(dB). Equation (4-93) is the same as Eq. (4-20) except for the scaling constant
Sn, the nth zero of J1(x) divided by π.

Equation (4-92) gives the U -space pattern of the new distribution. We expand the
aperture distribution in a Fourier–Bessel series:

E(r) =
n−1∑
m=0

BmJ0(πSmr) r ≤ 1 (4-94)

We compute coefficients Bm by transforming the Fourier–Bessel series [Eq. (4-94)]
into U -space and comparing the far-field pattern with Eq. (4-92). As indicated in
Eq. (4-94), the series contains only n nonzero terms:

B0 = 1

Bm =
−
∏n−1

N=1
(1 − S2

m/U 2
N)

J0(πSm)
∏n−1

N=1,N �=m
(1 − S2

m/S2
N)

m = 1, 2, . . . , n − 1
(4-95)
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Example Design a Taylor circular-aperture distribution with 30 dB maximum side-
lobes and n = 6.

We use Eq. (4-21) to calculate the constant A:

b = 1030/20 = 31.6228

A = cosh−1b

π
= 1.32

We substitute this value into Eq. (4-93) to compute the five nulls:

No. 1 2 3 4 5

Null UN 1.5582 2.2057 3.1208 4.1293 5.1769

The first null of the uniform distribution occurs at

x11 = 3.83171 S1 = x11

π
= 1.2197

We use this with the location of the first zero to determine the null beamwidth factor:

BWnull = U1

S1
= 1.5582

1.2197
= 1.2775

The coefficients of the Fourier series [Eq. (4-95)] are given in Table 4-31. Figure 4-28
contains the k-space pattern.
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FIGURE 4-28 Taylor and Bayliss circular aperture distributions to give 30-dB sidelobes
(n = 6).
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Tables 4-32 to 4-34 list the characteristics for a few designs of the circular Taylor
distribution. Table 4-32 shows that for each sidelobe level there is an optimum n. As
the sidelobes are lowered, the optimum value of n increases. The blanks are unsuitable
designs. The beamwidth factor (Table 4-33) and the null beamwidth factor (Table 4-34)
continue to decrease as n increases at a given sidelobe level. In all three tables the
values depend primarily on the sidelobe level.

TABLE 4-31 Fourier–Bessel Series Coefficients for
Taylor Distribution: 30 dB, n = 6

No. Bm Bm Normalized Function

0 1.0000 0.53405 1
1 0.93326 0.49841 J0(x11r)

2 0.038467 0.01808 J0(x12r)

3 −0.16048 −0.08570 J0(x13r)

4 0.16917 0.09035 J0(x14r)

5 −0.10331 −0.05517 J0(x15r)

TABLE 4-32 Amplitude Taper Losses of Taylor
Circular-Aperture Distribution (dB)

Sidelobe Level (dB)

n 25 30 35 40 45 50

4 0.30 0.71 1.14 1.51 1.84
6 0.28 0.59 1.03 1.48 1.88 2.23
8 0.43 0.54 0.94 1.40 1.82 2.21

12 1.03 0.62 0.86 1.28 1.71 2.12
16 1.85 0.86 0.87 1.22 1.64 2.05
20 1.20 0.94 1.20 1.60 2.01

TABLE 4-33 Beamwidth Factor of Taylor
Circular-Aperture Distribution

Sidelobe Level (dB)

n 25 30 35 40 45 50

4 1.0825 1.1515 1.2115 1.2638 1.3095
6 1.0504 1.1267 1.1957 1.2581 1.3149 1.3666
8 1.0295 1.1079 1.1796 1.2457 1.3067 1.3632

12 1.0057 1.0847 1.1580 1.2262 1.2899 1.3499
16 0.9927 1.0717 1.1451 1.2137 1.2782 1.3391
20 1.0634 1.1367 1.2054 1.2701 1.3314
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TABLE 4-34 Null Beamwidth Factor of Taylor
Circular-Aperture Distribution

Sidelobe Level (dB)

n 25 30 35 40 45 50

4 1.1733 1.3121 1.4462 1.5744 1.6960
6 1.1318 1.2775 1.4224 1.5654 1.7056 1.8426
8 1.1066 1.2530 1.4001 1.5470 1.6928 1.8370

12 1.0789 1.2244 1.3716 1.5197 1.6680 1.8162
16 1.0643 1.2087 1.3552 1.5029 1.6514 1.8003
20 1.1989 1.3442 1.4920 1.6402 1.7890

4-20 BAYLISS CIRCULAR-APERTURE DISTRIBUTION [8]

We can also design a Bayliss distribution (difference pattern) for circular apertures.
This gives us the pattern necessary for monopulse tracking along one axis. The U -
space pattern has modified zeros to produce nearly equal sidelobes close in to the main
lobes:

f (U, φ) = cos φπUJ ′
1(πU)

∏n−1

N=1
(1 − U 2/U 2

N)∏n−1

N=0
(1 − U 2/µ2

N)

(4-96)

where UN are the new zeros and πµN are zeros of J ′
1(πU). Bayliss lists those zeros

µN (Table 4-35). The inner zeros have been removed and replaced by new ones,
UN . We compute the zeros in a manner similar to that used for a linear distribution
(Section 4-7):

UN =




µn

√
ξ 2
N

A2 + n2 N = 1, 2, 3, 4

µn

√
A2 + N2

A2 + n2 N = 5, 6, . . . , n − 1

(4-97)

The four inner zeros had to be adjusted to achieve the desired sidelobe level. Bayliss
found these through a computer search. The values for ξN and A can be found through
the polynomial approximations [Eq. (4-40)].

TABLE 4-35 Bessel Function Zeros, J ′
1(πµN )

N µN N µN N µN N µN

0 0.5860670 5 5.7345205 10 10.7417435 15 15.7443679
1 1.6970509 6 6.7368281 11 11.7424475 16 16.7447044
2 2.7171939 7 7.7385356 12 12.7430408 17 17.7450030
3 3.7261370 8 8.7398505 13 13.7435477 18 18.7452697
4 4.7312271 9 9.7408945 14 14.7439856 19 19.7455093
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Like the Taylor circular aperture distribution, the aperture distribution is expanded
in a finite-length Fourier–Bessel series:

E(r, φ) = cos φ′
n−1∑
m=0

BmJ1(πµmr) r ≤ 1 (4-98)

where the coefficients are found by transforming Eq. (4-98) and comparing it with a
U -space pattern [Eq. (4-96)]. The coefficients are given by

Bm = µ2
m

jJ1(πµm)

∏n−1

N=1
(1 − µ2

m/U 2
N)∏n−1

N=0,N �=m
(1 − µ2

m/µ2
N)

(4-99)

Example Design a Bayliss circular-aperture distribution with 30-dB sidelobes and
n = 6.

We start with Eq. (4-40) to compute coefficients A and ξN :

A = 1.64126 ξ1 = 2.07086 ξ2 = 2.62754 ξ3 = 3.43144 ξ4 = 4.32758

We substitute these constants into Eq. (4-97) along with the zeros from Table 4-35 to
calculate the modified zeros:

N 1 2 3 4 5

UN 2.2428 2.8457 3.7163 4.6868 5.6994

We use the zeros in Eq. (4-96) to calculate the pattern. The U -space pattern peak can
be found by using Eq. (4-41):

Umax = 0.7988 ka sin θmax = πUmax = 2.5096

where a is the aperture radius. The coefficients of the Fourier–Bessel series are found
from Eq. (4-99) (Table 4-36). The normalized coefficients give an aperture distribution
peak of 1. The 3-dB pattern points can be found by searching the pattern:

ka sin θ1 = 1.3138 ka sin θ2 = 4.2384

TABLE 4-36 Fourier–Bessel Series Coefficients for
Bayliss Distribution: 30 dB, n = 6

No. Bm Bm Normalized Function

0 0.62680 1.2580 J1(πµ0r)

1 0.50605 1.0157 J1(πµ1r)

2 −0.06854 −0.03415 J1(πµ2r)

3 −0.0028703 −0.005761 J1(πµ3r)

4 0.014004 0.028106 J1(πµ4r)

5 −0.011509 −0.02310 J1(πµ5r)
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TABLE 4-37 Characteristics of a Bayliss Circular-Aperture Distribution, n = 10

3-dB Beam Edge
Sidelobe Beam Peak, ATL PEL

Level (dB) ka/2 sin θmax ka/2 sin θ1 ka/2 sin θ2 (dB) (dB)

20 2.2366 1.165 3.700 1.47 1.80
25 2.3780 1.230 3.940 1.15 1.89
30 2.5096 1.290 4.160 1.32 1.96
35 2.6341 1.346 4.363 1.62 2.01
40 2.7536 1.399 4.551 1.95 2.05

Figure 4-28 contains a plot of a Bayliss circular-aperture distribution (n = 6)
designed to have sidelobes 30 dB below those of the Taylor distribution with 30-dB
sidelobes. The losses to the difference pattern are about 2.6 dB higher than the sum
pattern. The amplitude taper efficiency is calculated from

AT L =

[∫ 1

0
4

∣∣∣∣∑n−1

m=0
BmJ1(πµmr)

∣∣∣∣ r dr

]2

π2

∫ 1

0
4

∣∣∣∣∑n−1

m=0
BmJ1(πµmr)

∣∣∣∣
2

r dr

(4-100)

where the integrals over φ′ have been separated and evaluated. An integral expression
for the phase error efficiency can be found similarly by evaluating the separable cos φ′
integrals along the coordinate φ = 0, the peak:

PEL(U) =

∣∣∣∣2π

∫ 1

0

∑n−1

m=0
BmJ1(πµmr)J1(πUr)r dr

∣∣∣∣
2

[∫ 1

0
4

∣∣∣∣∑n−1

m=0
BmJ1(πµmr)

∣∣∣∣ r dr

]2 (4-101)

Table 4-37 lists the parameters of Bayliss circular-aperture distributions with n = 10
and various sidelobe levels. The optimum design for n = 10 occurs for 25-dB sidelobes.

4-21 PLANAR ARRAYS

We design planar arrays with nearly circular boundaries by sampling circular distri-
butions. Given enough sample points in the array, a distribution such as the circular
Taylor will be modeled adequately to produce a similar pattern. We can use pattern
multiplication to combine the designs for linear arrays into a planar array, but in the
special case of a square array, a true Chebyshev design can be obtained in all planes.
A technique has been developed to allow the synthesis from pattern nulls provided
that some of the possible nulls are not specified. We are still left with the problem of
specifying the numerous nulls possible with a planar array.

Chebyshev Array [23] When we combine two Dolph–Chebyshev linear arrays
through pattern multiplication, it produces a pattern that has lower sidelobes than
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those specified in all planes except the principal ones along the axes. These designs
give beamwidths in the diagonal planes that are wider than necessary. The pattern
deviates from the optimum because sidelobes are suppressed more than necessary.

We use a technique on a square array to produce equal sidelobes in all constant
φ cuts around the array. The array is square in the number of elements, but different
spacings along the axes can produce a rectangular array. We expand the pattern in a
single Chebyshev polynomial:

TL−1(x0 cos ψ1 cos ψ2) (4-102)

where ψ1 = kdx cos θ cos φ + δ1 and ψ2 = kdy cos θ sin φ + δ2L = 2N or L = 2N + 1
for L2 elements in the array. We compute x0 from Eq. (4-51) for a given sidelobe level.
The pattern for an odd number of elements in each row and column is

E(θ, φ) =
N+1∑
m=1

N+1∑
n=1

εmεnImn cos 2(m − 1)ψ1 cos 2(n − 1)ψ2 L = 2n + 1

where εm = 1 for m = 1 and εm = 2 for m �= 1. Similarly,

E(θ, φ) = 4
N∑

m=1

N∑
n=1

Imn cos(2m − 1)ψ1 cos(2n − 1)ψ2 L = 2n

The element excitations Imn are given by

Imn =
(

2

L

)2 N+1∑
p=1

N+1∑
q=1

εpεqTL−1

[
x0 cos

(p − 1)π

L
cos

(q − 1)π

L

]

× cos
2π(m − 1)(p − 1)

L
cos

2π(n − 1)(q − 1)

L
L = 2N + 1 (4-103)

or

Imn =
(

4

L

)2 N∑
p=1

N∑
q=1

TL−1


x0 cos

(
p − 1

2

)
π

L
cos

(
q − 1

2

)
π

L




× cos
2π

(
m − 1

2

)(
p − 1

2

)
L

cos
2π

(
n − 1

2

)(
q − 1

2

)
L

L = 2N (4-104)

4-22 CONVOLUTION TECHNIQUE FOR PLANAR ARRAYS

We may synthesize a desired pattern through multiplication of two or more simpler
patterns. Because patterns derive from Fourier transforms of distributions in space, the
distribution to produce the product of two simpler patterns is the convolution of the
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simpler distributions [24, p. 30]. We find it easier to synthesize by using a few elements
and then build up patterns through multiplication.

Consider the convolution of a linear array with another linear array on the same
axis. We describe the array as a distribution consisting of weighted impulse functions,
δ(x − xi):

A1(x) =
N1∑
i=1

a1iδ(x − xi)

where a1i are the feeding coefficients and xi are the locations for an N1-element array.
To determine the array that gives the product of two array patterns, we convolve the
second array, A2(x), with the first:

A1(x) ∗ A2(x) =
∫

A1(τ )A2(x − τ) dτ (4-105)

We evaluate a function at the argument of the impulse function when we convolve the
two arrays [25, p. 237]. Equation (4-105) reduces to

A1(x) ∗ A2(x) =
N1∑
i=1

N2∑
j=1

a1ia2iδ(x − xi − xj ) (4-106)

Example Consider the two 2-element arrays in Figure 4-29 and the graphical solution
of the convolution. Figure 4-29a shows the location of the elements in the arrays on
the x-axis. To perform the convolution, we reflect the x-axis of one array and move it
across the other array while performing the integral at each location x, the coordinate of
the convolution. We have a net result to the integral only when two impulse functions
are aligned, x = xi + xj . We have four elements in the resulting array (Figure 4-29c).
If the elements are equally spaced in the two arrays, two elements will sum into one.

Patterns are the result of a three-dimensional Fourier transform. For a general array
with element locations ri , we must perform a convolution along all three axes to find
the distribution that gives the product of the patterns of two simpler distributions. For
the general array, Eq. (4-106) becomes

A1(r) ∗ A2(r) =
∑∑

a1ia2j δ(r − ri − rj ) (4-107)

where r is the location vector and ri and rj are the locations of elements in the
two arrays.

A rectangular array can be described as the convolution of a linear array on the x-
axis with a linear array on the y-axis. When y = yj there is a string of values x = xi

that satisfy the impulse argument [Eq. (4-107)]. These are the locations of the elements.
We step through all values of yj until the entire array is formed. Equation (4-107) gives
the feeding coefficient of each element a1ia2j since no two elements of the convolution
are in the same place. The pattern of the rectangular array is the product of the linear
array patterns along the axes.
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FIGURE 4-29 Convolution of two linear arrays: (a) separate arrays; (b) graphical convolution;
(c) convolution.

Given an array, we compute the pattern from a Fourier transform containing N

terms each of which corresponds to one element. Ignoring the element pattern, we
have

E =
N∑

i=1

aie
jk·r′

i (4-108)

The array has N − 1 independent nulls (zeros) in the pattern. Given the set of nulls kj

we can substitute them into Eq. (4-108) to form a matrix equation in N − 1 unknowns
ai . We must normalize one coefficient, ai = 1, to solve the set of equations for the
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feeding coefficients:

[B]




a2

a3
...

aN


 = −




ejk1·r1

ejk2·r1

...

ejkN−1·r1


 (4-109)

where bij = ejki ·rj+1 . We find the direct solution of Eq. (4-109) unwieldy for a large
array. We can subdivide the array into smaller arrays whose convolution is the total
array and use pattern multiplication. We reduce the number of nulls we need to specify
in the synthesis of an array.

Convolution can be used in the synthesis of planar arrays by using a rhombic
array (four elements) as the basic building block [26] (Figure 4-30). If we convolve
two identically shaped rhombic arrays, we obtain a nine-element (three on a side)
array (Figure 4-30b). By continuing to convolve the resulting array with other rhombic
arrays, we can build up a large array in the shape of the rhombus. Each rhombic array
has three pattern nulls without the symmetry of the linear array about some axis.
The rhombic array has symmetry only about the plane of the rhombus. We build up
an array of N + 1 by N + 1 elements through the convolution of N rhombic arrays.
The original array has (N + 1)(N + 1) − 1 independent nulls. The convolution of N

rhombic arrays reduces the number of independent nulls to 3N . Similarly, when we
use the convolution of two linear arrays to form a square array, N + 1 by N + 1, the
number of independent nulls is 2N , or N for each array.

We denote a single rhombic array as RA1 and the convolution of two rhombic
arrays as RA2. The number of elements on each side of an RAN array is N + 1. We
can convolute a rhombic array with a linear array to form an M × N array (M > N ).
Denote the linear array by LN , where the array has N + 1 elements. The planar array
PAM,N becomes

PAM,N = LM−N ∗ RAN−1 (4-110)

We specify 3(N − 1) nulls in space for the rhombic arrays and M − N nulls about
the axis of the array. Like all convolutions, the pattern is the product of the individual
array patterns.

(a) (b)

FIGURE 4-30 Rhombic array with its convolution: (a) rhombic array RA1; (b) convolution
of two rhombic arrays RA2.
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This method allows the specification of nulls in space with other than linear symme-
try. Second, it reduces the required specification of nulls. Third, it provides a method
for synthesis of triangularly or hexagonally spaced elements.

Example Consider the six-element rectangular array shown in Figure 4-31a. It can
be broken down into the convolution of a four-element rectangular array (rhombic)
and a two-element linear array from Eq. (4-110):

PA3,2 = L1 ∗ RA1

Pick the three nulls of the rhombic array at

θ 90◦ 90◦ 90◦

φ 110◦ −60◦ 180◦

We measure the pattern nulls from the normal of the plane containing the rhombus and
the x-axis (φ). For an array of broadcast towers, the nulls point toward the horizon.
We restrict θ to less than or equal to 90◦. We substitute the positions of the elements
(Figure 4-31b) and the nulls into Eq. (4-109) to solve for the feeding coefficients of
the rhombic array (Table 4-38).

(a) (b) (c)

FIGURE 4-31 Rectangular array from convolution of rhombic and linear arrays: (a)
six-element rectangular array; (b) rhombic array; (c) linear array.

TABLE 4-38 Coefficients of Rhombic Array for
Horizon (θ = 90◦) Nulls at φ = 100◦, −60◦, and 180◦

Element
Amplitude

(dB)
Phase
(deg)

1 0.00 0.0
2 4.12 −79.2
3 0.00 −109.2
4 4.12 −30.2
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TABLE 4-39 Coefficients of Six-Element
Rectangular Array with Pattern of Figure 4-32b

Element
Amplitude

(dB)
Phase
(deg)

1 0.00 0.0
2 8.13 −88.5
3 4.12 177.2
4 0.00 147.2
5 8.13 −124.3
6 4.12 −30.1

We pick the single null of the two-element array at 135◦. This null has symmetry
about the axis of the array. With the first element at zero phase, we pick the element
phase to cancel the first element voltage when θ = 135◦:

phase = 180◦ − 360◦
(0.3)cos 135◦ = 256.37◦

When we convolute the two arrays, we obtain the feeding coefficients from Eq. (4-107)
(Table 4-39). The elements in the center that result from two convolutions have summed
feeding coefficients producing a six-element array. Figure 4-32 shows the patterns of
the convolution. We obtain the six-element array pattern (Figure 4-32b) by multiplica-
tion of the patterns of the individual subarrays (Figure 4-32a).

4-23 APERTURE BLOCKAGE

Blocking an aperture reduces the gain and raises the sidelobes. The blockage either
scatters the aperture power in unwanted directions in a broad pattern or is just an area
without fields. Scattered blockage causes higher sidelobes and greater loss than the

Rhombic
array

Linear
array

(a) (b)

Pattern of 
 convolution

10 dB

20 dB

30 dB

10 dB

20 dB

30 dB

FIGURE 4-32 Patterns of the convolution of a rhombic and a linear array to form the
six-element rectangular array of Figure 4-31.
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nonexcitation blockage. Scattered blockage has the same power input as the unblocked
aperture, but fields scattered off the blockage do not contribute significantly to the
maximum field. Compared to the unblocked aperture, the blockage efficiency becomes

blockage efficiency =

∣∣∣∣
∫∫

blocked
Eejk·r′

ds ′
∣∣∣∣
2

max∣∣∣∣
∫∫

unblocked
Eejk·r′

ds ′
∣∣∣∣
2

max

scattered (4-111)

We use Eq. (2-16) to compute the directivity of each distribution by using the total
power radiated from the unblocked aperture [denominator of Eq. (2-16)] for the blocked
aperture. A centrally blocked circular aperture with a uniform distribution has the
blockage efficiency (1 − b2)2 (scattered), where b is the normalized blockage radius.
The blockage of a circular Gaussian distribution has a simple blockage function:

blockage efficiency =
(

e−ρb − e−ρ

1 − e−ρ

)2

The second type of blockage is an area without fields. The blockage does not waste
power in the aperture. When we take the ratio of the two directivities, we must account
for the power in each aperture:

blockage efficiency =

∣∣∣∣
∫∫

blocked
Eejk·r′

ds ′
∣∣∣∣
2

max

∫∫
unblocked

|E|2 ds ′

∣∣∣∣
∫∫

unblocked
Eejk·r′

ds ′
∣∣∣∣
2

max

∫∫
blocked

|E|2 ds ′
nonexcitation

(4-112)

The blockage of a uniformly excited centrally blocked circular aperture where the
center is not excited reduces the directivity only by the area lost from the aperture,
1 − b2 (nonexcitation). In a sense, nonexcitation blockage is not a true loss; it is a loss
of potential radiation aperture.

Table 4-40 lists the blockage losses of centrally blocked circular apertures calculated
by Eq. (4-111), the more severe case. The uniformly excited aperture is affected least
by blockage. All points are equally important. The tapered distributions suffer more
loss with increased taper toward the edge. The lists for different tapered distributions
track each other fairly closely, and any one of them gives a good estimate of the
blockage loss. Blockage causes sidelobes. In the case of scattered blockage the exact
sidelobes cannot be found without an analysis of the scatterer. A Cassegrain reflector
would need a geometric theory of diffraction (GTD) analysis to locate the directions of
scattering from the subreflector. We can handle the nonexcitation blockage in a general
fashion. Consider the aperture to be broken into two radiating apertures. The first is
the unblocked aperture; the second is the blockage. If we take the blockage aperture
to be 180◦ out of phase with respect to the unblocked aperture distribution, the sum
gives us the blocked distribution.

We use this analysis as an approximation to scattered blockage with the realization
that scattering may produce unpredicted lobes.
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TABLE 4-40 Blockage Losses of Circular-Aperture Distributions (dB)

Taylor Hansen
Central Gaussian

Blockage (%) Uniform 12-dB Edge 30 dB, n = 6 40 dB, n = 6 30 dB 40 dB

5 0.02 0.04 0.04 0.05 0.05 0.07
6 0.03 0.06 0.06 0.08 0.07 0.09
7 0.04 0.08 0.08 0.11 0.09 0.13
8 0.06 0.10 0.10 0.14 0.12 0.17
9 0.07 0.13 0.13 0.18 0.16 0.21

10 0.09 0.16 0.16 0.22 0.19 0.26
11 0.11 0.19 0.20 0.26 0.23 0.32
12 0.13 0.23 0.24 0.31 0.28 0.38
13 0.15 0.27 0.28 0.37 0.33 0.44
14 0.17 0.32 0.32 0.43 0.38 0.51
15 0.20 0.36 0.37 0.49 0.43 0.59
16 0.22 0.41 0.42 0.56 0.49 0.67
17 0.26 0.47 0.48 0.63 0.56 0.76
18 0.29 0.52 0.54 0.71 0.63 0.85
19 0.32 0.58 0.60 0.79 0.70 0.95
20 0.36 0.65 0.67 0.88 0.77 1.06
21 0.39 0.71 0.74 0.97 0.86 1.17
22 0.43 0.78 0.81 1.07 0.94 1.28
23 0.47 0.86 0.88 1.17 1.03 1.40
24 0.52 0.94 0.96 1.27 1.12 1.53
25 0.56 1.02 1.05 1.38 1.22 1.66

We can calculate an upper bound on the sidelobes easily. Assume that the block-
age distribution is uniform and compared to the main aperture, produces a broad, flat
beam. Since the blockage aperture fields are 180◦ out of phase from the unblocked
aperture fields, their radiation subtracts from the main beam and adds sidelobes 180◦

out of phase with respect to the main lobe. The sidelobe due to the blockage is propor-
tional to the area: sidelobe level = 20 log b. This formula estimates values much higher
than are realized. Table 4-41 lists the sidelobes of a centrally blocked Taylor circular
aperture distribution with 40-dB design sidelobes. They are far less than predicted by
the upper bound.

TABLE 4-41 Sidelobe Level Due to Central Blockage of a Circular Aperture with
Taylor Distribution (40 dB, n = 6)

Sidelobe Sidelobe Sidelobe
Blockage

(% of Diameter)
Level
(dB)

Blockage
(% of Diameter)

Level
(dB)

Blockage
(% of Diameter)

Level
(dB)

7 34.5 13 26.1 19 21.1
8 32.8 14 25.6 20 20.4
9 31.3 15 24.2 21 19.7

10 29.8 16 23.3 22 19.1
11 28.5 17 21.7 23 18.5
12 27.3 18 21.7 24 18.0
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Ludwig [27] has found distributions to reduce the sidelobes of blocked apertures.
The first sidelobe can be reduced only a little, but the outer sidelobe levels can be
controlled. In many applications one high sidelobe next to the main beam is acceptable.
A Taylor distribution for circular apertures with a zero edges value, like Section 4-5
for linear apertures, reduces the far-out sidelobes. A second aperture function with a
doughnut distribution also reduces all but the first sidelobe. Reducing the edge taper
of the blockage distribution lowers the blockage-caused sidelobes.

Sachidananda and Ramakrishna [28] use a numerical optimization technique to
reduce the sidelobes of a blocked aperture for both the sum and difference patterns of a
monopulse excitation. They start with the Taylor and Bayliss circular-aperture distribu-
tion functions [Eqs. (4-94) and (4-98)]. The coefficients Bm are determined through the
numerical optimization, which restrains the sidelobes while optimizing the monopulse
tracking coefficients and sum pattern gain.

4-24 QUADRATIC PHASE ERROR

A linear phase error function scans the aperture beam with some loss of gain because
of the shrinking of the projected aperture in the direction of the main beam. Quadratic
phase error (order 2) does not scan the beam but causes loss and a change in the
sidelobe levels and the depth of the nulls between them. This phase error arises mainly
from defocusing when the source of radiation appears as a point source. A feed axially
displaced from the focus of a parabolic reflector produces quadratic phase error in
the aperture. The flare angle of a horn changes the distance from the assumed point
source in the throat to different points in the aperture at the end of the flare. We can
approximate the phase distribution as quadratic.

We express the quadratic phase error in a line-source aperture as

linear: e−j2πS(2x/a)2 |x/a| ≤ 0.5 (4-113a)

where S is a dimensionless constant, cycles and a is the aperture width. Similarly, the
circular-aperture phase is

circular: e−j2πSr2
r ≤ 1 (4-113b)

where r is the normalized radius. We use Eq. (4-7) with the linear-source aperture phase
error [Eq. (4-113a)] and use Eq. (4-9) with the quadratic phase error [Eq. (4-113b)] in
a circularly symmetrical aperture distribution to compute phase error loss:

PELx =

∣∣∣∣
∫ a/2

−a/2
E(x)e−j2πS(2x/a)2

dx

∣∣∣∣
2

[∫ a/2

−a/2
|E(x)| dx

]2 linear (4-114)

PEL =

∣∣∣∣
∫ 1

0
E(r)e−j2πSr2

r dr

∣∣∣∣
2

[∫ 1

0
|E(r)|r dr

]2 circular (4-115)
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A few distributions have simple formulas for the phase error efficiency when excited
with quadratic phase error [29]:

uniform linear: PELx = 1

2S

[
C2(2

√
S) + S2(2

√
S)
]

(4-116)

where C(t) and S(t) are the Fresnel integrals, tabulated functions:

uniform circular: PEL =
(

sin πS

πS

)2

(4-117)

Circular Gaussian(e−ρr2
) : PEL = ρ2[1 − 2e−ρ cos(2πS) + e−2ρ]

[ρ2 + (2πS)2](1 − e−ρ)2
(4-118)

We use numerical integration for the general distribution.
Table 4-42 lists quadratic phase error losses for various linear-aperture distributions.

We will use the lists for uniform and cosine distributions to evaluate the gains of rect-
angular horns. The effect of quadratic phase error decreases as the distribution taper
increases. Table 4-43 lists results for a few circularly symmetrical aperture distribu-
tions. Quadratic phase error raises the sidelobes of low-sidelobe antennas. Figure 4-33
shows the effects on a circular Taylor distribution with 35-dB design sidelobes. The
first lobe increases, and the null between the main lobe and the first sidelobe disappears
as the quadratic phase error increases. A source antenna spaced a finite distance, as on

TABLE 4-42 Quadratic Phase Error Loss of Linear-Aperture Distributions (dB)

Cycles, S Uniform Cosine Cosine2
Cosine2 + 19.9-dB

Pedestal

0.05 0.04 0.02 0.01 0.02
0.10 0.15 0.07 0.04 0.07
0.15 0.34 0.16 0.09 0.16
0.20 0.62 0.29 0.16 0.28
0.25 0.97 0.45 0.25 0.44
0.30 1.40 0.65 0.36 0.63
0.35 1.92 0.88 0.49 0.84
0.40 2.54 1.14 0.64 1.08
0.45 3.24 1.43 0.80 1.34
0.50 4.04 1.75 0.97 1.62
0.55 4.93 2.09 1.16 1.90
0.60 5.91 2.44 1.36 2.19
0.65 6.96 2.82 1.57 2.48
0.70 8.04 3.20 1.79 2.76
0.75 9.08 3.58 2.01 3.04
0.80 9.98 3.95 2.23 3.29
0.85 10.60 4.31 2.46 3.52
0.90 10.87 4.65 2.69 3.73
0.95 10.80 4.97 2.91 3.92
1.00 10.50 5.25 3.13 4.09
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TABLE 4-43 Quadratic Phase Error Loss of Circular-Aperture Distributions (dB)

Taylor Hansen
Gaussian

Cycles, S Uniform 12-dB Edge 30 dB 40 dB 30 dB 40 dB

0.05 0.04 0.03 0.04 0.03 0.03 0.02
0.10 0.14 0.13 0.15 0.11 0.11 0.08
0.15 0.32 0.29 0.33 0.26 0.25 0.19
0.20 0.58 0.53 0.59 0.46 0.45 0.34
0.25 0.91 0.82 0.93 0.72 0.70 0.53
0.30 1.33 1.20 1.36 1.03 1.01 0.76
0.35 1.83 1.64 1.86 1.41 1.38 1.03
0.40 2.42 2.16 2.46 1.84 1.81 1.34
0.45 3.12 2.76 3.16 2.33 2.30 1.69
0.50 3.92 3.44 3.95 2.87 2.85 2.08
0.55 4.86 4.22 4.86 3.47 3.46 2.50
0.60 5.94 5.08 5.88 4.11 4.16 2.95
0.65 7.20 6.04 7.01 4.79 4.85 3.43
0.70 8.69 7.10 8.25 5.50 5.63 3.94
0.75 10.46 8.24 9.56 6.21 6.43 4.46
0.80 12.62 9.44 10.87 6.91 7.26 4.98
0.85 15.39 10.66 12.01 7.56 8.09 5.51
0.90 19.23 11.81 12.80 8.14 8.88 6.03
0.95 12.75 8.62 9.60 6.53
1.00 13.36 8.99 10.20 6.99
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FIGURE 4-33 Effects of quadratic phase error on 35-dB circular Taylor distribution (n = 6).
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an antenna measurement range, feeds the aperture with a quadratic phase error. The
source would have to be spaced 8D2/λ to measure the sidelobe level within 0.5 dB.
Low-sidelobe antennas require greater distances than the usual 2D2/λ for accurate
sidelobe measurement [30].

4-25 BEAM EFFICIENCY OF CIRCULAR APERTURES WITH
AXISYMMETRIC DISTRIBUTION

From Eq. (1-27) we can derive an approximate formula for axisymmetric distributions
that depends on the normalized variable kr (or U ). For large apertures we can approxi-
mate cos θ ≈ 1 in the main beam, integrate the φ integral to obtain 2π, and incorporate
the (ka)2 directivity factor into the integral:

beam efficiency =
ATL · PEL

∫ kr1

0
|f (kr)|2kr dkr

2|f (0)|2 (4-119)

=
ATL · PEL

∫ u1

0
|f (U)|2U dU

2|f (0)|2 (4-120)

where kr is the factor (2πa sin θ )/λ, U (the Taylor distribution factor) is (2a sin θ )/λ,
and a is the aperture radius. U1 and kr1 correspond to the beam edge θ1. The integrals of
Eqs. (4-119) and (4-120) cause underestimations of beam efficiency for small apertures
when we ignore the cos θ factor, which should divide the argument of the integral.

Table 4-44 lists beam edges in kr -space (2πa sin θ )/λ for various distributions along
with the beam efficiency at the null beam edge. We can use it to determine the aperture
size required for a given beam efficiency beamwidth specification.

Example Calculate the aperture radius to give a 90% beam efficient beamwidth of
5◦ for the distribution: parabolic on 12-dB pedestal.

TABLE 4-44 Beam Efficiencies of Axisymmetric Circular-Aperture Distributions

Beam Efficiency

kr = 2πa sin θ/λ

Specified Beam Efficiency (%)

Distribution Null, kr at Null (%) 80 85 90 95

Uniform 3.83 83.7 2.82 4.71 5.98
Parabolic 5.14 98.2 2.81 3.03 3.31 3.75
Parabolic + 12-dB pedestal 4.58 96.4 2.60 2.81 3.10 3.64
Taylor

30 dB, n = 6 4.90 96.2 2.65 2.88 3.19 3.82
30 dB, n = 10 4.74 91.4 2.76 3.06 3.65
40 dB, n = 6 6.00 99.5 2.90 3.13 3.42 3.85

Hansen
30 dB 5.37 99.3 2.79 3.01 3.28 3.69
40 dB 6.64 99.9 3.17 3.42 3.73 4.19
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From Table 4-43,

kr(90%) = 3.10 = 2πa

λ
sin

5◦

2
a

λ
= 3.10

2π sin(5◦/2)
= 11.31

The beam edge has cos 2.5◦ = 0.999, which justifies the approximation in Eq. (4-119).
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5
DIPOLES, SLOTS, AND LOOPS

A dipole is a conductive rod usually split in the center and fed from a balanced
transmission line that carries equal and oppositely flowing currents. Not all dipoles are
split and fed in the center because currents can be excited on it electromagnetically or it
can be shunt fed. The dipole length determines possible current distributions in modes,
and when we place a continuous rod near an antenna radiating a linear polarization
component directed along the rod, it excites a standing-wave current on the rod. The
amount excited on the rod depends on how close its length is to resonance and the
antenna spacing. Of course, the continuous rod loads the fed antenna through mutual
coupling. We can feed the continuous rod from a coax line by attaching the outer
conductor to the center and then connecting the center conductor away from the center
in a shunt feed.

A slot is a narrow-width opening in a conductive sheet. When excited by a voltage
across the narrow dimension it appears to radiate from an equivalent magnetic current
flowing along the long dimension that replaces the voltage (or electric field) across it.
Most slots, similar to dipoles, have a finite length with either short or open circuits
at both ends. The voltage along the slot forms a standing wave. Of course, magnetic
currents are fictitious, and real electric currents flow in the conductive sheet around
the slot. These currents do not have a simple distribution and are difficult to use for
analysis, so we use simpler magnetic currents, although when analyzing a slot using the
method of moments, we model the conductors around the slot and calculate patterns,
reaction, and so on, from these real currents. Initial slot calculations assume that the
conductive sheet is infinite, similar to the analysis of dipoles situated in free space.
Complete analysis of the dipole requires analysis in the presence of the mounting
configuration. Similarly, full analysis of slots includes the effects of the finite sheet
and scattering from the objects around it.
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After considering ideal cases, we analyze the effects of finite ground planes, nearby
scatterers, and the interaction between dipoles and slots. The batwing antenna presents
an unusual case where the antenna at first glance looks like a dipole but actually
radiates from a combination of a slot and a finite dipole structure. Another interesting
case is the waveguide slot. Currents flow on the inside surfaces of a waveguide, and the
finite current skin depth prevents it from reaching the outside. The metal walls shield
the currents and prevent the loss of power by radiation. When we cut a slot in the
wall, the internal currents flow out the slot and onto the outside of the waveguide and
radiate. The excitation and length of the slot relative to the internal currents determine
the amount radiated. Similarly, the slots load the waveguide as a transmission line
because of the loss of power.

Our analysis starts with a dipole in free space or a slot on an infinite conductive
sheet. The two problems are duals. Dipoles radiate from a standing-wave electric (real)
current, whereas the slot radiates from a standing-wave magnetic current. We use the
same mathematics for both patterns. By the Babinet–Booker principle of complemen-
tary structures, we relate the input impedance of one to the other. Both structures
radiate the same pattern but differ in polarization. Dipoles and slots share the same
analysis through duality, so we develop them together. Singly and in arrays, they satisfy
many antenna needs. Although they share a dual analysis, they have unique feeding
requirements. We discuss baluns for dipoles and waveguide slot excitations as practical
implementations.

In Chapter 2 we presented the analysis of a small loop excited with a uniform
current (Section 2-1.2). The loop current was replaced with a small magnetic current
element flowing along the normal to the plane of the loop. Multiple turns and ferrite
loading increase the efficiency of loops and produce a more useful antenna. Exciting
a uniform current on a loop is a difficult task that offers little practical benefit. The
loops discussed will have standing-wave electric currents excited on them determined
by feeding methods. The natural balun used to excite a small loop produces a standing-
wave current with zero current at the point where the two sides are connected to form
the loop. A resonant length loop of about one wavelength perimeter radiates a dipole
pattern from a standing-wave current. The quadrifilar helix consists of two loops twisted
around a common axis. The twist produces currents that radiate circular polarization
from each loop. Analysis shows that the currents are standing wave.

Feeding a dipole or loop requires a balun to prevent current flow either along the
outside of a coaxial feeder or excitation of unbalanced currents along a two-wire line.
The current flowing along the outside of the coax or unbalanced currents on the two-
wire line radiate in unwanted directions or radiate undesired polarization. When we
design an antenna without considering or knowing its final mounting, we produce an
uncontrolled situation without a balun. Our initial configuration may work without a
balun, but the antenna may fail to produce the desired pattern in the final location. If
you control the installation completely, you can reduce your design effort and may be
able to eliminate the balun.

5-1 STANDING-WAVE CURRENTS

Think of a dipole as a diverging two-wire transmission line. The characteristic
impedance increases as the wave approaches the open-circuited ends. The slot is the
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FIGURE 5-1 Standing wave.

dual of a strip dipole. A voltage excited across the slot propagates along a slotline
toward short-circuited ends. Each type of transmission line reflects the incident wave
from the terminations. The combination of two waves traveling in opposite directions
creates a standing wave on the line. The current and voltage are 90◦ out of phase
and 90◦ out of space phase (Figure 5-1). Current and voltage change places on the
short-circuited termination of the slot.

The dipole is not a uniform transmission line, but we can approximate the current as
a standing wave with the current vanishing on the ends. The slot voltage is a standing
wave also vanishing on the ends. The standing waves for a center-fed dipole or slot
are expressed as follows:
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(5-1)

The voltage distribution on the slot is equivalent to a magnetic current.
We calculate radiation from the linear sinusoidal current distributions by the vec-

tor potentials: electric (slot) (Section 2-1.2) and magnetic (dipole) (Section 2-1.1).
Figure 5-2 gives typical sinusoidal distributions for various lengths. The currents match
at the feed point and vanish on the ends. Consider the pattern of the 2λ dipole at
θ = 90◦. We can assume that it is a continuous array and sum the fields from each
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FIGURE 5-2 Sinusoidal distributions.



220 DIPOLES, SLOTS, AND LOOPS

5

4

3

2

1
0.5 1.0 1.5

Dipole length, l

D
ire

ct
iv

ity
, d

B

B
ea

m
pe

ak
,q

2.0 2.5 3

100

80

60

40

20

0

Beam peak

Directivity

FIGURE 5-3 Dipole (slot) directivity and beam peak versus length.

portion along the axis. The equal positive and negative portions of the standing-wave
current sum to zero and produce a pattern null normal to the axis. By integrating
Eqs. (2-5) and (2-10), we compute far fields for radiators centered on the z-axis through
the far-field conversion [Eqs. (2-1) and (2-9)] [1, p. 82]:

Eθ = jη
I0

2πr
e−jkr cos(kL/2 cos θ) − cos(kL/2)

sin θ
dipole (5-2)

where L is the total dipole length. Using the Y = 0 plane as the slot ground plane, the
far-field magnetic field is found as

Hθ = ±jV0

η2πr
e−jkr cos(kL/2 cos θ) − cos(kL/2)

sin θ
slot (5-3)

where L is the total slot length. We apply the upper sign for Y > 0 and the lower sign
for Y < 0. The electric field of the slot is found from Eφ = −ηHθ . Equations (5-2) and
(5-3) have the same pattern shape and directivity. We integrate the magnitude squared
of Eqs. (5-2) and (5-3) to determine the average radiation intensity. Joined with the
maximum radiation intensity, we calculate directivity (Figure 5-3) versus length.

5-2 RADIATION RESISTANCE (CONDUCTANCE)

The far-field power densities, Poynting vectors, are given by

Sr =



|Eθ |2
η

dipole

|Hθ |2η slot
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where η is the impedance of free space (376.7 �). When these are integrated over the
radiation sphere to compute the power radiated, the results contain either |I0|2 (dipole)
or |V0|2 (slot), the maximum sinusoidal current (voltage). We define the radiation
resistance (conductance) as

Rr = Pr

|I0|2 dipole

Gr = Pr

|V0|2 slot

(5-4)

Figure 5-4 is a plot of the radiation resistance of each versus length [2, p. 157]. The
input resistance differs from the radiation resistance because it is the ratio of the input
current (voltage) to the power radiated:

Ii = I0 sin
kL

2
dipole

Vi = V0 sin
kL

2
slot

(5-5)

Combining Eqs. (5-4) and (5-5), we find that

Ri = Rr

sin2(kL/2)
dipole

Gi = Gr

sin2(kL/2)
slot

(5-6)
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The input resistances (Figure 5-4) differ from the radiation resistances by Eq. (5-6).
The input resistance of a one-wavelength dipole is large but not infinite, as shown;
it depends greatly on the diameter and input region. If we take the product of the
radiation or input resistances, we determine that

RdipoleRslot = η2

4
(5-7)

one of the consequences of the Babinet–Booker principle [3].
The input resistance depends on the current at the input [Eq. (5-6)]. When the

standing-wave current is high and the voltage is low, the input resistance is moderate. A
center-fed half-wavelength dipole has the same input resistance as radiation resistance,
since the current maximum occurs as the input. On the other hand, a center-fed half-
wavelength slot has a current minimum (voltage maximum) at its input, which gives
it high input resistance. When both are a full wavelength long, the dipole standing-
wave current is at a minimum and the slot standing-wave current is at a maximum
(Figure 5-2). The dipole has a high input resistance and the slot has a low input
resistance. We can lower the input resistance by feeding at a high current point, but
we may excite a distribution different from that expected.

A short dipole looks like a capacitor at the input. As the length increases, the
radiation resistance grows and the capacitance decreases. Just before the length reaches
λ/2, the capacitance becomes zero. The exact length at which the antenna resonates
(zero reactance) depends on the diameter of the elements and the input gap. A good
starting point is 95% of a half wavelength. Beyond the resonant length, the dipole
becomes inductive. The impedance of a thin half-wavelength dipole is 73 + j42.2 �,
whereas the resonant-length dipole resistance is about 67 �. The slot looks like an
inductor when short. Think of it as a short-length short-circuited shunt slotline stub. The
inductance increases as its length increases and the slot resonates like the dipole, just
short of λ/2. Additional resonances occur at longer lengths. Increasing the frequency
is equivalent to increasing the length for the thin dipole.

5-3 BABINET–BOOKER PRINCIPLE [3; 4, p. 337]

A strip dipole and a slot are complementary antennas. The solution for the slot can
be found from the solution to an equivalent dipole by an interchange of the electric
and magnetic fields. Not only the pattern but also the input impedance can be found.
Figure 5-5 shows two such complementary structures. Babinet’s principle of optical
screens (scalar fields) states that given the solutions to the diffraction patterns of a
screen, Fi , and the screen’s complement, Fc, the sum equals the pattern without the
screen. Booker extended Babinet’s principle to vector electromagnetic fields. Strict
complementation of an electric conductor requires a nonexistent magnetic conductor.
Booker solved this problem by using only perfectly conducting infinitesimally thin
screens and by interchanging the electric and magnetic fields between the screen and
its complement. If we take two such complementary screens and perform line integrals
over identical paths to compute the impedance of each, we obtain the result

Z1Zc = η2

4
(5-8)
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Slot

FIGURE 5-5 Complementary screens.

where Z1 is the input impedance of the structure, Zc the input impedance of the
complementary structure, and η the impedance of free space (376.7 �). Equation (5-8)
extends Eq. (5-7) to the total impedance and includes mutual impedances as well as
self-impedances.

Certain antennas, such as flat spirals, are self-complementary—an exchange of the
spaces and conductors leaves the structure unchanged except for rotation. For a two-
arm structure,

Z2
0 = η2

4
or Z0 = 188 �

Rumsey [5, p. 28] extended these ideas to antennas with more than two conductors to
determine the input impedances in various feeding modes.

We must relate flat-strip dipoles to normal round-rod dipoles to use the available
results for round dipoles. The diameter of an equivalent round rod equals one-half the
strip width of the flat structure. Consider a thin dipole with its near λ/2 resonance of
67 �. We calculate equivalent slot impedance from Eq. (5-8):

Zslot = 376.72

4(67)
= 530 �

A half-wavelength slot impedance is

Zslot = 376.72

4(73 + j42.5)
= 363 − j211 �

The λ/2 dipole is inductive when it is longer than a resonant length, whereas the slot
is capacitive.

5-4 DIPOLES LOCATED OVER A GROUND PLANE

We analyze a dipole over a ground plane as a two-element array of the dipole and
its image. The ground plane more than doubles the gain of the element by limit-
ing the radiation directions. We can expect a change in the input impedance as the
dipole interacts with its image. A vertical dipole excites currents in the ground plane,
when transmitting, equivalent to its image. The image is vertical (Figure 5-6) and has
the same phase as the dipole (even mode). The impedance of the dipole becomes
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FIGURE 5-6 Ground-plane images.

Z = Z11 + Z12. Z12 is the mutual impedance between the dipole and its image spaced
2H , where H is the center height of the dipole over the ground plane. The array
radiates its maximum in the direction of the ground plane. The dipole also radiates its
maximum pattern along the ground plane given by

Umax = η|I0|2
(2π)2

(
1 − cos

kL

2

)2

(5-9)

where L is the dipole length. The radiated power of the single dipole is

Pin = R11|I0|2
(

1 + R12

R11

)

The two-element array increases the field over a single element by 2 and the radiation
intensity by 4:

directivity = 4Ud,max

Pin/4π
= 4η[1 − cos(kL/2)]2

(R11 + R12)π

We used only the power into the dipole, since no source is connected to the image.
Figure 5-7 is a plot of the directivity of a vertical dipole versus height over the
ground plane.

A horizontal dipole and its image (Figure 5-6) form an odd-mode two-element array
(Section 3-1). The input impedance of the dipole becomes Z11 − Z12 for the odd-mode
array. The value of the mutual impedance Z12 approaches that of the self-impedance
Z11 as the two dipoles move close together. The input impedance approaches zero as
the distance from the dipole to ground plane shrinks. The input impedance of all odd-
mode array elements decreases as the elements approach each other. The two-element
odd-mode array produces a null along the ground plane. The beam peak occurs normal
to the ground plane (θ = 0◦) when the distance between the dipole and its image is
less than λ/2 or H ≤ λ/4. The pattern bifurcates after that height is exceeded. The
maximum radiation from the array is

UA,max =




4 sin2 2πH

λ
H ≤ λ

4

4 H ≥ λ

4
θmax = cos−1 λ

4H
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FIGURE 5-7 Directivity of half-wavelength dipoles over a ground plane.

The dipole pattern [Eq. (5-2)] increases the radiation intensity. The total input power
into the single dipole becomes

Pin = |I0|2(R11 − R12)

directivity = UA,maxUd,max

Pin/4π

After inserting the various terms, we obtain the directivity of a horizontal dipole
over ground:

directivity =




4η sin2(2πH/λ)[1 − cos(kL/2)]2

π(R11 − R12)
H ≤ λ

4
4η[1 − cos(kL/2)]2

π(R11 − R12)
H ≥ λ

4

Its plot is included in Figure 5-7.

5-5 DIPOLE MOUNTED OVER FINITE GROUND PLANES

Most configurations have a dipole mounted over a finite ground plane. You can calculate
the final pattern by using GTD, PO, or MOM, or you can measure the pattern using the
actual ground plane. Analyses produce idealized patterns, and measurements contain
errors due to the presence of the positioner mounting. If the final system requires
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FIGURE 5-8 Dipole spaced λ/4 over disk ground planes with 1λ, 2λ, and 10λ diameters.

exacting patterns, it has no margin and will fail. In this section we consider dipoles
with idealized ground planes and give you ideas about the final performance or spur
you to use the ground plane purposely as a design parameter.

Figure 5-8 shows the result of a PO analysis of a dipole mounted λ/4 above finite
disks 1, 2, and 10λ in diameter. The E-plane pattern contains a pattern null at 90◦ due
to the dipole pattern. The ground plane restricts the broad H -plane pattern as pattern
angles approach 90◦ and reduces the backlobe more and more as it increases in size.
At one wavelength the disk increases the gain of the antenna from the 7.5 dB given in
Figure 5-7 to 8.1 dB. We can size the ground plane to produce small gain increases.

We can analyze flat-plate reflectors from three perspectives. In the first, plates restrict
radiation directions and thereby increase directivity. Waves polarized parallel with the
surface must vanish on the reflector surface and cause a greater restriction of the
beam. We see this effect in Figure 5-7, which shows horizontal dipoles having greater
directivities than vertical dipoles for close spacing over a ground plane. In the second
method we use aperture theory to analyze the reflector by using an aperture plane and
integrate the fields or evaluate illumination losses. If the phase of the fields on the
aperture varies rapidly, we must either take fine increments in numerical integration
or evaluate only around areas of stationary phase. Third, we can replace the reflector
with images and restrict the valid pattern region. In GTD this method is combined
with diffractions to smooth the field across shadow and reflection boundaries.

In Section 5-4 we analyzed the pattern and gain of a dipole mounted over an infinite
ground plane by the method of images. The antenna and its image formed a two-element
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TABLE 5-1 Results of a GTD Analysis of a Horizontal λ/2 Dipole λ/4 Over a Limited
Square Ground Plane (H -Plane)

Ground-Plane
Size
(λ)

Directivity
(dB)

Front-to-Back
Ratio
(dB)

H -Plane Pattern
Level at 90◦

(dB)

H -Plane
Beamwidth

(deg)

Phase
Center

(λ)

0.5 5.37 8.4 −6.3 108.5 0.18
0.6 6.32 10.3 −7.6 104.0 0.15
0.7 7.08 12.0 −8.8 100.9 0.14
0.8 7.68 13.5 −9.8 97.8 0.12
0.9 8.14 14.8 −10.6 95.1 0.10
1.0 8.34 16.0 −11.2 93.2 0.08
1.2 8.65 17.8 −12.0 93.3 0.04
1.4 8.45 19.1 −12.3 99.4 0.01
1.6 7.96 20.0 −12.2 108.4 0.0
1.8 7.39 21.1 −12.3 112.4 0.0
2.0 6.95 22.3 −12.4 113.1 0.0
2.5 7.13 25.0 −12.7 115.8 0.0
3.0 7.74 28.3 −13.8 111.4 0.0
4.0 7.28 32.8 −14.8 116.1 0.0
5.0 7.56 35.4 −16.2 118.0 0.0

10 7.41 36 −19.1 121.3 0.0

array, but with real power into only one element. The imaging method gives limited
information that can be filled with GTD methods. Table 5-1 lists the results of a GTD
analysis of a half-wavelength horizontal dipole located λ/4 over a limited square
ground plane. An infinite ground plane and dipole combination has an infinite front-to-
back (F/B) ratio with the fields vanishing in the ground-plane direction. By using the
methods of Section 3-3, we calculate a 120◦ half-power beamwidth for the two-element
half-wavelength spaced array of the dipole and its image. The F/B ratio increases as
the reflector (ground plane) size increases. Unfortunately, F/B is only the ratio of two
pattern angles. We could tune the size of the ground plane to produce a high F/B ratio
for a nonsquare ground plane, but it holds for only a small range of angles. Figure 5-8
illustrates the general increase in F/B as the size of the ground plane increases. We
expect zero fields at θ = 90◦ on an infinite ground plane, and Table 5-1 shows a
decrease of the fields with an increase of the ground plane. The half-power beamwidth
cycles about 120◦ as the ground plane increases in size.

Phase center is the apparent radiation center placed at the focus of a paraboloidal
reflector when used as a feed. The phase center of the equivalent two-element array is
located on the ground plane. As we decrease the ground plane, the effect of the image
decreases and causes the phase center to move toward the dipole. In the limit of no
ground plane, the phase center is on the dipole.

Table 5-1 shows the small gain changes that occur as the relative phase of the
ground-plane scattered fields and the dipole direct fields add in the far field. The small
ground plane at λ/2 square fails to significantly limit radiation and gain drops. Peak
gain occurs when the ground plane is 1.2λ square, but this result would not necessarily
hold for a circular ground plane. In most applications the dipole cannot be mounted
directly above the ground-plane center, but we can add a small ground plane to control
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FIGURE 5-9 V-dipole spaced 0.35λ over and tilted 35◦ toward 1λ- and 10λ-diameter ground
planes.

the pattern and then place the combination on a pedestal over the larger ground plane.
Most cases should be analyzed or measured in the final configuration.

The dipole E-plane pattern null can be reduced by tilting the two poles down toward
the ground plane. Figure 5-9 illustrates the calculated pattern of a tilted element dipole
above a finite disk ground plane. The feed point of the dipole has been raised to 0.35λ

to allow for the 35◦ tilt to the poles. Tilt and ground-plane height give additional
parameters to control the pattern of the dipole mounted over a finite ground plane.
For example, a horizontal dipole located λ/2 over an infinite ground plane forms an
odd-mode (0◦, 180◦) two-element array using the dipole and its image. The simple
ray-tracing argument given in Section 3-1 predicts a pattern null at zenith. But when
placed over a finite ground plane, the fainter image fails to produce a complete null.

We sometimes mount a dipole spaced away from a metal cylinder that provides a
ground plane to restrict radiation. The curved ground plane allows greater radiation
around the cylinder when rays spread as they scatter from it. Figure 5-10 shows the
horizontal plane pattern for a vertical dipole mounted near a 1λ-diameter cylinder for
spacing of 0.25λ, 0.4λ, 0.5λ, and 0.75λ. When we space a dipole λ/2 above a large
flat ground plane, the pattern has a null normal to the plane. The cylinder is unable
to generate a full image of the dipole to produce this null, but the pattern does dip
11.2 dB from the peak. A dipole spaced 3λ/4 over a ground plane produces a three-
lobed pattern that we can see in Figure 5-10 except that the cylinder can produce only
8-dB dips. If we mount the dipole over a 2λ-diameter cylinder, the pattern is similar
to Figure 5-10 except that F/B increases and the nulls have greater depths. Table 5-2
summarizes pattern results for vertical dipoles mounted over small cylinders.
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FIGURE 5-10 Horizontal plane pattern for a vertical dipole mounted near a 1λ-diameter
cylinder at 0.25λ, 0.4λ, 0.5λ, and 0.75λ distances.

TABLE 5-2 Dipole Mounted Over a Cylinder Aligned with a Cylinder

Gain (dB)
Height (λ) Cylinder Gain Peak

Over Cylinder Diameter (λ) At 0◦ At 180◦ Peak Angle

0.25 0.25 3.5 −2.1 3.6 0
0.50 6.1 −2.7 6.1 0
1.0 6.7 −6.1 6.7 0
2.0 7.3 −10.7 7.3 0

0.4 0.25 3.2 0.3 4.9 64
0.50 3.6 −1.3 6.0 62
1.0 2.2 −5.3 5.1 60
2.0 2.2 −9.7 6.0 54

0.5 0.25 0.5 0.9 5.2 80
0.50 −2.9 −1.8 4.8 80
1.0 −5.9 −4.2 5.2 76
2.0 −8.7 −8.5 5.9 70

0.75 0.25 3.3 −0.2 3.4 102
0.50 5.0 −0.9 4.7 102
1.0 5.1 −3.2 4.6 98
2.0 6.4 −6.8 5.2 90
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FIGURE 5-11 Horizontal dipole mounted over a vertical 1λ diameter pole at 0.25λ, 0.4λ,
0.5λ, and 0.75λ distances.

TABLE 5-3 Dipole Mounted Over a Cylinder Perpendicular to a Cylinder

Gain (dB)
Height (λ) Cylinder Gain Peak Peak Angle

Over Cylinder Diameter (λ) At 0◦ At 180◦ Perpendicular to Plane Perpendicular to Plane

0.25 0.25 3.8 −2.6 3.8 0
0.50 6.6 −4.4 6.6 0
1.0 7.1 −8.2 7.1 0
2.0 7.0 −8.6 7.4 30

0.4 0.25 3.0 −0.2 4.9 46
0.50 2.9 −2.5 6.5 48
1.0 0.6 −7.1 6.4 50
2.0 1.2 −7.3 7.3 54

0.5 0.25 0.0 0.5 5.1 54
0.50 −4.2 −2.8 5.2 54
1.0 −5.6 −5.7 6.6 56
2.0 −6.7 −6.3 7.3 60

0.75 0.25 3.5 −0.4 2.7 66
0.50 5.3 −1.6 4.3 66
1.0 5.7 −4.3 5.1 66
2.0 6.4 −5.7 5.8 70
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To complete the analysis, the dipole was rotated so that its axis is perpendicular
to the pole. Figure 5-11 illustrates the patterns calculated for a horizontally polarized
dipole mounted above a vertical pole. We expect a pattern null at 90◦ in this horizontal
plane due to the dipole polarization null, but the dipole induces curved currents on
the cylinder that radiate and fill in these nulls. The null due to the dipole does narrow
the pattern in the horizontal plane compared to Figure 5-10, and in many cases peak
radiation occurs in the vertical plane. Table 5-3 lists the characteristics of the horizontal
dipole mounted over a vertical pole for various dipole spacing above the pole and
its diameter.

5-6 CROSSED DIPOLES FOR CIRCULAR POLARIZATION

We produce a circularly polarized antenna by placing two dipoles along the x- and
y-axes over a ground plane and feeding them with equal amplitudes and quadrature
phase (0◦ and −90◦ for RHC). Without the ground plane the combination radiates
LHC in the −z direction. The ground plane changes the sense of circular polarization
of the wave radiated in the −z-direction and it adds with the direct radiated wave.
The dipoles are fed from either dual folded baluns that produce two separate inputs or
by a split coax balun connecting both dipoles in shunt. The shunt connection requires
differing lengths for the dipoles to produce the 90◦ phase difference that we call the
turnstile configuration.

The dual-feed antenna uses either a quadrature hybrid equal-amplitude power divider
to feed the two ports or an equal phase and amplitude power divider with an extra line
length on one of the two ports. The hybrid power divider feed produces an antenna
with a wide impedance and axial ratio bandwidth. The hybrid power divider has two
inputs that provide ports for both RHC and LHC polarizations. The signals reflected
from the two equal-length dipoles when fed from one port of the hybrid reflect into
the second port due to the phasing in the hybrid coupler. When measuring at one port
of the hybrid, the impedance bandwidth is quite broad because the reflected power is
dissipated in the load on the other port. This dissipated power lowers the efficiency
of the antenna, a hidden loss unless you measure the coupling between the inputs of
the hybrid. The second configuration, using the extra line length, produces an antenna
with a narrowed axial ratio bandwidth and a wider impedance bandwidth compared to
a single dipole. The extra 180◦ round-trip total signal path in one arm causes the equal
reflections to cancel. Figure 5-12 gives the circularly polarized pattern from a pair of
crossed dipoles over a ground plane with a perfect feed. The E-plane dipole null limits
the angular range of good circular polarization. We improve the circular polarization
by raising the dipoles a little and tilting them down to widen the E-plane beamwidth.
Figure 5-12 shows the pattern for the tilted dipole pair and illustrates the improved
cross polarization and the wider beamwidth. The placement on a finite ground plane
complicates this result somewhat and will require extra design effort.

Turnstile feeding exploits the impedance properties of the dipole to shift the relative
phase between two different dipoles when shunt connected to the same port. When
we shorten a dipole below resonance, its impedance is capacitive and its current has
positive phase relative to the resonant-length dipole, while the lengthened dipole has
an inductive reactance and a negatively phased current. We determine the lengths of
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FIGURE 5-12 Crossed dipoles fed for circular polarization: (a) λ/4 height and 0◦ tilt; (b) 0.3λ

height and 30◦ tilt.

the two dipoles by a perturbation technique using the Q of the resonant circuit of the
dipole. Q is related to the VSWR bandwidth:

BW = VSWR − 1

Q
√

VSWR
Q = VSWR − 1

BW
√

VSWR
(5-10)

We derive the lengths of the two dipoles in terms of the resonant (zero reactance)-length
dipole, L0:

Lx = L0√
1 + 1/Q

Ly = L0

√
1 + 1

Q
RHC polarization (5-11)

A dipole of 0.014λ diameter located 0.3λ above a ground plane and tilted down 30◦ has
a resonant length of 0.449λ. The 2 : 1 VSWR bandwidth for 70 � is 18.3% or a Q of
3.863 by using Eq. (5-10). When we insert this Q in Eq. (5-11), we calculate the two
lengths for a turnstile design: Lx = 0.400λ and Ly = 0.504λ for RHC polarization.
The +x and +y poles are fed from the same port. Figure 5-13 plots the Smith chart of
this design. The trace on a Smith chart rotates clockwise for increasing frequency. The
cusp in the trace is the frequency with the best axial ratio, which did not occur at the
frequency of best match. Nevertheless, the 2 : 1 VSWR bandwidth of the antenna has
increased to 41.5% because the combined reactance of the two dipoles cancels over a
large frequency range. At center frequency the pattern is similar to Figure 5-12 except
that the patterns in the two planes have slightly different beamwidths due to the dipole
lengths. When the frequency shifts off center, the axial ratio degrades. The axial ratio
bandwidth is far less than the impedance bandwidth, and the design gives a 16.4%
6-dB axial ratio bandwidth. An axial ratio of 6 dB produces 0.5-dB polarization loss
similar to the 0.5 dB reflected power loss of 2 : 1 VSWR. This illustrates the importance
of considering not only the impedance bandwidth but also the pattern characteristics
over the frequency band.

We can increase the beamwidth of the turnstile dipole located over a ground plane by
adding a notched cone under it. Figure 5-14 illustrates the arrangement of the slightly
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Finish

Start

Best
Axial Ratio

FIGURE 5-13 Smith chart response of a turnstile dipole pair Lx = 0.400λ and Ly = 0.504λ

mounted 0.30λ over a ground plane with 30◦ tilt.

FIGURE 5-14 Turnstile dipole mounted over a notched cone on a finite circular ground plane
with radial line chokes to reduce the backlobe.

less than λ/4-long notches in a 45◦ cone with the turnstile dipoles located about λ/4
above the ground plane. A split-tube coaxial balun feeds the two dipoles sized as a
turnstile with dipoles of longer and shorter length. The upper feed jumper excites RHC
radiation. The dipoles excite magnetic currents in the slots that radiate a broad pattern
to fill in the E-plane nulls of the dipoles. On an infinite ground plane the horizontal
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FIGURE 5-15 Pattern of a turnstile dipole mounted over a notched cone with a 0.75λ ground
plane and two radial chokes.

polarization must vanish along the ground plane, and the RHC and LHC components
would be equal at 90◦ similar to the pattern shown in Figure 5-12. By using a finite-
size ground plane, the horizontal component does not vanish, and a wide beamwidth is
obtained with circular polarization at 90◦ as shown in Figure 5-15, which uses a 0.75λ-
diameter ground plane and 0.5λ-base-diameter cone. To reduce the backlobe below the
ground plane, two short-circuited radial transmission line chokes were placed around
the edge to form a soft surface. We size the inner radius so that the transmission line
produces an open-circuit impedance at the outer rim that reduces the edge diffraction
and the backlobe [6, p. 88]. From a PO perspective the radial line choke is a slot that
supports a magnetic current loop. This example illustrates that slots or notches can be
used to shape the patterns of small antennas.

5-7 SUPER TURNSTILE OR BATWING ANTENNA [7]

The super turnstile or batwing antenna was developed for TV transmitter antennas.
The antenna combines a slot with a dipole batwing to produce an antenna with a wide
impedance bandwidth. Figure 5-16 shows the normal configuration, with four wings
placed around a central support metal mast. Each wing connects to the mast at the top
and bottom with a metal-to-metal connection. The inner vertical rod and the support
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FIGURE 5-16 Super turnstile or batwing antenna using an open rod construction.

H-Pol.

V-Pol.

FIGURE 5-17 Elevation pattern of a single bay of a super turnstile antenna showing horizontal
and vertical polarization components.



236 DIPOLES, SLOTS, AND LOOPS

mast form a two-line slot fed by a jumper located at the center of each wing. To
produce an omnidirectional pattern about the mast, a feed power divider located inside
the mast phases the inputs for circular polarization (0◦, 90◦, 180◦, 270◦). The antenna
radiates horizontal polarization in the horizontal plane but radiates cross-polarization
that increases with elevation (depression) angle as shown in Figure 5-17. A four-wing
antenna produces a horizontal plane pattern ripple of about 1.5 dB. Adding more wing
antennas around a larger central mast reduces the ripple.

The extraordinary characteristic of the antenna is its impedance bandwidth. Figure
5-18 gives the return loss frequency response for a wire frame antenna. The 1.1 : 1
VSWR bandwidth is about 35%; if adjusted to 1.25 : 1 VSWR, the antenna has a 51%
bandwidth. You make small adjustments to the spacing between the mast and the inner
rod to tune the VSWR. Table 5-4 lists the parameters of batwing antennas with both
wire frame and solid panel wings. The solid panels lower the input impedance to 75 �

from the 100 � of the wire frame antenna. Using an antenna with only two wings
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Normalized Frequency

Adjusted for 1.1:1 VSWR

Adjusted for 1.25:1 VSWR

FIGURE 5-18 Super turnstile wire frame antenna return-loss response adjusted for 1.1 : 1 and
1.25 : 1 VSWR.

TABLE 5-4 Dimensions of a Super Turnstile
Antenna in Wavelengths for Four Wings Center-Fed
for Circular Polarization

Parameter Wire Frame Solid Wing

Impedance (�) 100 75
Height 0.637 0.637
Wing upper 0.2254 0.229
Wing middle 0.0830 0.0847
Gap 0.0169 0.0216
Rod diameter 0.0508
Mast diameter 0.0847 0.0847
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changes the input impedance from the value for an antenna with four wings because
the close coupling between the wings alters the impedance. It depends on the feeding
mode. This holds for any antenna with close coupling: for example, a spiral antenna.
You must feed it in the operating mode to measure the correct input impedance. The
transmitter antenna will consist of a number of these antennas stacked vertically to
produce a narrow pattern directed at the horizon.

5-8 CORNER REFLECTOR [8, p. 328]

The usual corner reflector (Figure 5-19) has a dipole located between two flat plates
that limit directions of radiation. The angle between the reflectors can be any value,
but 90◦ seems to be the most effective. On paper, decreased angles give better results,
but only marginally. We could consider the flat plate as a limiting case. The tangential
electric fields must vanish at the surface of the flat plates. We discover a greater
restriction, since the fields can only decrease gradually in the limited space between
the ground planes and the dipole. Most of the power is concentrated in lower-order
spherical modes. In the limit of zero vertex distance, the single mode possible restricts
the beamwidth to 45◦ in the H -plane.

We analyze the 90◦ corner reflector as an array by using the three images of the
dipole in the ground planes (Figure 5-19) plus the real dipole. The array factor of the
array of dipole and images is

∣∣ejkd cos θ + e−jkd cos θ − (ejkd sin θ sin φ + e−jkd sin θ sin φ)
∣∣2

Length

Height

Images

d

d

d

FIGURE 5-19 A 90◦ corner reflector.
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In the H -plane, φ = 90◦ and we evaluate terms to get

4[cos(kd cos θ) − cos(kd sin θ)]2

where d is the distance from the vertex to the dipole and θ is the H -plane pattern
angle from the axis. We must multiply this by the pattern of the dipole to obtain
the radiation intensity. We consider only the H -plane, where the maximum radiation
intensity is found from Eq. (5-9):

U = 4[cos(kd cos θ) − cos(kd sin θ)]2 η|I0|2
(2π)2

(
1 − cos

kL

2

)2

(5-12)

where η is the impedance of free space, I0 the dipole current, and L the dipole length.
The radiated power of the single dipole is

Pin = |I0|2[R11 + R12(2d) − 2R12(
√

2 d)] (5-13)

where R11 is the self-resistance of the dipole and R12(x) is the mutual resistance
function between the dipole and its images. The directivity is found from

directivity(θ) = 4πU(θ)

Pin
(5-14)

We combine Eqs. (5-12) and (5-13) into Eq. (5-14) to compute directivity of the 90◦

corner reflector with infinite sides:

directivity(θ) = 4η[1 − cos(kL/2)]2[cos(kd cos θ) − cos(kd sin θ)]2

R11 + R12(2d) − 2R12(
√

2 d)
(5-15)

Table 5-5 gives the directivity, beamwidth, and impedance of a 90◦ corner reflector fed
from a dipole 0.42λ long and 0.02λ in diameter. We must shorten the dipole further
than a free-space dipole length at resonance to compensate for the mutual coupling
between dipoles. Directivity increases as the vertex distance decreases, but the effects
of superdirectivity cause the efficiency and gain to fall as the vertex is approached.
The antenna has a 50-� input impedance for d = 0.37λ. This point shifts when we
increase the dipole’s diameter to increase its bandwidth.

Kraus gives the following guidelines for the size of the sides. Each plate should
be at least twice the length of the dipole-to-vertex distance, and the plate height (the
dipole direction) should be at least 0.6λ. To evaluate those guidelines, a GTD analysis
was performed on various combinations (Table 5-6) with d = 0.37λ. The H -plane
beamwidth decreases with an increase in plate length. After about 1.5λ sides, the
H -plane beamwidth fluctuates about 45◦ as the sides increase. Even with 5λ sides
the beamwidth is below 45◦. The E-plane beamwidth fluctuates with the plate height.
The directivity was estimated from the beamwidths. In one case—1.5λ sides and 1.5λ

high—the estimated directivity exceeds the directivity of the infinite-side case. The
edge diffractions add to the reflected and direct radiation of the rest of the antenna.

Refer to Section 2-4.2 for an example using PO to analyze a corner reflector. Similar
to infinite plate analysis, the reaction of the image dipoles in the finite plates can be
used to find the input impedance and gain of the antenna. When we analyze the corner
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TABLE 5-5 Characteristics of a 90◦ Corner
Reflector with Infinite Sides and 0.42λ Dipole

Vertex
Distance (λ)

Directivity
(dB)

Beamwidth
(deg)

Input Impedance
(�)

0.30 12.0 44.7 29.1 − j1.1
0.32 12.0 44.6 34.9 + j0.4
0.34 11.9 44.5 40.9 + j1.1
0.36 11.9 44.3 47.0 + j0.8
0.37 11.9 44.2 50.0 + j0.3
0.38 11.8 44.1 53.0 − j0.5
0.40 11.8 43.9 58.8 − j2.8
0.42 11.7 43.6 64.1 − j6.0
0.44 11.7 43.3 68.8 − j10.0
0.46 11.6 42.9 72.7 − j14.9
0.48 11.5 42.4 75.7 − j20.3
0.50 11.4 41.8 77.7 − j26.2
0.52 11.4 41.1 78.6 − j32.2
0.54 11.3 40.2 78.4 − j38.4
0.56 11.2 39.2 77.0 − j44.3
0.58 11.1 38.1 74.6 − j49.8
0.60 10.9 36.8 71.3 − j54.8

TABLE 5-6 Results of a GTD Analysis of a 90◦ Corner Reflector with Finite Sides and
Vertex Distance 0.37λ

Beamwidth
Side Plate F/B Estimated

Length (λ) Height (λ) E-Plane H -Plane (dB) Directivity (dB)

0.75 0.75 70.4 97.4 18.4 7.7
1.00 0.75 73.6 72.4 17.3 8.8
1.50 0.75 72.6 50.8 18.2 10.0
0.75 1.00 60.2 91.6 23.4 8.5
1.00 1.00 61.0 62.8 22.7 10.1
1.50 1.00 58.5 46.0 23.8 11.4
0.75 1.50 53.4 81.6 34.0 9.3
1.00 1.50 51.6 60.0 39.0 11.0
1.50 1.50 48.2 42.6 46.3 12.6
5.00 5.00 68.8 43.4 63.5 10.8

reflector using GTD, the method does not determine input impedance and gain must
be estimated from the patterns. We can use the method of moments to analyze the
corner reflector. One preferred construction method is to use rods for the reflector so
that the antenna has minimum wind loading. Figure 5-20 illustrates a corner reflector
made with only six rods on each side. Figure 5-21 gives the pattern of this antenna
from a moment method calculation. This small antenna produces excellent results.

We can use the angle of the sides as a design parameter. A geometric optics analysis
that uses images restricts the angle, but nothing stops the antenna from working for
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FIGURE 5-20 Corner reflector constructed from 0.6λ-long rods spaced 1/6λ with a dipole
spaced 0.37λ from the vertex.

E-Plane

H-Plane

FIGURE 5-21 Pattern of a corner reflector made from 0.6λ-long rods spaced 1/6λ with dipole
0.37λ from vertex.
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TABLE 5-7 Corner Reflector with Varying Angle H -Plane 0.9λ-Wide Plates Connected
to a 0.2λ Central Plate, 1λ E -Plane Width, Dipole 0.3λ Above the Central Plate

Beamwidth Beamwidth
Side Gain F/B Side Gain F/B

Angle E-Plane H -Plane (dB) (dB) Angle E-Plane H -Plane (dB) (dB)

60 58.1 59.4 9.1 21.7 15 59.2 65.9 9.5 19.3
55 57.1 56.0 9.9 22.6 10 61.6 83.3 8.7 26.3
50 56.3 52.3 10.5 23.0 5 64.7 99.2 7.8 25.1
45 55.8 49.1 10.8 23.4 0 67.8 108.6 7.5 23.6
40 55.4 46.8 11.1 22.8 −5 70.2 117.0 7.2 22.0
35 55.4 45.5 11.2 24.3 −10 71.5 125.8 6.9 16.5
30 55.6 45.6 11.0 24.9 −15 71.8 135 6.6 19.0
25 56.2 47.9 10.7 25.5 −20 71.7 143.8 6.3 17.8
20 57.4 53.7 10.2 20.3 −25 71.8 152.2 5.4 16.1

Dipole

Center
Plate

Side Plate
Hinge

0.2l

0.9l

FIGURE 5-22 Corner reflector with variable-angle side plates and a center flat plate.

arbitrary side angles. It is convenient to have a small plate between the tilted sides for
the mounting brackets, and these side plates could be mounted on hinges and rotated
to vary the H -plane beamwidth. Table 5-7 lists the parameters of a corner reflector
1λ along the E-plane, a central plate 0.2λ wide in the H -plane, and sides 0.9λ long
where the side angle is varied. The dipole is located 0.3λ above the central plate.
We measure the side plate angle from the plane containing the small central ground
plane; zero corresponds to a flat plane ground plane and 45◦ the usual corner reflector.
Negative side-plate angle means that the side plates are tilted behind the central plate
away from the dipole. Figure 5-22 illustrates the H -plane cross section of this corner
reflector with 30◦ side plates.

We should not design corner reflectors with large sides since the gain is limited. The
gain of paraboloid reflectors of the same size soon exceeds that of a corner reflector.
A 2λ-diameter paraboloid reflector at 50% efficiency has a gain of 13 dB, and its gain
exceeds that of a corner reflector. Any corner reflector with a vertex angle given by
180◦/N , where N is an integer, can be analyzed by the method of images. Corner
reflectors with N greater than 2 have only marginally higher gains. The 90◦ corner
reflector gives the best result for a given amount of material. Elkamchouchi [9] adds
a cylindrical surface between the plates centered on the vertex. This surface adds
another set of images within the cylinder. The images increase the gain by about 2 dB
and decrease the frequency dependence of the impedance.
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10l dia. Disk

2l dia.

1l dia.

FIGURE 5-23 A λ/4 monopole located on 1λ-, 2λ-, and 10λ-diameter disk ground planes.

5-9 MONOPOLE

A monopole consists of a single conductor fed out of a ground plane from the center
conductor of a coax. When we include its image (Figure 5-6), the monopole equates
to a dipole for analysis. The fields vanish below the ground plane and restricting the
fields to the upper hemisphere doubles the gain over a dipole, since only half the input
power of the dipole is needed to produce the same field strength.

The input impedance decreases to half that of the equivalent dipole. We can form
the image of the voltage source feeding the monopole in the ground plane. The voltage
across the input of the equivalent dipole is twice that of the monopole to produce the
same current. Therefore, the impedance of the monopole is half the impedance of
the dipole.

The large value of edge diffraction greatly limits the F/B ratio of a monopole when
it is placed on a finite ground plane. Figure 5-23 shows the pattern of a monopole when
placed on 1λ-, 2λ-, and 10λ-diameter circular ground planes. The back radiation can be
reduced by placing the monopole over a ground plane with circular corrugations that
forms a soft surface at the edge when the corrugations are slightly deeper than λ/4 [10].
When the corrugations are less than λ/4, the ground plane can support surface waves.

5-10 SLEEVE ANTENNA [8, p. 422; 11, Chap. 5; 12; 13, p. 278]

A sleeve around the monopole (Figure 5-24) moves the virtual antenna feed up the
monopole. The bandwidth increases because the current at the feed point remains nearly
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Virtual Feed Point
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Image Feed Point Images
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FIGURE 5-24 Sleeve monopole and current distributions.

constant over a wide band. Currents at the input for the case when the monopole is
a quarter-wavelength long and when it is a half-wavelength long are about the same
(Figure 5-24). The input resistance remains constant as the frequency changes.

The sleeve shields possible radiation from the internal currents while the currents on
the outside of the sleeve radiate. The pattern changes little from that of an unshielded
monopole. The internal structure is available as a series-matching stub and a trans-
former to broadband the antenna. Design consists of adjusting the parts until a suitable
compromise input impedance match is achieved over the band.

Dipole sleeve antennas (Figure 5-25) require symmetrical sleeves on the arms to
maintain the symmetry of the currents. It is equivalent to feeding the antenna in two
places. The balun is made an integral part of the base. In both antennas, strips or rods
can replace the total coaxial sleeve [14]. The currents on the rods cancel the radiation
from the currents on the internal feeder. Figure 5-26 illustrates an open-sleeve dipole
using two rods designed to be mounted over a ground plane. The antenna is fed from
a folded balun that consists of a grounded vertical coax with one pole connected to the
outer shield and a matching tube connected to the second pole. The center conductor
jumps across the gap to the second pole. Following are the design dimensions in
wavelengths normalized to the lower-frequency band edge:

Dipole length 0.385 Dipole diameter 0.0214
Sleeve length 0.2164 Sleeve diameter 0.0214
Dipole-to-sleeve spacing 0.0381 Dipole height above ground 0.1644
Input taper 0.056

Figure 5-27 plots the return-loss response of the antenna for various configurations
and models of the antenna. The dipole without the sleeves has its best return loss over
a narrow band centered at a normalized frequency of 1.05. The sleeves have little effect
on this response at the low-frequency end. Adding sleeves produces a second resonance,
which combines with the lower one to produce a broad bandwidth. An initial method of
moments analysis used constant-diameter rods for the antenna, and Figure 5-27 shows
the poor impedance match response of the antenna. A key element of the experimental
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FIGURE 5-25 Sleeve dipoles.

FIGURE 5-26 Open-sleeve dipole with conical input taper.
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FIGURE 5-27 Return-loss response of an open sleeve dipole: (a) dipole without sleeves;
(b) open sleeve antenna; (c) open sleeve antenna with tapered input; (d) open sleeve antenna
with tapered input located λ/4 over ground plane; (e) open sleeve antenna over a 1λ-diameter
ground plane.
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antenna is the tapered input. Adding this feature to the model produced the improved
broad response of the experimental antenna. The constant-diameter model response
shows a notable capacitive term on a Smith chart, and the tapered input produced
the necessary inductance to reduce this effect. If the antenna is located in free space,
the impedance response improves as shown. Figure 5-27 points out the importance of
analyzing an antenna in its operating environment. The dot-dashed curve illustrates the
response when the antenna was mounted over a one-wavelength-square ground plane.
The finite ground plane produces a small but noticeable change in the input impedance.
The effects of small changes in the analytical model warn us that we cannot expect
antennas to match their models exactly and that small mechanical details can be used
to improve performance.

An open-sleeve antenna can be made using a wire cage. Since the diameters of the
dipole and sleeve rods are large, the weight can be reduced by using a circular array
of wires for each conductor. The effective diameter of the cage, deff, is given as

deff = d

(
nd0

d

)1/n

or
d0

d
= 1

n

(
deff

d

)n

(5-16)

The diameter of the individual wires is d0, the cage diameter is d , and n is the number
of wires.

5-11 CAVITY-MOUNTED DIPOLE ANTENNA

A dipole can be placed in a cup, and the assembly can be flush-mounted in a ground
plane. The antenna shown in Figure 5-28 has disk sleeves located above and below the
dipoles to stretch the bandwidth over a 1.8 : 1 range [15]. Following are the dimensions
normalized to the dipole length:

D

L
= 2.57

H

L
= 0.070

T

L
= 0.68

G

L
= 0.40

S

L
= 0.505

The operating range is 0.416λ ≤ L ≤ 0.74λ. The antenna cavity ranged from 0.28λ

to 0.50λ deep and can no longer be considered thin. The cup antenna has a nearly
constant gain (±0.5 dB) of 10.5 dB over the band. Mounting the antenna in a cavity
opens up new possibilities, because extra parameters are added to the design. At the
low-frequency end, the cavity diameter is 1.07λ, which grows to 1.90λ at the high end.

We can use a dipole in a cup as a reflector feed. Excellent pattern and impedance
response is obtained with the dipole mounted in a truncated cone cup with a 0.88λ aper-
ture diameter, a 0.57λ-diameter base, and a 0.44λ depth [16, pp. 106–108]. The dipole
is foreshortened to 0.418λ for an element diameter of 0.013λ and mounted 0.217λ

above the base to achieve a 21% 2 : 1 VSWR bandwidth for a single element. When
we use a cross-polarized pair fed from a hybrid coupler to radiate CP, the impedance
match at the input port improves. The signals reflected from the two dipoles add in
phase at the isolated port and cancel at the input port. The load dissipates the reflected
power, and the antenna through the hybrid presents an excellent impedance match.
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FIGURE 5-28 Cavity-mounted sleeve dipole antenna.

LHC Pol.

RHC Pol.

FIGURE 5-29 Circular polarization response of a crossed dipole mounted 0.217λ above the
bottom of a truncated cone 0.44λ deep with a 0.88λ aperture and a 0.57λ base.
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TABLE 5-8 Illumination Losses When Pattern of
Figure 5-29 Feeds a Paraboloidal Reflector

Loss (dB)

f/D Average Maximum

0.36 1.69 1.74
0.38 1.60 1.66
0.40 1.54 1.65
0.42 1.50 1.65
0.44 1.49 1.68
0.46 1.50 1.72
0.48 1.52 1.77
0.50 1.55 1.83
0.52 1.60 1.91

Figure 5-29 plots its pattern when excited for CP. The cross-polarization is about
30 dB below the peak co-polarization response over the entire 10-dB beamwidth cone.
It has the following illumination losses when the antenna is used as a paraboloidal
reflector feed (see Section 8-2); for f/D = 0.44 and averaged over the 21% bandwidth:

spillover loss = 0.72 dB amplitude taper loss = 0.65 dB

cross-polarization loss = 0.12 dB

Table 5-8 demonstrates the broad optimum reflector f/D for a phase center 0.02λ

inside the aperture plane, where we position it at the reflector focus.

5-12 FOLDED DIPOLE

A half-wavelength folded dipole increases the input impedance of a normal dipole
fourfold while radiating the pattern of a single dipole. With the two elements closely
coupled, we analyze the antenna using even and odd modes (Figure 5-30). The even
mode divides the antenna into separate dipoles because the magnetic wall halfway
between them is a virtual open circuit. The input current to the even mode becomes

Ie = V

2(Z11 + Z12)

Magnetic ElectricWall Wall

V/2

V/2

+ −

+

=

−

V/2

l/2

V/2

V
+ + −−

− +

FIGURE 5-30 Folded dipole analysis modes.
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where Z11 is the self-impedance of one of the dipoles and Z12 is the mutual impedance
between the closely coupled dipoles. The odd mode reduces the antenna to the series
connection of two nonradiating λ/4 stubs:

Io = V

jZ0 tan(kL/2)

where Z0 is the characteristic impedance between the two rods. The input current is
the sum of the even- and odd-mode currents. Near L = λ/2, the odd-mode current is
quite small because its input impedance is an open circuit, and the input impedance is
then determined by the even mode only:

Zin = V

Ie

= 2(Z11 + Z12)

For closely coupled lines, Z11 = Z12 and the input impedance becomes Zin = 4Z11,
where Z11 is the self-impedance of the dipole. Higher input impedance levels can be
obtained by adding more elements.

A second method of altering the step ratio from 4 is to use unequal feed and shorted
element diameters [17,18]. Given a driven element radius a1, parasitic element radius
a2, and center-to-center spacing b, Hansen [18] gives a convenient formula for the
step-up ratio (1 + γ 2):

γ = cosh−1[(v2 − u2 + 1)/2v]

cosh−1[(v2 + u2 − 1)/2uv]
where u = a2/a1 and v = b/a1 (5-17)

5-13 SHUNT FEEDING [19, p. 118]

Shunt feeding grows out of the folded dipole. The T-match (Figure 5-31) starts as a
folded dipole when the taps are at the ends. As the taps move toward the center, the
impedance of the dipole dominates at first, since the admittance of the shunt stub in the
odd mode is small and the input impedance is capacitive. At some point, as the taps
move toward the center, the inductive admittance of the stub will cancel the capacitive
admittance of the dipole and produce antiresonance with its high input resistance. The
location and magnitude of this peak resistance depends on the diameters of the rods
in the T-match section and the diameter of the radiator. The input resistance decreases
as we continue to move the tap point toward the center after the feed location passes
the antiresonance point. The input impedance is inductive and match is achieved by
using symmetrical series capacitors. The T-match is fed from a balanced line.

The center short on the dipole allows the direct connection of the dipole to ground.
Direct connection of broadcast towers (monopoles) to ground gives some lightning
protection because the transmitter is capacitively connected to the tower. Shunt feeding
with a T-match enables solid conductors, such as the skin of an aircraft, to be excited
as a dipole. Horizontal shunt-fed dipoles can be connected directly to vertical towers
with a metal-to-metal connection to increase the strength of the antenna to withstand
adverse weather conditions.

A gamma match (Figure 5-31) can be fed from an unbalanced coax line. The shield
of the coax connects to the shorted center of the dipole while the center conductor
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Tee Match

Balanced Line

Coax

Gamma Match

FIGURE 5-31 Shunt-fed dipoles.

taps into one side of the solid rod. Moving the tap away from the center increases
the input resistance. The inductive reactance is series-tuned with a capacitor. Both of
these connections reduce the bandwidth of the antenna as the input impedance is raised
because the combination of the series capacitor and the shunt inductive stub increases
the stored energy and Q of the antenna.

5-14 DISCONE ANTENNA

The discone antenna (Figure 5-32) is a modification of the dipole where the upper pole
becomes a disk and the lower pole turns into a cone. We feed the antenna by locating
a coax in the center of the cone and by connecting its outer shield to the lower cone at
its top while we extend the coax center conductor and connect it to the disk. We obtain
an antenna with a wide impedance bandwidth and a dipolelike pattern. As frequency
increases the pattern peak moves toward the cone and gives a downward-pointing
pattern. Figure 5-33 shows the pattern of a discone antenna at the design frequency
and at two, three, and four times this frequency. The antenna produces less useful
patterns as frequency increases. The antenna that gives the patterns in Figure 5-33 has
a VSWR less than 3 : 1 from 1 to 10 times the design frequency. The cone upper
diameter determines the high-frequency end of good impedance match. Typical slant
length dimensions versus cone angle are as follows [20, pp. 128–130]:

Total Cone Angle 25 35 60 70 90

Slant Length (λ) 0.318 0.290 0.285 0.305 0.335

The upper disk diameter equals 0.7 times the lower cone diameter. The spacing
between the top of the cone and the upper disk equals 0.3 times the diameter of the
upper cone. The diameter of the upper cone determines the upper frequency limit, but
practice shows that the antenna patterns are good only over a 4 : 1 to 4.5 : 1 frequency
range. The impedance bandwidth is much wider than the pattern bandwidth. To reduce
weight and wind loading, the cone and disk can be made from rods, with a typical
implementation having at least eight.



250 DIPOLES, SLOTS, AND LOOPS

FIGURE 5-32 Discone antenna with coaxial feed with a center conductor connected to the
upper disk and a shield connected to the lower cone.

Freq. = 4

Freq. = 2

Freq. = 1

Freq. = 3

FIGURE 5-33 Elevation pattern of a 60◦ discone antenna at normalized frequencies = 1, 2,
3, and 4.
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5-15 BALUNS [21; 22, pp. 167–180]

A balun properly connects a balanced transmission line to an unbalanced transmission
line. Simple arguments about impedances to the balanced and unbalanced modes of
the three-wire transmission lines explain its operation. Considering one of the lines of
a transmission line as ground misleads us. A ground plane under the transmission-line
feeder becomes the third conductor of a three-wire line. Currents flowing in the ground
plane can unbalance the currents in the feeder. A balanced three-wire transmission-
line mode carries equal and opposite currents in the feeder lines. The capacitances
per unit length of the two lines to ground are the same. Coax is an example of an
unbalanced line structure (Figure 5-34). The inner conductor has no direct capacitance
to ground. The two-wire line shown in Figure 5-34 is a balanced line having equal
capacitances to ground, but we must judge a balanced line by the currents, not just the
physical structure.

Before we analyze baluns, we must consider the fundamental modes of a three-
wire transmission line. Figure 5-35 shows circuit representations of the modes without
showing the ground conductor. Equal loads terminate ports 3 and 4. The even mode
applies equal voltages on ports 1 and 2 and forms a magnetic wall between the conduc-
tors where the magnetic field vanishes to produce a virtual open circuit. The unbalanced
mode—equal current directions—is associated with the even mode. Equal and oppo-
site voltages on ports 1 and 2 form the odd mode and set up an electric wall between
the conductors. The electric wall is a virtual short circuit. The odd mode excites equal
and opposite currents—balanced mode—on the two lines. When the loads on ports 3
and 4 are unequal, the modes separate according to the voltages, even and odd, or the
currents, unbalanced and balanced. Dipoles present loads between the lines and not
to ground.

Balanced line

Ground Ground

Unbalanced line

FIGURE 5-34 Physically balanced and unbalanced transmission lines.
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FIGURE 5-35 Balanced and unbalanced modes on a three-wire transmission line.
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Unbalanced mode circuits radiate. Only closely spaced equal and opposite currents,
the balanced mode, cancel the far-field radiation from the currents on the feed lines.
The radiating feeder line adds radiation components to the antenna. These components
can radiate unwanted polarizations and redirect the beam peak of the antenna (squint).
In reception, the unwanted currents excited on the feeder by passing electromagnetic
waves reach the receiver terminals without a balun to block them. We analyze baluns
by using either transmitting or receiving antennas, depending on convenience, because
reciprocity applies to baluns as well as antennas.

We detect balance problems from pattern squint and cross polarization. An
impedance-measuring setup can detect some balance problems. Radiating unbalanced
currents cause changes in the impedance. The radiation shows when the impedance
changes as fingers are run over the coax line from the equipment. If we feed a dipole
from a coax without a balun, the current on the outer conductor splits between the dipole
conductor and the outside of the conductor. Patterns and impedance measurements
detect this current. Unbalanced currents on the arms of the dipole and feeder currents
cause pattern squint, but the cross-polarization radiated is usually a greater concern.

5-15.1 Folded Balun

A folded balun (Figure 5-36) allows the direct connection of a coax line to the dipole. A
dummy coax outer conductor is connected to the pole fed from the center conductor.
It runs alongside the feeder coax for λ/4 and connects to ground. The other pole
connects directly to the shield of the feeder coax. The outer conductor of the coax and
the extra line are two lines in a three-wire line with ground. We analyze the structure
by using balanced (odd) and unbalanced (even) modes. Unbalanced-mode excitation

Balanced Output
to Dipole Arms

Unbalanced Coax

l/4

FIGURE 5-36 Folded balun.
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Coax

Ys Ya Antenna

Quarter Wavelength Line with a
Short Circuit Termination

Ys = −jY0 cot kl

FIGURE 5-37 Folded balun equivalent circuit (balanced mode).

at the dipole forms a magnetic wall through the ground connection between the two
coax shields. The circuit reduces to a single line with an open circuit at the ground
connection. The open circuit transforms through the quarter-wavelength line to a short
circuit at the dipole. Any unbalanced currents induced on the dipole or the coax outer
conductor are shorted at the input. Balanced-mode excitation at the dipole forms an
electric wall through the ground connection. The balanced-mode circuit of the two coax
shields is a λ/4 short-circuited stub connected in shunt with the dipole (Figure 5-37).
We analyze the frequency response from Figure 5-37. The bandwidth of the balun,
although narrow, exceeds the bandwidth of the dipole. The Roberts balun [23] design
adds an open-circuited stub λ/4 long inside the dummy coax of the folded balun. Instead
of connecting the center conductor of feeding coax to the outer shield, we connect it
to the open-circuited stub. The equivalent circuit for the balanced mode includes the
short-circuited stub of the folded balun plus the open-circuited stub. The two reactances
shift in opposite directions as frequency changes and produce a dual resonance we see
as a loop on the Smith chart plot of impedance. The frequency bandwidth increases to
almost 3 : 1, a more suitable choice for wide-bandwidth antennas.

5-15.2 Sleeve or Bazooka Baluns

An outer jacket shields the outer conductor of the coax feeder in a sleeve balun
(Figure 5-38). The sleeve and outer conductor of the coax form a series stub between
the coax feeder and ground when the cup is short circuited to the coax outer conductor.
The λ/4 stub presents a high impedance to the unbalanced currents at the top of the cup
(Figure 5-39). A second sleeve below the first one and directed away from the dipole
further prevents currents excited on the coax from reaching the input. When the fre-
quency shifts, the connection to ground through the sleeve unbalances the transmission
line. This balun is inherently narrowband.

Adding a stub to the center conductor (Figure 5-40) increases the bandwidth because
the stubs track each other when the frequency changes. Figure 5-39 demonstrates the
circuit diagrams of the two types of sleeve baluns. The type II sleeve balun has match-
ing series stubs on the outputs. The lines remain balanced at all frequencies, but the
stubs limit the bandwidth of efficient operation. Marchand [21] adds an open-circuited
λ/4 stub inside the matching type II extra shorted stub of the sleeve balun and connects
it to the coax center conductor in the same manner as the Roberts balun. The Roberts
balun is a folded balun version of the Marchand compensated sleeve balun.

The coaxial dipole is a variation of the sleeve or bazooka balun. We rotate the
right pole in Figure 5-38 until it is vertical and remove the left pole. We turn over the
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l/4

FIGURE 5-38 Sleeve or bazooka balun.

Coax Inner Conductor

Inside of Outer Conductor

Outside of Outer Conductor
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l/4 l/4

Unbalanced Balanced line

FIGURE 5-39 Schematic of types I and II sleeve or bazooka baluns.

Balanced Mode

Unbalanced Mode

l/4l/4

FIGURE 5-40 Type II sleeve balun.

sleeve and connect the short-circuit end to the outer conductor of the coax. The sleeve
becomes the second pole of the dipole. The short-circuited stub at the bottom of the
dipole between the outer conductor of the coax and sleeve transforms to an open-circuit
impedance at the end of the lower pole. This prevents current flow farther down the
coax. Some references call this a sleeve dipole, which should not be confused with the
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sleeve dipole used to increase the impedance bandwidth. The coaxial dipole has the
inherently narrow bandwidth of the bazooka balun, but is a convenient construction.

5-15.3 Split Coax Balun [24, p. 245]

A split coax balun allows the connection of both arms of a dipole to the outer shield
of the coax that maintains symmetry to the dipole arms. Its rigidity helps to overcome
vibration problems. Slots cut in the outer shield (Figure 5-41) enable the coax line
to support two modes and make it equivalent to a three-wire line. A shorting pin
excites the TE11 mode in the slotted coax (Figure 5-42) to feed the dipole in the
balanced mode.

Analysis of a split coax balun is similar to that of a folded balun. The ends of the
slots are equivalent to the ground connection of the two coax shields of the folded
balun. A virtual open circuit forms at the ends of the slots in the unbalanced (even)
mode. It transforms to a short circuit at the dipole and shorts the unbalanced mode
at the input. The virtual short circuit at the end of the slots in the balanced mode
transforms to an open circuit at the input. Figure 5-37 gives its circuit diagram.

Symmetry improves the performance of a split coax balun over a folded balun. The
shorting pin is used only to excite the TE11 mode to feed the dipole arms. The extra
wire length of the center conductor jumper of the folded balun introduces phase shift
to the second arm and squints the beam. For that reason, the split coax balun is a
better high-frequency balun. The phase shift problem of the jumper also occurs with
the “infinite” balun of the log-periodic antenna.

Shorting
Pin

Dipole Arm

Dipole Arm

Slot
l/4

FIGURE 5-41 Split coax balun. (From [24], Fig. 8-5,  1948 McGraw-Hill.)

TEM TE11 Pin

E = 0

FIGURE 5-42 Coaxial transmission-line modes in a split coax balun. (From [24], Fig. 8-6, 
1948 McGraw-Hill.)
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5-15.4 Half-Wavelength Balun

A half-wavelength balun (Figure 5-43) works by cancellation of the unbalanced-mode
currents at the input to the coax. The impedance transforms by a factor of 4 from
unbalanced- to balanced-mode ports. In the unbalanced (even) mode, equal voltages
are applied to the two output ports. When the voltage wave on the upper line propagates
through λ/2, its phase changes by 180◦. This signal cancels the signal connected directly
to the coax center conductor.

A load across a balanced-mode transmission line has a virtual short circuit halfway
through it. The load on each balanced-mode line is 2Z0, where Z0 is the coax char-
acteristic impedance. The load on the end of the λ/2-long line is transformed by the
transmission line to the identical impedance when it circles the entire Smith chart.
The two loads, each 2Z0, are connected in shunt at the coax input and combine to
Z0. A balanced-mode impedance of 4Z0 transforms to Z0 at the coax input. The λ/2-
long cable can be rolled up for low frequencies. The balun transforms 300-� input
impedances of folded dipoles to 75 � by using RG-59 cable (75 �).

5-15.5 Candelabra Balun

A candelabra balun (Figure 5-44) transforms the unbalanced-mode impedance four-
fold to the balanced-mode port. The coax cables on the balanced-mode side connect
in series, whereas those on the unbalanced-mode side connect in parallel. We can
divide the balanced-mode impedance in two and connect each half to a 2Z0 impedance
transmission line. These lines then connect in shunt at the unbalanced-mode port. The
unbalanced-mode currents short out at the input to the 2Z0 coax lines in the same man-
ner as does the folded balun. More lines can be stacked in series and higher-impedance
transformations obtained, but construction becomes more difficult.

5-15.6 Ferrite Core Baluns

Ferrite cores can be used to increase the load impedance to unbalanced-mode currents
and reduce them. At low frequencies (<100 MHz) ferrite has high permeability. As the
frequency increases, the permeability drops, but the losses to internal magnetic fields
increase. The increased inductance of transmission lines is used at low frequencies,
and the increased loss is used at high frequencies to inhibit currents.

Ferrite bazooka or sleeve balun ferrite cores, placed on the outside of a coax line
(Figure 5-45), increase the impedance to ground for currents on the outside of the

Unbalanced

Balanced Zout = 4
Zin = 1

l/2

1

2

FIGURE 5-43 Half-wavelength balun.
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FIGURE 5-44 Candelabra balun.
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FIGURE 5-45 Ferrite core bazooka balun.

shield and inhibit unbalanced currents between the ground and the outer shield. The
ferrite balun can work over many decades. The ferrite material provides high impedance
through inductance at low frequencies. As the ferrite material impedance drops when
frequency increases, the transmission line approaches λ/4 of the bazooka balun. Any
ferrite core balun is a compromise design between low-frequency response controlled
by the amount of ferrite and high-frequency response controlled by the length of
transmission line.

Bifilar wire windings on a ferrite core form the 1 : 1 balun (Figure 5-46a). The bifilar
wire closely approximates 50- to 100-� characteristic impedance transmission lines.
This balun can work satisfactorily from 100 kHz to 1 GHz. When there are balanced
currents in the windings, there is no net magnetic field in the ferrite. In the unbalanced
mode, the fields add in the core and give a high series impedance due to the high
inductance (low frequency) or high resistance (high frequency). The amplitude at port
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FIGURE 5-46 Bifilar wire ferrite core baluns: (a) type I; (b) type II.
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FIGURE 5-47 Ferrite core candelabra balun.

2 (Figure 5-46a) is lower than at port 1 because of the extra losses introduced in the
ground lead by the ferrite core. This can be corrected by adding an extra winding to
ground (Figure 5-46b), which produces a type II bazooka balun. The extra winding
balances the outputs by adding loss to port 1 without any increase in bandwidth due
to the ferrite loading.

5-15.7 Ferrite Candelabra Balun

We can make a parallel-to-series ferrite balun that transforms the unbalanced-mode
input impedance fourfold to the balanced-mode output (Figure 5-47). As in the coax
version, the characteristic impedance between the wires in the cores should be twice the
unbalanced-mode input impedance. Point 3 (Figure 5-47) is a virtual short. Connecting
it to ground sometimes helps the balance. Both windings can be wound on the same
core, such as a binocular core.

5-15.8 Transformer Balun

A transformer balun has no transmission-line equivalent; it is merely a transformer
(Figure 5-48). The balanced-mode output impedance is fourfold that of the input
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FIGURE 5-48 Ferrite transformer balun.

unbalanced mode. Wound with trifilar wire, the output has twice the number of turns
compared to the input, and each output line has the same impedance to ground through
the transformer. No transmission-line effects extend the upper band edge beyond the
transformer action of the windings and ferrite, but the transformer balun is a fine
low-frequency device. Use of No. 36 and 38 wires in ferrite core baluns limits the
power-handling capability of the baluns to receive-only levels. The ferrite bazooka
balun (Figure 5-45) carries the power in coax, which allows higher power levels.

5-15.9 Split Tapered Coax Balun [25]

A split tapered coax balun starts with inherently unbalanced coax. Moving toward
the balanced end, an outer conductor slot opens and exposes more and more of the
center conductor (Figure 5-49). At the point where the size of the outer conductor
is reduced to that of the inner conductor, we connect a balanced twin line to the
two conductors. The impedance must be raised from input to output, since the two-
wire line, spaced the radius of the coax, has higher impedance than the one at the
coax input. The balance depends on reducing the reflected wave in the transformer.
Any suitable tapered transformer, such as Dolph–Chebyshev or exponential, can be
used, and design return loss is the level of the unbalanced mode. The balun can be
constructed in microstrip. The ground plane tapers until it and the upper conductor are
the same size. This balun can operate over decades of bandwidth, since the tapered
transformer determines the bandwidth.

FIGURE 5-49 Split tapered coax balun. (From [16], Fig. 1,  1960 IEEE.)
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5-15.10 Natural Balun [26, p. 821]

A natural balun feeds the coax through a loop antenna to the feed point where the
outer shield is split and the center conductor jumps the gap to connect to the outer
shield of the coax. At this point the currents flow on to the outer shield and radiate. By
moving an equal distance along the coax until the two halves meet, we can connect the
feed coax and not have current flow down the outside. The currents flow in opposite
directions along the loop and cancel at the connection. From a circuit point of view,
the connection point is a virtual short circuit to the balanced mode similar to a folded
balun at its connection point. In a similar manner, on a folded dipole we can connect
the feed coax to the middle of the shorted dipole and form a natural balun.

We have not exhausted the number of balun designs. The “infinite” balun of log-
periodic antennas will be discussed as part of the construction of such antennas. When
a broad-beam antenna is designed, sometimes a little squint in the beam and a little
cross-polarization are acceptable and the antenna may be fed without a balun.

5-16 SMALL LOOP

In Section 2-1.2 we discuss the radiation from a small constant-current loop. For a
small loop the current is approximately constant and has the pattern of a short magnetic
dipole located along the axis of the loop. Similar to the short dipole, we calculate the
series resistance and radiation resistance to calculate efficiency. We increase efficiency
by adding closely coupled turns and ferrite rods to increase the magnetic field. A
multiturn loop with N turns and loaded with ferrite with an effective permeability µeff

and area A has a radiation resistance:

Rloop = 320N2µeffπ
4 A2

λ4

The wire adds a series loss resistance RL to the input resistance of the multiturn loop,
but it is proportional to N instead of N2 and the wire surface resistance Rs given the
wire conductivity σ :

RL = (loop length)NRs

perimeter of wire cross section

Rs =
√

ωµ0

2σ

When we have a circular loop radius b and a wire diameter of 2a, we find a series
inductance from the loop:

Lloop = µ0µeffN
2b ln

b

a

RL = b

a
Rs

The radiation efficiency of the loop is calculated by using the series-loss resistance and
the radiation resistance:

ηe = Pr

Pin
= Rloop

Rloop + RL

Adding turns and ferrite material increases the radiation efficiency.
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We compute the mean effective permeability by integrating along the ferrite rod the
permeability distribution µc(x) of the core and dividing by its length [27, p. 6-20].
The following approximates its distribution for a core of length l:

µc(x) = µcs(1 + 0.106x − 0.988x2)

x = 2|x|
l

The factor µcs depends on the ferrite geometry. For a cylindrical rod with diameter D,
we calculate µcs from

µcs = µ

1 + (µ − 1)(D/l)2(ln(l/D){0.5 + 0.7[1 − exp(−µ × 10−3)]} − 1)

For a rectangular cross section of height h and width w (w ≥ h), we find µcs from

µcs = µ

1 + (µ − 1)(4wh/πl2){ln [βl/(w + h)] − 1}
β = 4 − 0.732

[
1 − exp

(
−5.5

w

h

)]
− 1.23 exp(−µ × 10−3)

When the axis of the loop is along the z-axis, the effective height h is determined by
the area:

h = −jµeffkA sin θ θ̂

The ferrite loop antenna finds use as a receiving antenna at low frequencies where the
sky noise is very high, and the added noise of the antenna due to poor efficiency has
little effect on the overall G/T value.

5-17 ALFORD LOOP [28]

An Alford loop feeds two dipoles curved into a loop that radiates an omnidirectional
pattern with horizontal polarization when located horizontally over a ground plane.
Figure 5-50 shows a configuration fed from coax where it feeds two parallel-plate
transmission lines connected in shunt. The flat dipoles and the sides of the transmission
line are offset by a central substrate (not shown). The opposite direction of the dipoles
produces a 180◦ phase shift between them. The odd-mode feed produces a pattern
null along the coax axis that reduces current excitation on the outside of the coax
and eliminates the need for a balun. We space the loops so that the circumference is
approximately 1λ and adjust the parallel-plate line impedance to transform the dipole
impedance to 100 � where the two sides are connected in shunt.

The horizontal pattern improves when we place the Alford loop in a slotted cylin-
der [29]. Figure 5-51 illustrates the positioning of the loop in the slotted cylinder
when viewed from below before it is attached to a ground plane. The 0.38λ-diameter
cylinder has four slots each 0.5λ long with open-circuited ends. We cut an opening
about 0.2λ along the circumference about 0.12λ along the cylinder axis to create an
open circuit for the slot where the cylinder attaches to the ground plane. Of course,
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FIGURE 5-50 Alford loop fed by coax into a parallel-plate transmission line.

FIGURE 5-51 Alford loop feeding slotted cylinder viewed from below where connected to
ground plane.

the coax runs through the ground plate to its connector. We point the parallel-plate
transmission line halfway between two slots so that each curved dipole feeds two
slots. Figure 5-52 gives the typical pattern of the antenna on a ground plane. This
antenna illustrates another example of the interaction of dipoles and slots used to
improve patterns.
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FIGURE 5-52 Horizontally polarized pattern of Alford loop feeding slotted cylinder.

5-18 RESONANT LOOP [19, p. 158; 30]

A folded dipole has a perimeter of one wavelength, and any other shaped loop will
resonate when its perimeter is near one wavelength. The sinusoidal current distribution
of the folded dipole remains on the loop. The folded dipole has a dipole pattern with
its null in the direction of the voltage across the feed. The loop retains this pattern
property when it is symmetrical about the feed point. The loop shape that opens in the
H -plane distorts the normal perfect-circle H -plane pattern of the dipole and gives 3-
to 4-dB peaks in the directions normal to the loop compared with the directions in the
plane of the loop. The E-plane null is filled in with a cross-polarized pattern at about
20 dB below the beam peak.

Since the current distribution is sinusoidal on the loop, opposite the feed and halfway
around the loop perimeter is a virtual short-circuit point. The current reaches maximums
at the virtual short circuit and at the feed. We can expect a moderate input resistance
because the standing-wave current is high. A circular loop has an input resistance
of about 130 � when the loop is 1.08 wavelengths in perimeter. If the loop is a
parallelogram, the resonant input resistance depends on the angle between the wires at
the feed. The resistance starts at about 300 � for the folded dipole and decreases for
decreasing angles. At 120◦ between the lines, the resistance is about 250 � and drops to
50 � when the angle is 60◦. Four common loop shapes are: (1) circle, (2) square (quad),
(3) parallelogram, and (4) triangle. Changes in the shape affect the input resistance at
resonance and, to a slight degree, the resonant perimeter. The Q of the antenna is about
the same as that of a half-wavelength dipole. The gain equals that of the one-wavelength
dipole, 3.8 dB.

Figure 5-53 illustrates a resonant loop used as a ground plane for a dipole spaced at
λ/4 above it. Each square is λ/8 on a side with a center square with mounting holes
for the balun. The ground plane consists of two resonant loops, because the center
ring is eight squares around, while the outer ring has 16 squares for a 2λ loop. For
this antenna each pole consists of two rods: one horizontal and one tilted at 30◦. Two
versions of this antenna landed on Mars in 1976 [31]. Not only is the ground plane
extremely lightweight, but it gives an excellent F/B ratio for a ground plane only 1λ

across. We can easily add a resonant ring to an antenna—whether a dipole or another
antenna—and expect an improvement.
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FIGURE 5-53 Combined 1λ and 2λ resonant loops ground plane for crossed dipoles using
λ/8-side squares.

5-19 QUADRIFILAR HELIX [32, 33]

A quadrifilar helix consists of two interwound resonant loops twisted into a helical
shape. Although the antenna can be made using two open U-shaped wires, the usual
implementation has two loops. The loop quadrifilar helix is resonant when each loop
has a perimeter slightly greater than one wavelength, similar to a planar resonant loop.
The feed produces a standing-wave current distribution that peaks at the feed and at
the center of the shorting wire that joins the two ends of the helix. Nulls in the current
distribution occur halfway along the helical section. The lower half of the antenna can
be removed at the null points to form a dual open U-shaped antenna. An antenna using
a half-turn in each of the four arms of the helix with a diameter of 0.174λ and a height
of 0.243λ produces a circularly polarized pattern with a 120◦ beamwidth when fed
from two equal-amplitude feeds phased in quadrature.

If we consider a single twisted loop oriented with the z-axis along the helix axis,
we discover the unique radiation characteristics by doing a MOM analysis of the wire
loop. The analysis shows equal and opposite currents located on the feed and shorting
line that reduces the radiation from the closely spaced straight sections. The currents
along the helical section have a progressive traveling-wave phasing except for the 180◦

phase shift through the null. This traveling-wave current radiates circular polarization.
Consider a loop twisted into a right-hand helix. The loop radiates a pattern with

lobes along the +z- and −z-axes, both with left-hand circular polarization. If we rotate
the helix end to end, the helix remains right-hand and the problem has not changed.
Whether we feed the antenna at the top or bottom in the center of the straight wire, the
current distribution on the antenna is the same and the pattern has the same polarization.
When we feed both loops with phasing for left-hand circular polarization (x-axis 0◦

and y-axis 90◦) on the right-hand helix, the two left-hand circularly polarized lobes
from the two loops add along the z-axis, while the left-hand lobes along the −z-axis
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cancel because the feeding phases are for RHC along the −z-axis. Of course, we use
a left-hand helix and right-hand feeding phases for RHC polarization.

Figure 5-54 shows a left-hand half-turn quadrifilar helix that radiates RHC. Normal
practice uses a dual folded balun to feed the antenna, with the two ports connected to a
hybrid coupler to produce circular polarization. The balun short circuit is a disk located
λ/4 from the feed through which all four coax cables pass. We solder the coax lines
to the disk to complete the folded balun structure. We add two upper jumper wires at
the feed points. We can use the balun structure to support the two helixes as shown
in Figure 5-54. A second construction uses self-supporting helixes fed at the lower
end by a dual balun. Out of band this antenna also suffers from poor efficiency even
though the antenna is well matched at the hybrid port, because the equal reflections
from the two loops are routed to the load on the hybrid coupler. Although mutual
coupling between the two twisted loops modifies the input impedance, we discover
that each individual loop has nearly the same impedance as the total antenna.

We can feed a quadrifilar helix from a turnstile feed if we use unequal perimeter
twisted loops to produce a phase difference caused by the impedance changes when the
loop is longer or shorter than a resonant length. A development similar to Section 5-6
gives us the dimensional changes of the loops required to produce a circularly polarized
pattern. For a half-turn helix the perimeter length determines the resonant frequency:

perimeter =
√

(2 · height)2 + (π · diameter)2 + 2 · diameter (5-18)

By Section 5-6 the ratio of the two perimeters that will produce a circularly polarized
pattern is related to antenna bandwidth (Q). If we keep the same diameter (D) for both
helixes, we modify the heights (H ):

√
(2H1)2 + (πD)2 + 2D√
(2H2)

2 + (πD)2 + 2D
= 1 + 1

Q
(5-19)

FIGURE 5-54 Half-turn quadrifilar helix fed from two folded baluns.
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This allows the feed to be a split-tube balun when the two loops are joined to the same
coax balun located in the center. We split Eq. (5-19) in the same manner as Eq. (5-11)
to compute the two new heights:

√
(2Hx)2 + (πD)2 + 2D =

√
(2H0)

2 + (πD)2 + 2D√
1 + 1/Q

for RHC

√
(2Hy)2 + (πD)2 + 2D =

[√
(2H0)2 + (πD)2 + 2D

]√
1 + 1/Q

(5-20)

A half-turn quadrifilar helix with diameter = 0.174λ and height = 0.243λ has a 3.2%
2 : 1 VSWR bandwidth. We determine antenna Q by using Eq. (5-10) to be equal
to 22.1. We use Eq. (5-18) to calculate the perimeter of the unmodified helix to be
1.079λ. When we substitute the Q and the perimeter into Eq. (5-20), we can easily
solve for the two heights: Hx = 0.2248λ and Hy = 0.2608λ. This assumes that the
antenna has a left-hand helix for RHC polarization. When we make this antenna with
the correct dimensions, the measured Smith chart of the design will have a small loop
at the frequency with the least cross-polarization. The two shorted loops do not meet
at the point opposite the feed but pass over and under each other. We can design a
turnstile quadrifilar helix with the same height for the two loops by using Eq. (5-20)
to compute the two diameters.

5-20 CAVITY-BACKED SLOTS

A slot that radiates only on one side of the ground plane is the dual of a monopole.
As in the case of the monopole, restricting the radiation to above the ground plane
doubles the gain. The voltage across the slot determines the field strength. Since the
radiated power is only half that of the slot radiating on both sides and having the same
peak fields, the input impedance doubles. The already high slot impedance becomes
even higher. The cavity must present an open circuit at the slot, or its susceptance must
combine with the slot susceptance to resonate. Normally, it is a quarter-wavelength
deep. Since many cavities form a box, the waveguide mode determines the propagation
constant (wavelength) used to determine the depth.

5-21 STRIPLINE SERIES SLOTS

Stripline consists of a center strip equally spaced between two flat ground planes. It
supports a coaxial-type TEM-mode wave between the central strip and the two ground
planes. The ground plane currents match the currents flowing in the central strip. A
waveguide has axial currents that flow along the axis and transverse currents that flow
in the direction of the sidewalls. Any slots cut in the ground plane can only interrupt
axial currents and present series loads to the transmission line because the TEM wave
has no transverse currents. The load that a slot presents to the transmission line is a
parallel combination of a radiation conductance and an energy storage susceptance.
Low values of inductive reactance shunt power around the high resistance of short
slots. The inductance increases with increasing electrical length and supports higher
voltages across the slot radiation resistance. This increases the radiated power. The
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inductance increases to an antiresonance near λ/2, where further increases in electrical
length decrease the capacitive reactance.

Oliner [34] gives an expression for slot conductance normalized to the stripline
characteristic impedance. When unnormalized, it becomes

G = 8
√

εr

45π2

(
a′

λ

)2
[

1 − 0.374

(
a′

λ

)2

+ 0.130

(
a′

λ

)4
]

(5-21)

where a′ is the length of the slot and εr is the dielectric constant of the stripline
boards. More complete expressions for full series admittance are available [35], but
near resonance Eq. (5-21) suffices.

Most striplines are etched on dielectric substrates. The dielectric fills the slot and
reduces the resonant length. The effective dielectric constant in the slot is [36]

ε′
r = 2εr

1 + εr

(5-22)

Slot length determines the radiation conductance. Decreasing the resonant length
increases radiation resistance at resonance.

Example A set of woven Teflon fiberglass (εr = 2.55) dielectric boards supports
a resonant-length slot in a stripline circuit. Compute resonant length and center-fed
radiation conductance for a slot that resonates when a′ = 0.48λ in air.

The effective dielectric constant from Eq. (5-22) is 1.44. The effective dielectric
constant reduces the resonant length:

a′

λ
= 0.48√

1.44
= 0.40

Equation (5-21) finds the resonant conductance as 3.27 mS or 306 � resistance. The
high impedance requires an offset feed to match the slot to a stripline. We locate the
offset feed from the slot center to reduce the input impedance:

ξ = a′

2
− λ

2π
√

ε′
r

sin−1

√
Zin

Zc

(5-23)

We can determine the 50- and 100-� feed points of the slot:

50 �: ξ = 0.40λ

2
− λ

2π
√

1.44
sin−1

√
50

306
= 0.145λ

100 �: ξ = 0.40λ

2
− λ

2π
√

1.44
sin−1

√
100

306
= 0.119λ

At 2 GHz, the dimensions of the slot and the feed locations become:

a′ = 6 cm: ξ = 2.17 cm (50 �) 0.83 cm from edge

ξ = 1.79 cm (100 �) 1.21 cm from edge
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Increasing the slot width decreases the impedance below that of the thin-width slot
result given above and will require experimental work to find the exact feed point.
Measuring the center-fed impedance allows the use of Eq. (5-23) to compute the
approximate offset feed point.

Figure 5-55 illustrates a typical stripline-fed slot. Shorting the center strip to ground
at the location of the slot creates a current maximum at the slot for feeding. An
open circuit a quarter wavelength beyond the slot creates the same standing-wave
current maximum at the slot. Convenience determines the feeding method. The slot
interrupts currents only in the top ground plane. Unequal current flow on the two
ground planes unbalances the stripline and excites a parallel-plate mode between the
ground planes. Waveguide wall slots also excite higher-order modes, but these cannot
propagate because they are below their cutoff frequencies. The parallel-plate mode
is another TEM mode with no low-frequency cutoff. Power in this mode propagates
away from the slot and couples into the other slots in an undesirable manner or radiates
from edges.

Shorting pins between the two ground planes contain the parallel-plate mode around
the slot. By placing the rows of pins parallel with the axis of the slot and a quarter
wavelength away from the slot, the rows of pins reflect an open-circuit impedance at
the slot. The side rows of pins complete the box and convert the parallel-plate mode
into a waveguide TE10 mode. The box formed by the rows of shorting pins and the two
ground planes form a resonant cavity in shunt with the slot admittance. The resonant
cavity places a standing-wave current null on a centered slot and does not excite it.
Only the normal stripline currents feed the slot.

From an impedance point of view, the cavity is a second parallel resonant circuit
that increases the stored energy of the antenna. Q increases and bandwidth decreases.
Because only a portion of the available power would be converted to the parallel-
plate mode by the slot discontinuity, we analyze the cavity as a circuit coupled
through a transformer to the input. The transformer increases the impedance of the
resonant cavity at the input and controls the division of power between the slot and

lg/2 >l/2

Shorting Pin

Plated through Hole

Slot

TEM Input

Ground Planes

FIGURE 5-55 Stripline series slot.
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the cavity. The cavity reactance slope limits the bandwidth of the stripline-fed slot
to a few percent. Increasing the impedance of the waveguide cavity transmission line
reduces the reactance slope contributed by the cavity. We increase the bandwidth by
using greater distances between the ground planes and thereby increase the waveguide
transmission-line impedance. In general, greater volumes for an antenna increase the
impedance bandwidth.

Rotating the slot relative to the stripline feeding line reduces its load on the transmis-
sion line. The waveguide top wall series slot relation [Eq. (5-34)] applies in this case.
The slot maintains its polarization while the nonradiating stripline center conductor
approaches the slot at an angle. Rotated slots in waveguide must be paired symmet-
rically to reduce cross-polarization. A longitudinal array [37] can be made by placing
all the slots on the centerline of a boxed stripline. Either edge plating or a series of
plated-through holes forms a waveguide structure that supports only the TE10 mode.
Slots placed on the centerline (as in Figure 5-59, slot c) fail to interrupt the waveguide
mode currents. The stripline meanders below and varies the excitation by changing the
angle between the slot and the stripline center conductor. The slight loading of each
slot excites very little of the parallel-plate mode that causes unwanted slot coupling.
Both traveling-wave and resonant linear arrays are possible. See Section 5-26 for a
discussion of slot arrays.

5-22 SHALLOW-CAVITY CROSSED-SLOT ANTENNA

We can feed the slot in Figure 5-55 by exciting the cavity in an odd mode from two
points on opposite sides of the slot. To be able to excite both polarizations, we divide
the slot in two and rotate the two parts in opposite directions by 45◦ to form a cross.
We use a square cavity to maintain symmetry and replace the shorting pins with solid
walls (Figure 5-56c). Since we feed across the diagonal between the crossed slots, we
excite both slots. The sum of the fields radiated from the two slots is polarized in
the direction of the diagonal. We increase the radiation conduction by lengthening the
crossed slots to the maximum, which lowers the Q (increased bandwidth). The cavity
compensates for the slot susceptance to obtain resonance. A crossed-slot antenna was
built [38] with the following dimensions:

Cavity edge 0.65λ

Cavity depth 0.08λ

Slot length 0.915λ

The measured 2 : 1 VSWR bandwidth was 20.8%. The bandwidth exceeded that of
a microstrip patch of the same thickness by about

√
2. Lindberg [39] found that the

resonant length of the slot depends on the cavity depth and requires some experimental
adjustment.

King and Wong [41] added ridges (Figure 5-56b) to increase the bandwidth. Anten-
nas with ridges need a larger cavity width and a longer slot than the unridged design.
The ridges can be stepped as shown to increase the bandwidth. Adding ridges gives
us extra parameters to adjust for best input match performance. The following design
with uniform ridges produces a 58.7% 2.5 : 1 VSWR bandwidth with a double reso-
nance curve.
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FIGURE 5-56 Shallow-cavity crossed-slot antenna: (a) cavity with ridge; (b) cavity with ridge;
(c) typical slot configuration. All dimensions are in inches. (From [38], Fig. 2,  1975 IEEE.)

Cavity edge 0.924λ Slot width, W2 0.058λ

Slot length 1.3λ Ridge height 0.076λ

Ridge width 0.087λ Feed width, W1 0.144λ

Cavity thickness 0.115λ

Both the ridge and slot shapes can be varied to improve the performance. As fed in
Figure 5-56c, the antenna radiates circular polarization on a boresight. Near the horizon
(90◦ from the boresight), the polarization reduces to linear as we enter the null of one
of the slots.

5-23 WAVEGUIDE-FED SLOTS [24, p. 291; 40, p. 95]

Waveguide is an ideal transmission line for feeding slots. Although its impedance
cannot be defined uniquely, all possible candidates—voltage and current, power and
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current, or power and voltage—yield high values that match the high values of
impedance of half-wavelength slots. Waveguide provides a rigid structure with shielded
fields. The slots couple to the internal fields and allow the easy construction of linear
arrays fed from traveling waves or standing waves in the waveguide. By controlling the
position of the slots in the walls, the amplitude of the slot excitation can be controlled.

The waveguide fields excite a slot when the slot interrupts the waveguide wall
currents. When excited, the slot loads the waveguide transmission line. We make the
following assumptions about the wall slots.

1. The slot width is narrow. When a slot grows in width, we must either consider it
to be an aperture in the wall or assume that it is excited by interrupting currents
in two coordinate directions.

2. The slot is a resonant length and its length is near λ/2. The waveguide envi-
ronment, the wall thickness, and the position in the wall all affect the resonant
length. In most cases, experiments must determine the resonant length.

3. The electric field is directed across the narrow width of the slot and varies sinu-
soidally along its length and is independent of the excitation fields. This reiterates
assumptions 1 and 2. An aperture radiates the polarization of the incident fields,
but resonant-length slots can be excited only with a sinusoidal voltage standing
wave. The slot direction determines polarization.

4. The waveguide walls are perfectly conducting and infinitely thin. Even though
the walls have thickness, the difference has a small effect on the general form of
the slot excitation formulas. As in the case of the resonant length, experiments
determine a few values from which the rest must be interpolated, or the values
provide the constants for more elaborate models.

5-24 RECTANGULAR-WAVEGUIDE WALL SLOTS

The lowest-order mode (TE10) in a rectangular waveguide has the following fields [41,
p. 69]:

Ey = E0 sin(kcx)e−jkgz

Hx = −kgE0

ωµ
sin(kcx)e−jkgz (5-24)

Hz = −kcE0

jωµ
cos(kcx)e−jkgz

where kc = π/a, k2
g = k2

c − k2, and a is the guide width with cutoff wavelength λc =
2a. We can separate TE10-mode rectangular waveguide fields into two plane waves
that propagate at an angle to the axis and reflect from the two narrow walls. We denote
as ξ the angle of the waves measured from the centerline of the waveguide or with
respect to the wall. We relate the waveguide propagation to this angle:

ξ = sin−1(λ/λc) (5-25)

At high frequencies, ξ → 0 and the waves travel straight through the guide as though
the walls are not there. As the wavelength approaches cutoff, ξ → 90◦ and the waves
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reflect back and forth between the sidewalls instead of propagating down the guide.
This angle factors into the expressions for slot loading to the waveguide transmission
line and can be related to propagation:

guide wavelength, λg = λ

cos ξ
= λ√

1 − (λ/λc)2

phase velocity Vph = c

cos ξ
and group velocity = c cos ξ

relative propagation constant P = λ

λg

= cos ξ

For analysis we divide the fields bouncing down the waveguide into z-directed fields of
the axial wave moving down the guide and x-directed fields of the transverse wave, a
standing wave between the two narrow walls. A standing wave causes a 90◦ separation
of the voltage and currents in a transmission line as shown in Figure 5-1. The phase
of the currents excited in the waveguide walls due to the fields will be 90◦ relative to
the electric field.

The wall currents Js are determined by J = n × H, where n is the unit normal to
the wall. When we apply this boundary condition to the walls, we obtain the following
wall currents:

Sidewalls:

Jy = −j
E0kc

ωµ
e−jkgz

Bottom wall (y = 0 ):

Js = E0

ωµ
e−jkgz[kg sin(kcx)ẑ + jkc cos(kcx)x̂] (5-26)

Top wall (y = b):

Js = −E0

ωµ
e−jkgz[kg sin(kcx)ẑ + jkc cos(kcx)x̂]

Equation (5-26) shows that transverse wave currents are 90◦ out of phase with
respect to the electric field E0. The current alternates between the two types of current
as the wave propagates down the waveguide. In the case of a standing wave along the
z-axis caused by a short circuit, the axial wave currents are 90◦ out of phase with the
electric field across the waveguide (Figure 5-1). The peak amplitude of the transverse
wave currents occurs at the same point as the electric field in a standing wave along
the z-axis, since both are 90◦ out of phase with the axial wave currents. The sidewalls
Jy have only transverse wave currents. The top and bottom broad walls have both x-
directed transverse wave and z-directed axial wave currents. Figure 5-57a shows the
direction and amplitude distribution of these transverse waves. Slots interrupting these
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FIGURE 5-57 TE10-mode rectangular waveguide wall currents: (a) transverse wave currents;
(b) axial wave currents.
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FIGURE 5-58 Short-circuited waveguide axial and transverse wave currents and the location
of longitudinal wall slots.

currents are shunt loads to the waveguide. In an axial wave along the z-axis, these
transverse waves propagate in the z-axis direction.

Equation (5-26) shows that the transverse wave currents are 90◦ phase with respect
to the axial wave currents. Figure 5-58 shows the two types of currents along the z-
axis when the guide has a short circuit at its end. When measuring slots that interrupt
transverse wave currents, we need to place the waveguide short at λg/4 or 3λg/4 away
from the slot. This locates the peak of the transverse wave currents flowing around
the waveguide walls at the slot shown in Figure 5-58 because the axial wave currents
are at a minimum. The second consideration is the shunt load on the waveguide. The
λg/4 section of waveguide transforms a short circuit on the end of the waveguide (to
the axial wave currents) to an open circuit at the slot. From a voltage point of view
the susceptance of the shorted stub is at a minimum. We place the short circuit at
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λg/2 from the last slot for a series loading slot that interrupts the axial wave currents.
This locates the current maximum at the slot and causes maximum interaction with the
waveguide fields. Figure 5-58 illustrates the placement of the next slot λg/2 down the
guide at the next current maximum. Figure 5-57a indicates the transverse wave current
flow and we see that the currents flow toward the centerline, producing currents 180◦

out of phase on the two sides of the centerline. The two slots in Figure 5-58 are
excited by oppositely directed currents that add 180◦ phase shift between the slots.
This phase shift compensates for internal standing-wave current phasing of 180◦ due
to the λg/2 spacing.

Longitudinal top and bottom wall slots cut x-directed transverse shunt currents. The
central slot c, located at a current null, fails to be excited. We use this nonradiating
slot to insert a traveling probe to measure VSWR. When moved off center, slots d and
e cut x-directed currents and are excited. The shunt conductance has the relation

g = g1 sin2 πx ′

a
(5-27)

where x ′ is the distance from the guide centerline. Shunt currents on either side of the
centerline of the top or bottom wall (Figure 5-57a) have different directions. Besides
any traveling-wave phase, slots d and e (Figure 5-59) are 180◦ out of phase. Top-wall
longitudinal slots generate no cross-polarization, since all maintain the same orientation.
We relate the peak conductance g1 to the direction of the waves in the guide [41]:

g1 = 2.09
a

b

cos2[(π/2) cos ξ ]

cos ξ
(5-28)

Equation (5-28) indicates that the conductance increases for a given spacing off the
centerline as the frequency approaches cutoff and ξ → π/2.

We cannot use Eqs. (5-27) and (5-28) for design because they do not include the
wall thickness and we need to determine the exact length for resonance. The res-
onant length depends on the spacing from the centerline. Fortunately, the coupling
between longitudinal slots is small enough that measurements can be made on sin-
gle slots. Elliott suggests a measurement plan for longitudinal slots [3]. We build a
series of slotted waveguides each containing a single slot at different distances from
the centerline. Seven cases are sufficient to generate a curve for design. We need

Shunt Loads Series Loads
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x′
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q

FIGURE 5-59 TE10-mode rectangular waveguide wall slots.
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to locate a sliding short circuit farther down the waveguide and adjust it until the
standing-wave current peaks at the slot to produce maximum radiation and conduc-
tance. With a network analyzer we measure the conductance normalized with respect
to the waveguide impedance. Initially, we machine the slots too short, measure the
results, and then machine longer slots using the same guides and remeasure until they
pass through resonance.

Since the manufacturing cost of test slots is high and they require careful mea-
surements, analytical methods of determining slot parameters become attractive. FEM
programs can model the details of the slot, the waveguide, and the wall thickness. A
number of runs similar to those of the measurements allows design curves to be created.

Sidewall slots (Figure 5-59) interrupt shunt transverse waves. Slot a fails to cut
surface currents and is not excited. By tilting slot b, currents are cut. The sidewall slot
conductance is given for θ < 30◦ by

g = g0 sin2 θ (5-29)

where g0 is the peak conductance. Note that the sidewall slots must cut into the top
and bottom walls to achieve a resonant length. The peak conductance can be related
to the direction of the waves in the waveguide [Eq. (5-25)] [1, p. 82]:

g0 = 2.09
a sin4 ξ

b cos ξ
(5-30)

Equation (5-30) shows the relationship of the slot load conductance versus the fre-
quency. As frequency increases, ξ decreases and the conductance falls off as the
fourth power of the sine of the angle. The complete theory of Stevenson gives the
conductance for an arbitrary tilt [42]:

g = 2.09
a sin4 ξ

b cos ξ

[
sin θ cos[(π/2) cos ξ sin θ ]

1 − cos2 ξ sin2 θ

]2

(5-31)

Tilting the slots to interrupt currents introduces cross-polarization components in the
array pattern. We alternate the direction of tilt to reduce cross-polarization. Two things
prevent the total cancellation of cross-polarization. First, the amplitude taper of the
array changes the amplitude from element to element and the fields do not cancel.
Alternating the tilt of the slots symmetrically about the centerline in an array with an
even number of elements prevents cross-polarization on the boresight. Off the boresight,
the array effect of the spaced elements introduces a cross-polarization pattern, since
cross-polarization is not canceled at each element.

Although Eqs. (5-29) and (5-30) give the slot conductance, they cannot be used
for design. They assume an infinitely thin wall and ignore the high level of radiation
along the waveguide wall. These slots readily couple to neighboring slots. The effective
conductance needs to include the mutual conductance. For these slots we build a series
of slotted waveguides containing a group of slots all tilted to the same angle and cut
so that they are a resonant length. This means that we will first need to build the
slots about 5% shorter than resonance length, make measurements, and then machine
the slots longer and repeat the measurements to find the resonant length. We space
the slots at the same distance as will be used in the final design and either place a
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short-circuit beyond the last slot to produce a maximum current at all slots or load the
waveguide to form a nonresonant array. We measure the load of the group of slots on
the waveguide transmission line using a network analyzer and divide the conductance
by the number of slots to get an incremental conductance. This conductance is larger
than the one measured on a single slot. We fit the group of measurements to a curve
that replaces Eq. (5-29) for design.

Axial z-directed waves (Figure 5-57b) peak in the center of the broad walls and taper
to zero at the edges. They remain zero on the sidewalls. When centered, transverse
slots f and g (Figure 5-59) interrupt the maximum current. When moved off center,
g, their series loading to the waveguide drops:

R = R0 cos2 πx ′

a
(5-32)

The maximum resistance is related to the direction of the waves in the waveguide:

R0 = 2.09
a

b

sin2 ξ

cos3 ξ
cos2

(π

2
sin ξ

)
(5-33)

An evaluation of Eq. (5-33) shows that the resistance increases as frequency approaches
cutoff for a given location of the slot, a result similar to that for other slot configura-
tions. The mutual coupling between these series slots is high. We perform incremental
resistance experiments similar to the procedure used for sidewall slots to discover the
true values of resistance versus offset.

Rotating the broadwall transverse slot, h, reduces the z-axis directed current inter-
rupted. When the slot is centered, equal and opposite shunt currents are cut by the slot
and the slot fails to present a load to shunt currents:

R = R0 cos2 θ (5-34)

We can excite slots a and c by probe coupling into the waveguide. A probe placed
next to the slot and extending into the guide feeds the slot. The longer the probe, the
more it disturbs the waveguide fields to excite the slot. Probes placed on opposite sides
of the slots induce fields 180◦ out of phase with respect to each other.

5-25 CIRCULAR-WAVEGUIDE SLOTS

Figure 5-60 shows the transverse wave and axial wave currents of the circular waveg-
uide TE11 dominant mode. Slots may be placed successfully only at the current
maximums without affecting the polarization of the internal wave. A longitudinal slot
placed halfway between the current maximums, 45◦, interrupts only shunt transverse
waves. Since any polarization is possible in the circular waveguide, analytically we
divide the incident wave into two waves. One is polarized in the direction of the slot;
the other is polarized perpendicular to the slot axis. The wave polarized perpendicular
to the slot location has its current maximum at the slot and it removes power from
the wave. The other wave produces a current null on the slot. When we combine the
two fields after the slot, the unloaded wave is larger and the combined wave rotates
its polarization toward the slot. Circumferential slots interrupting axial wave currents
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FIGURE 5-60 TE11-mode circular waveguide wall currents.

also cause polarization rotation of the wave when not centered 90◦ from the electric
field direction.

Slots placed at the maximum of transverse currents cut them when rotated about the
axis of the waveguide. Like rectangular-waveguide sidewall slots, the slots oriented
perpendicular to the guide axis, circumferential, do not load the waveguide. Rotating
the slot increases the shunt load on the waveguide. Slots placed at the maximum of the
axial wave cut z-directed currents. Field probes can monitor the internal fields of the
waveguide through a longitudinal slot without causing radiation from the slot. When
the slot is rotated away from the axis direction, it interrupts series axial wave currents,
loads the waveguide, and radiates.

Coaxial TEM-mode transmission line and TM01-mode circular waveguide have the
same outer wall currents (Figure 5-61). Slots can be excited and load the waveguide
only by interrupting these axial wave currents. In Figure 5-61, slot a fails to cut currents
and is not excited. VSWR measuring probes use this slot. Slots b and c interrupt the
currents and series-load the guide. Slot c, whose total length is resonant, is excited by
the small portion in the center cutting z-directed currents. We can probe feed slot a,
but the probe shunt loads the waveguide or TEM coax that would be series loads on
the waveguide if they directly interrupted the axial wave currents.

IJI

Traveling Wave Currents Wall Slots

a b c

FIGURE 5-61 Coax or TM01-mode circular waveguide wall currents and slots.
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5-26 WAVEGUIDE SLOT ARRAYS [4, p. 402]

Waveguide slot arrays can produce low sidelobe antennas for pencil beams with
good aperture efficiency. Array fabrication requires close manufacturing tolerances to
achieve the desired amplitude distribution because random errors in manufacture pro-
duce unwanted sidelobes and raise the general sidelobe level. Producing these arrays is
an art requiring careful analysis of all slot interactions, slot dimensioning determined
from models and measurements, and precision machining and assembly.

An array consists of a set of waveguides loaded with slots and joined with a corporate
feed into the total array. The corporate feed can also be a slotted array feeding the
individual waveguides that contain the radiating slots. Aperture size and distribution
determine the beamwidth and sidelobes in the various planes. We divide arrays of
slots into two groups: nonresonant, excited by traveling waves, and resonant, excited
by standing waves. Waves either travel along the guide into a terminating load or reflect
from a short and set up standing waves along the z-axis (Figure 5-58). Traveling-wave
currents excite the slots as they pass, and slots may be placed anywhere relative to the
load. The distance between slots and the propagation constant determine the relative
phases. Standing waves set up a fixed sinusoidal current pattern along the waveguide
axis at a given frequency. The standing-wave phase is either 0◦ or 180◦. Slots placed
in the current nulls of standing waves interrupt no currents and fail to be excited by
the waveguide. We can vary the amplitude by the z-axis placement of the slots. The
termination determines the array type. Do not confuse transverse waves that produce
shunt currents and z-axis standing waves caused by a short-circuit termination. Both
traveling and standing waves on the z-axis have shunt currents.

Standing waves (resonant array) produce beams normal to the array axis. A resonant
array maintains its beam direction when frequency changes, but the standing-wave
pattern shifts and changes the excitation of the slots (Figure 5-62). The amplitudes of
the slots farthest from the short circuit change the most, since the standing waves have
shifted farther. The length of the resonant array determines its bandwidth. The pattern
shape changes because distribution and input impedance change as the loads change
when the standing-wave currents shift.

Nonresonant array (traveling-wave) beam directions are functions of the propaga-
tion constant of the wave exciting the slots. Changing the frequency shifts the beam
direction. If the load on the end reflects a wave, another beam forms from the reflected
traveling wave. The second beam appears at the same angle to the axis of the waveguide

Frequency
Shift by 10%

Slot Slot Slot Slot

Waveguide Axis
Half Guide
Wavelength

Short

FIGURE 5-62 Standing-wave currents in resonant array relative to slots and after 10% fre-
quency shift.
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as the first but measured from the −z-axis. The first-pass radiated power and return
loss of the load determine the level of this second beam relative to the first.

Both resonant and nonresonant waveguide slot arrays use resonant-length slots. We
space the slots λg/2 apart in the resonant array, as shown in Figure 5-58. We place the
slots at alternating positions about the centerline of the broadwall or at alternating tilt
angles in the sidewall to give the additional 180◦ phase shift to produce a broadside
beam. The admittances of the slots of the resonant array add at the input because
the λg/2 spacing produces a complete rotation around the Smith chart. In nonresonant
arrays a traveling wave is used to excite the slots. We space the slots at other than
λg/2 distances and terminate the waveguide with a load. We assume a matched system
throughout the antenna in a first-order analysis suitable for most designs. The beam of
most nonresonant slot arrays is designed to backfire at an angle to broadside.

5-26.1 Nonresonant Array [43]

In a nonresonant waveguide, slot array resonant-length slots are used in a traveling-
wave antenna terminated at the end with a load. The antenna radiates at an angle to
the normal of the waveguide face determined by wave velocity and slot spacing. We
vary the slot loading along the waveguide so that each slot radiates the proper amount
of the remaining power. A termination absorbs the power remaining after the last slot.
With a mismatched termination the reflected power radiates a second lower-amplitude
beam as the wave travels to the source.

We design with either shunt- or series-loading slots. A shunt slot radiates the power
|V |2gi/2, where gi is the normalized slot conductance. Similarly, a series slot radi-
ates the power |I |2ri/2, where ri is the normalized slot resistance. We normalize the
conductance or resistance to a per unit length function: g(z) or r(z). The attenuation
equation (4-78) becomes

1

P(z)

dP

dz
= −g(z) or − r(z) (5-35)

Equation (5-35) modifies the normalized attenuation equation (4-79) [24, p. 291]:

g(z)L = |A(z)|2

[1/(1 − R)]
∫ L

0
|A(z)|2 dz −

∫ z

0
|A(z)|2 dz

(5-36)

where the aperture runs ±L/2 and R is the ratio of the input power absorbed by the
termination. A(z) is the normalized aperture distribution on the interval ± 1

2 . We change
to r(z)L in Eq. (5-36) for series-loading slots.

Equation (5-36) assumes light loading by the slots so that the waveguide transmis-
sion line is matched at all points. This approximation improves as the length increases.
Equation (5-36) is the same as Eq. (4-79) except for a constant. We divide the values
in Table 4-28 or Figure 4-26 by 4.34 to calculate normalized conductance (resistance)
of shunt (series) slots times the array length. Each slot provides the loading over the
spacing between slots:

gi =
∫ d/2

−d/2
g(z) dz � g(zi) d

where d is the spacing of the slot at zi .
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We space the slots at other than λg/2. At λg/2 spacings, all reflections from the
mismatches (slots) add in phase at the input. The small mismatches from each slot add
with various phase angles for element spacing different from λg/2 and cancel each
other to some extent to give a good input match over a reasonable bandwidth. When
we increase the array length, we can no longer ignore the waveguide losses. The slot
conductances become very small and radiate power on the same order as the losses.
We modify Eq. (5-36) to include the losses as in Eq. (4-79), and the slot conductance
increases to compensate for the ohmic losses in the walls. A small slot conductance is
difficult to achieve with longitudinal broadwall slots because one edge of the slot must
be over the centerline of the waveguide wall and the results become unpredictable.
The achievable conductances limit possible distributions in a slotted waveguide array.
Mutual coupling between slots changes the distribution and we must modify the slot
offsets to account for mutual coupling using Eq. (3-23).

If we specify the radiating power of each slot in a discrete sequence Pi , we modify
Eq. (5-36). The integrals become summations, since

|A(z)|2 = δ(z − id)Pi

where d is the slot spacing, δ(x) the Dirac delta (impulse) function, and Pi the power
coefficient of the ith slot. The power radiated is

N∑
i=1

Pi = Pin(1 − R) =
∫ L

0
|A(z)|2 dz

The integral
∫ z

0 |A(z)|2 dz is the power radiated by the preceding slots. Equation (5-36)
reduces to

gi = ri = Pi

1 −
∑i−1

n=1
Pn

(5-37)

Dissipating more power in the termination decreases each Pi and the required conduc-
tance (resistance) range of the slots.

We alternate the locations of longitudinal slots about the centerline of the broadwall
to add 180◦ phase shift between elements. Similarly, sidewall slot directions are alter-
nated along the array. The additional phase shifts cause backfire of the beam in most
cases. The element spacing, as well as the traveling-wave phase velocity, determines
the beam direction. The phasing equation in the array factor for beam peak becomes
kd cos θ + 2nπ = Pkd − π, where θ is measured from the array axis, P is the relative
propagation constant (P < 1), and n is an arbitrary integer. We solve for the beam peak
direction and the necessary spacing to get a particular beam direction:

θ = cos−1

[
P − (n + 1

2 )λ

d

]
(5-38)

d

λ
= n + 1

2

P − cos θmax
(5-39)

We usually work with n = 0 because using n > 0 produces multiple beams.
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Example Compute slot spacing to produce a beam at θ = 135◦ in a waveguide of
width 0.65λ. Calculate the relative propagation constant from the general equation for
a waveguide.

P =
√

1 −
(

λ

λc

)2

For λc = 2a,

P =
√

1 −
(

1

1.3

)2

= 0.640 = λ

λg

From Eq. (5-39), using n = 0, we determine spacing in free space: d/λ = 0.371. The
waveguide spacing is given by

d

λg

= d

λ
P = 0.371(0.640) = 0.237

If we use n = 1, then d/λ = 1.11, which radiates an additional beam at θ = 79◦ for
n = 0 [Eq. (5-38)].

Beams enter visible space at cos θ = −1 (180◦) and move toward end fire (θ = 0)
as the spacing increases. We calculate the region of single-beam operation from Eq. (5-
39). The minimum d/λ occurs when θ = 180◦ for n = 0, and the maximum occurs
when θ = 180◦ for n = 1:

0.5

1 + P
≤ d

λ
≤ 1.5

1 + P
(5-40)

We substitute the upper bound into Eq. (5-38) and use n = 1 to derive the minimum
angle of single-beam operation:

θmin = cos−1

(
P − 1 + P

3

)
(5-41)

Example Determine the minimum scan angle (toward end fire) for P = 0.6, 0.7, 0.8,
and 0.9 that has a single beam. We substitute these values into Eq. (5-41) to find:

P 0.6 0.7 0.8 0.9

θmin 86.2◦ 82.3◦ 78.5◦ 74.5◦

If we scan to θ = 90◦, the spacing becomes λg/2 and the mismatches from each slot
add to the input and produce a resonant array. The array with a forward firing beam has
a slot spacing greater than λg/2. Given a waveguide with P = 0.8, we use Eq. (5-39)
to calculate spacing to give beams at 80◦ and 100◦:

d

λ
= 0.5

0.8 − cos 80◦ = 0.798 and
d

λ
= 0.5

0.8 − cos 100◦ = 0.514

d

λg

= d

λ
P = 0.639 and

d

λg

= d

λ
P = 0.411
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A nonresonant array has a backfire beam that scans toward broadside as frequency
(and P ) increases. Hansen [44, p. 90] gives the slope of the beam shift with fre-
quency change:

f
d sin θ

df
= 1

P
− sin θ (5-42)

where f is the frequency.

5-26.2 Resonant Array

We space the slots at λg/2 and terminate the waveguide end with a short circuit either
λg/4 or 3λg/4 from the last one for shunt loading slots in a resonant array. The beam
radiates broadside to the array. The 2 : 1 VSWR bandwidth of the array is approximately
50%/N for N elements in the array. The antenna is narrowband. The admittances of
all elements add at the input. To have a matched input,

∑N
i=1 gi = 1, where gi is the

normalized slot conductance. If we define Pi as the normalized power radiated by the
ith slot, then

gi = Pi where
N∑

i=1

Pi = 1

5-26.3 Improved Design Methods

The methods given above ignore the interaction of slots and their effect on the trans-
mission line. We can describe the array as a loaded transmission line and consider the
interactions of the slots by accounting for the transmission-line mismatches [45, pp.
9–11]. We ignore the mutual coupling for longitudinal broadwall slots because it is
small, but sidewall slots have high mutual coupling and require an adjustment of the
effective slot impedance. We use an incremental admittance, found from the measured
change in admittance, when one slot is added to the array or total conductance of the
array divided by the number. This accounts somewhat for the mutual coupling.

Elliott and Kurtz [46] relate the self-admittance of a longitudinal broad-wall slot,
measured or calculated, to the mutual admittance of the array of slots found from
equivalent dipoles. They use Babinet’s principle and the mutual impedance of equiva-
lent dipoles. The method requires solution of a set of 2N equations in the location and
length of the slots to give the desired excitation while accounting for mutual coupling.
Their formulation ignores slot interaction in the waveguide beyond the first-order mode.
Elliott [47] extends this method to the analysis and design of nonresonant arrays. Of
course, when we design a planar array, the slots between waveguide sticks couple
readily and we need to account for the mutual coupling between them. The voltage
excitation needs to be adjusted to account for this coupling or the desired distribution
will not be achieved.

Dielectric loaded waveguide arrays require additional analysis because the approx-
imation of a piecewise sinusoidal distribution, such as dipole current, fails to model
the slot distribution adequately. Elliott [48] uses a slot distribution

E(x) = cos
πx

2b

where b is the length. Mutual impedances between dipoles that have the wrong dis-
tribution are not used; instead, the active admittances are found from forward and
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back scattering between the slots directly. The method still requires the solution of 2N

equations for the slot lengths and locations.
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6
MICROSTRIP ANTENNAS

Microstrip antennas are planar resonant cavities that leak from their edges and radiate.
We can utilize printed circuit techniques to etch the antennas on soft substrates to
produce low-cost and repeatable antennas in a low profile. The antennas fabricated on
compliant substrates withstand tremendous shock and vibration environments. Manu-
facturers for mobile communication base stations often fabricate these antennas directly
in sheet metal and mount them on dielectric posts or foam in a variety of ways to elim-
inate the cost of substrates and etching. This also eliminates the problem of radiation
from surface waves excited in a thick dielectric substrate used to increase bandwidth.

As electronic devices continue to shrink in size, the antenna designer is pushed to
reduce the antenna size as well. Cavity antennas use valuable internal volume, but we
have the conflict that restricting the volume limits impedance bandwidth. Bandwidths
widen with increased circuit losses (material losses) or by efficient use of the restricted
volume. Bounds on bandwidth can be found by enclosing the antenna in a sphere and
expanding the fields into TE and TM spherical modes [1,2]. Each mode radiates, but
it requires more and more stored energy as the mode number increases. Decreasing
the volume increases the Q value of each mode and a sum, weighted by the energy
in each mode, determines the overall Q value. Antennas that use the spherical volume
efficiently and reduce power in the higher-order modes have the greatest bandwidths.
A single lowest-order mode puts an upper bound on bandwidth, given the size of
the enclosing sphere. Greater volumes have potential for greater bandwidth provided
that the energy in higher-order spherical modes is restricted. Increasing material losses
or adding small resistors increases bandwidth beyond the single-mode bound [2]. We
discover that increasing the volume of flush antennas increases the impedance band-
width provided that the radiation mode on the structure can be maintained. Thicker
substrates develop greater bandwidths, but they increase the possibility of higher-order-
mode excitation and surface-wave losses. Losses limit the lower bound of bandwidth
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as we reduce the thickness because efficiency degrades to a point where the bandwidth
remains constant.

Microstrip consists of a metal strip on a dielectric substrate covered by a ground
plane on the other side. Unlike stripline, the single ground plane shields the circuit on
only one side, but normal packaged microstrip—within a receiver, for example—has
a second shielding ground plane to reduce circuit interactions. The dielectric substrate
retains most of the power because the shielding ground plane is spaced a few substrate
thicknesses away. Removing the shield in antenna applications allows radiation from
resonant cavities. We also discover feeding circuits etched on the substrate radiate to
some extent, but their radiation is comparatively small.

Arrays of antennas can be photoetched on the substrate, along with their feeding net-
works, and microstrip provides easy connections to active devices and allows placement
of preamps or distributed transmitters next to the antenna elements. Diode phase-shifter
circuits etched in the microstrip form single-board phased arrays. Microstrip circuits
make a wide variety of antennas possible through the use of the simple photoetching
techniques.

The vast literature on microstrip antennas concentrates on the microwave circuit
analysis of the internal parts of the antenna used to control the internal modes. Design-
ers have increased the bandwidth of the antenna by coupling to multiple resonators,
such as vertically stacked or coplanar coupled patches or by using internal slots and
apertures. These multiple resonators increase the impedance bandwidth, and in the
best cases the antenna continues to radiate the same pattern. As antenna designers we
need to concentrate first on obtaining the desired pattern while working to increase
the impedance bandwidth. Simple microstrip antennas have much larger pattern band-
widths than impedance bandwidths, but as more resonators are added to increase the
impedance bandwidth, spreading in the horizontal plane alters the radiated pattern and
we must return to concentrate on the pattern.

Microstrip patch antennas consist of metal patches large with respect to normal
transmission-line widths. A patch radiates from fringing fields around its edges.
Impedance match occurs when a patch resonates as a resonant cavity. When matched,
the antenna achieves peak efficiency. A normal transmission line radiates little power
because the fringing fields are matched by nearby counteracting fields. Power radiates
from open circuits and from discontinuities such as corners, but the amount depends
on the radiation conductance load to the line relative to the patches. Without proper
matching, little power radiates.

The edges of a patch appear as slots whose excitations depend on the internal fields
of the cavity. A general analysis of an arbitrarily shaped patch considers the patch to
be a resonant cavity with metal (electric) walls of the patch and the ground plane and
magnetic or impedance walls around the edges. The radiating edges and fringing fields
present loads along the edges. In one analysis [3] the patch effective size is increased to
account for the capacitive susceptance of fringing fields, and the radiation admittance is
ignored to calculate resonant frequency. The far field is integrated to compute radiated
power and the equivalent radiation conductance. The second method [4] is to retain the
patch size but satisfy boundary conditions into a loaded wall whose load is determined
by radiation and fringing fields. Assuming a constant electric field from the ground
plane to the substrate allows solutions in terms of modes TM to the substrate thickness.
Boundary conditions determine possible modes and correspond to the dual TE modes
of waveguides having electric walls. Patches in the shape of standard coordinate system
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axes, such as rectangular and circular, give solutions in terms of tabulated functions.
Numerical techniques used for arbitrarily shaped waveguides can be applied to patches
with nonstandard shapes. We consider only rectangular and circular patches.

6-1 MICROSTRIP ANTENNA PATTERNS

We start our discussion of patches with their pattern characteristics. It is difficult to
separate a discussion of pattern from the internal construction consideration, but we
will only briefly discuss the internal structures that affect the pattern. The small size
of microstrip antennas limits control of the pattern and we must use arrays of patches
to control its pattern seriously. Rectangular and circular are the most common shapes
for microstrip antennas and they radiate similar broad patterns. When we load the
cavity to shrink its size, it radiates wider beamwidth patterns that lower directivity
(gain). Antennas that couple to coplanar patches to increase the impedance bandwidth
will radiate narrower beams, but the basic patch has a wide beamwidth. If we couple
to multiple coplanar patches, we can expect the pattern to narrow or vary its shape
as the mixture of modes on the various patches changes over the frequency range
of operation.

Patches consist of metal plates suspended over large ground planes. We excite the
cavity in a variety of ways that we discuss later. Electric currents flow on the plate and
on the ground plane around the antenna, and these radiate. If we use vertical probes
to excite the antenna from coaxial lines, the currents flowing on these radiate and
add to the pattern. We can reduce the antenna size by adding vertical shorting plates
(quarter-wave patches) or shorting pins near the feed pins (compact patches), and these
also radiate from the current flow on them. Remember that the patch radiates from real
electric currents, although the distribution is complicated.

We simplify the problem of computing patch radiation by using magnetic currents
along the edges. Figure 6-1 illustrates the fringing electric fields around the edges of
square and circular patch antennas excited in the lowest-order cavity modes. The arrow
sizes indicate the magnitude of the fields. The square patch has nearly uniform fields
along two edges we call the width, and a sinusoidal variation along the other two edges,
called the resonant length. The fields vanish along a virtual electrically short-circuited
plane halfway across the patches. On either side of the short-circuit plane, the fields
are directed in opposite directions. Looking from above the fields along the width,
both edges are in the same direction. The circular patch fringing fields distribution
varies as cos φ, where the angle φ along the rim is measured from the peak electric
field. Magnetic currents found from the fringing electric fields can replace the electric
currents located on the patch and the surrounding ground plane for pattern analysis.
Figure 6-2 shows the distribution of magnetic currents around the edges, with the size
of the arrowhead indicating magnitude.

Our use of magnetic currents around the patch perimeter reduces the pattern cal-
culation to equivalent slots. A two-element array consisting of slots with equivalent
uniform magnetic currents produces the E-plane radiation of a rectangular patch. To
first order, the slots are spaced λ/2

√
εr and we can determine the pattern from the

equivalent two-element array. The magnetic currents along the resonant length sides
individually cancel because the current changes direction halfway across the edge. The
currents also cancel from side to side. These cancellations eliminate pattern contribu-
tions to the E- and H -plane patterns. The slot length determines the H -plane pattern.
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(a)

(b)

FIGURE 6-1 Fringing electric fields around microstrip patches: (a) square; (b) circular. (From
L. Diaz and T. A. Milligan, Antenna Engineering Using Physical Optics, Figs. 3.12 and 3.19,
 1996 Artech House, Inc.).

The H -plane of the slot has the same pattern as the E-plane of a dipole and produces
a null along its axis. Figure 6-3 illustrates the pattern of a patch on an infinite ground
plane using a free-space substrate. The two-element slot array in the E-plane gener-
ates a null along the ground plane because the elements are spaced λ/2. The H -plane
dashed curve shows the null along the ground plane due to the polarization of the slots.
The light curves give the Huygens source polarization (Section 1-11.2) patterns in the
diagonal planes. The antenna radiates cross-polarization (dashed curve) in this plane
from the combination of separated magnetic currents along the resonant-length sides
and from the unbalance in the beamwidths in the principal planes.

When we design a microstrip patch on a dielectric substrate, the size reduction
brings the two slots closer together and widens the E-plane beamwidth and eliminates
its null along the ground plane. Figure 6-4 illustrates the pattern of a patch designed for
a substrate with εr = 2.2. The H -plane pattern retains its null along the ground plane
due to the slot pattern. The cross-polarization of the Huygens source in the diagonal
plane increases because of the increased difference between the beamwidths of the
principal plane patterns. Table 6-1 gives the directivity of a square and circular patch
on an infinite ground plane found by integrating the pattern. The range of directivity
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(a)

(b)

FIGURE 6-2 Equivalent magnetic currents on the edges of microstrip patches: (a) square;
(b) circular.

of a patch is limited. Increasing the width of a rectangular patch increases directivity
by shrinking the H -plane beamwidth.

We gain some control of the pattern by placing the patch on a finite ground plane.
Figure 6-5 shows the pattern of a square patch on a 2.21 dielectric constant substrate
when located on circular disks 5λ, 2λ, and 1λ in diameter. On a 5λ ground plane,
edge diffraction adds ripple to the pattern. As the ground plane increases, the angular
separation between the ripples decreases, due to the increased array size of the radiation
from the two edges. The H -plane pattern widens significantly for 1λ- and 2λ-diameter
ground planes, as the limited ground plane can no longer support the currents that
make the patch edge radiate like a slot. Although the principal-plane beamwidths are
more nearly equal for the patch on the 2λ-diameter disk, the cross-polarization in the
diagonal plane increases relative to the pattern on the infinite ground plane. The 1λ

ground plane increases the gain of the patch by about 1 dB relative to the patch on an
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FIGURE 6-3 Patterns of microstrip patch on a free-space substrate mounted on an infinite
ground plane.

H-Plane

E-Plane

Diagonal

X-Pol

FIGURE 6-4 Patterns of microstrip patch on a dielectric substrate εr = 2.2 over an infinite
ground plane.

TABLE 6-1 Estimated Directivity of Square and
Circular Microstrip Patches on a Large Ground
Plane

Dielectric
Constant

Square
Patch (dB)

Circular
Patch (dB)

1.0 8.4 9.8
2.0 7.7 7.6
3.0 7.2 6.7
4.0 7.0 6.2
6.0 6.7 5.8
8.0 6.5 5.5

10.0 6.4 5.4
16.0 6.3 5.1
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Diag,

Diag.

(a)

(b)

FIGURE 6-5 Patterns of microstrip patches with dielectric substrate εr = 2.2 mounted over
finite circular ground planes: (a) 5λ diameter; (b) 2λ diameter. (continued )
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(c)

FIGURE 6-5 (continued ) (c) 1λ diameter.
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FIGURE 6-6 Circularly polarized patch mounted on a 1λ-diameter ground plane.
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infinite ground plane. In this case the edge diffractions add constructively to narrow
the beamwidths. We can take advantage of the nearly equal E- and H -plane patterns in
the forward hemisphere to produce a pattern with excellent circular polarization over
the entire hemisphere when we feed the patch for circular polarization. Figure 6-6
gives the circular polarization pattern when the patch is fed in two spots with equal
signals phased 90◦ apart. The cross-polarization is 13 dB below the co-polarization
at θ = 90◦ in the principal planes and −7 dB in the diagonal plane. We retain these
excellent polarization characteristics over a large ground plane if we place the finite
ground plane on a 1λ or greater pedestal above the ground plane.

6-2 MICROSTRIP PATCH BANDWIDTH
AND SURFACE-WAVE EFFICIENCY

Microstrip patches radiate from the currents induced on the patch or equivalently, the
magnetic currents around the periphery of the patch and from surface waves induced
in the dielectric slab. The surface waves radiate when they reach the edges of the
substrate and their radiation contributes to the normal patch radiation. The fringing
fields from the patch to the ground plane readily excite the lowest-order surface-wave
TM0 mode that has no low frequency cutoff. Any thickness dielectric slab supports
this mode. We can control the surface-wave radiation by limiting the substrate area or
by adding etched photonic bandgap patterns to the open areas of the substrate, but gen-
erally, surface waves are undesirable. As the substrate thickness or dielectric constant
increases, the ratio of the power in surface waves increases. When we calculate the
microstrip patch antenna impedance bandwidth, we must include the directly radiated
power and the surface-wave power. For most cases we consider surface-wave radiation
as reducing radiation efficiency, but for a single patch on a substrate with limited area,
its radiation can add constructively. We eliminate surface waves by using metal plate
patches without dielectric substrates or low-density foam supports of the patch. Surface
waves are bound to the dielectric similar to any transmission line except that the field
decays exponentially in the direction normal to the surface. Because the surface wave
is excited along the finite edges of the patch, it spreads in the horizontal plane. The
radiation spreads like a two-dimensional wave and the fields decay as 1/

√
r , where r

is the horizontal distance from the edge. This is a far-field approximation, and close
to the edge it is a near-field problem. Unfortunately, these surface waves increase the
coupling between patches fabricated on the same substrate.

Simple formulas have been derived for the impedance bandwidth of rectangular
patches that include the surface-wave loss [5]. Since substrates can be both electric
and magnetic, we define the index of refraction of a patch substrate that includes both
parameters: n = √

εrµr . The idea is that the ratio of space-wave radiation to surface-
wave radiation can be found for any small antenna mounted on the substrate and we
can then apply it to a patch. By integrating the power density in the radiation from a
horizontal Hertzian (incremental) dipole spaced the substrate thickness over a ground
plane, we obtain the space-wave radiated power in closed form given the substrate
thickness h and the free-space propagation constant k:

P h
R � k2(kh)2 · 20 µ2

rC1

C1 = 1 − 1

n2
+ 0.4

n4

(6-1)
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We express the current on the patch as an integral of Hertzian dipoles. The surface-
wave power generated in the substrate by the Hertzian dipole can be simplified when
the substrate is thin:

P h
SW = k2(kh)3 · 15πµ3

r

(
1 − 1

n2

)3

(6-2)

We define the surface-wave radiation efficiency by the ratio of radiated power to
total power:

ηSW = P h
r

P h
R + P h

SW

= 4C1

4C1 + 3πkhµr(1 − 1/n2)3
(6-3)

We relate the power radiated by a patch to a Hertzian dipole by integrating the surface
current on the patch consisting of a distribution of small dipoles to calculate the total
space-wave power of the patch:

PR = P h
Rm2

eq = P h
R


∫∫

S

JS dx dy




2

(6-4)

For a rectangular patch the ratio of PR to P h
Rm2

eq, p, can be approximated by a simple
formula given the resonant length L, the width W , and the propagation constant k:

p = 1 − 0.16605(kW)2

20
+ 0.02283(kW)4

560
− 0.09142(kL)2

10
(6-5)

The 2 : 1 VSWR of the rectangular patch is related to the quality factor Q that includes
the space- and surface-wave radiations:

BW = 1√
2 Q

= 16C1p

3
√

2 ηSW

1

εr

h

λ0

W

L
(6-6)

Figure 6-7 plots the 2 : 1 VSWR bandwidth given by Eq. (6-6) for common substrates
versus the free-space thickness in wavelengths and includes the radiation due to surface
waves. The surface-wave radiation found using Eq. (6-3) becomes a significant part
of the total radiation as the substrate thickness increases or the dielectric constant
increases, as shown in Figure 6-8 of the surface-wave loss.

For a single resonator circuit model for a patch, Eq. (6-6) computes bandwidth from
the Q and the allowable input VSWR:

BW = VSWR − 1

Q
√

VSWR
or Q = VSWR − 1

BW
√

VSWR
(6-7)

We determine bandwidth at different VSWR levels by manipulating Eq. (6-7):

BW2

BW1
= (VSWR2 − 1)

√
VSWR1

(VSWR1 − 1)
√

VSWR2
(6-8)

Quality factor Q is another way of expressing efficiency. The Q used in Eq. (6-6) is
the combination of the space-wave radiation QR and the surface-wave radiation QSW:

1

Q
= 1

Qrad
= 1

QR

+ 1

QSW
= PR + PSW

ωWT
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FIGURE 6-7 2:1 VSWR bandwidth of square microstrip patches versus substrate thickness
in free-space wavelengths, including surface-wave radiation.
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FIGURE 6-8 Surface-wave loss of microstrip patches versus substrate thickness for common
substrate dielectric constants.

WT is the energy stored in the patch and the surface wave and ω = 2πf , the radian
frequency. Equation (6-3) can be expressed in terms of Q:

ηSW = Q

QR

= Qrad

QR
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The surface wave is not a dissipation loss, but potentially an uncontrolled radiation.
Dielectric and conductor losses increase the impedance bandwidth of the patch, but
reduce its gain. We express these losses as Q to compute patch efficiency. Given the
dielectric loss tangent, tan δ, and the patch conductivity σ , we have two more Q terms
that reduce the overall Q of the patch in terms of impedance bandwidth:

Qd = 1

tan δ
and Qc = h

√
πf µ0σ (6-9)

The total quality factor QT is found from the sum of the inverses:

1

QT

= 1

QR

+ 1

QSW
+ 1

Qd

+ 1

Qc

(6-10)

If we attempt to fabricate a patch on a thin substrate, Qd and Qc become commensurate
with the radiation Qrad and efficiency suffers. The impedance bandwidth increases due
to the dissipation in the microstrip patch. Figure 6-7 does not include these losses.

Dielectric Slab Surface Wave We consider the dielectric slab surface wave because
it can be excited not only by a microstrip patch but by any wave that passes across
it. The slab binds a portion of the wave and releases it when it diffracts at its edges.
The surface-wave device slows the wave velocity of this wave relative to the space-
wave signal, and when it radiates from the edges it no longer adds in phase with the
space wave. The surface-wave fields decrease exponentially in the direction normal to
the surface, and the exponential rate increases as the binding increases and the wave
propagates more slowly.

A dielectric slab on a ground plane will support TM modes when thin and TE
modes when thick. The TM mode is polarized normal to the slab surface, whereas the
TE mode is polarized parallel to the slab surface. A TM mode requires an inductive
surface such as a corrugated ground plane to bind the wave. While corrugations prevent
propagation between the slots, the wave propagates in the dielectric slab by bouncing
between the two interfaces at an angle with respect to the surfaces. The second surface
can be either free space or a conductor. To solve for the fields, we equate not only
the wave impedance at the boundary but the propagation constants in the two regions
as well.

We deduce the grounded dielectric slab solution from a slab twice as thick in
free space that has an odd-mode electric field excitation on the slab sides. The center
becomes a virtual short circuit for the odd-mode excitation. We divide the space around
the slab into three regions: 1 above the slab, 2 in the slab, and 3 below the slab and
then derive the fields from potential functions [6, p. 129]:

ψ1 = A1 exp

(−2πbx

λ

)
exp(−jkzz)

ψ2 = A2




sin
2πpxx

λ

cos
2πpxx

λ


 exp(−jkzz) (6-11)

ψ3 = ±A1 exp

(
2πbx

λ

)
exp(−jkzz)
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where the sign of ψ3 depends on satisfying continuous tangential fields across the
lower slab boundary. The center of the coordinate normal to the slab (x) is the slab
center. Equating the propagation constants and x-directed wave impedances produces
transcendental equations in the transverse propagation constant in the slab px :

√(ωa

2

)2
(ε1µ1 − ε0µ0) −

(πpxa

λ

)2 = ±B0
πpxa

λ




tan
πpxa

λ

cot
πpxa

λ


 (6-12)

where B0 = µ0/µ1 for TE waves. B0 = ε0/ε1 for TM waves, ω is the radian frequency
(2πf ), a is the slab thickness, and ε1 and µ1 are the permittivity and permeability of
the slab. We solve for px [Eq. (6-12)] numerically or graphically and use

πb

λ
a =

√(ωa

2

)2
(ε1µ1 − ε0µ0) −

(πpx

λ

)2
(6-13)

to determine attenuation constant b and the relative propagation constant P of the slab
surface wave:

kz = Pk = k
√

1 + b2 or P =
√

1 + b2 (6-14)

For the TM0 mode we can use an approximate expression for P instead of solving
Eq. (6-12) numerically when the slab is thin [7]:

P 2 = 1 + (εrµr − 1)2

(εrµr)2
(2 ka)2 (6-15)

Equation (6-12) has an infinite number of solutions, corresponding to the multiple
values of the tangent and cotangent functions. Order 0 corresponds to the tangent
function from 0 to 90◦; order 1 corresponds to the cotangent function from 90 to
180◦; and so on. Even-mode orders use the tangent function, and odd-mode orders use
the cotangent function. We define the cutoff frequency as the point where α = 0, the
transition between attached and detached waves:

λc = 2a

n

√
ε1µ1

ε0µ0
− 1 (6-16)

The cutoff frequency for the zeroth-order mode is zero. Only the TM0 mode has odd
symmetry, required for the grounded slab. The grounded slab supports even-order TM
modes and odd-order TE modes. Equation (6-12) coupled to Eq. (6-13) has been solved
numerically to generate Tables 6-2 and 6-3. Table 6-4 lists the thicknesses of a slab
in free space supporting the TM0 mode for a given P . The grounded slab is one-half
the thickness of the values in Table 6-2. Similarly, Table 6-3 lists the thicknesses for
the TE1 mode. Equation (6-16) can be solved for the minimum thickness to support
the TE1 mode. Below that thickness the waves do not bind to the surface.

Besides microstrip patches, we feed these surfaces from either a small horn or a
parallel-plate transmission line. We match the feed polarization to the mode on the
slab, but the slab binds only part of the power. The rest radiates directly from the
feed or reflects to the feed input. We can feed an ungrounded slab by centering it in
a waveguide. The TE10 waveguide mode excites the TE0 slab mode when the mode
velocity determining thickness is in the H -plane. Like the grounded slab with the TM0
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TABLE 6-2 Thickness (λ0) of a Dielectric Slab Supporting a TM0 Modea

Dielectric Constant

P 2.21 2.94 4.50 6.00 9.80

1.001 0.02699 0.02152 0.01831 0.01839
1.002 0.03672 0.03041 0.02574 0.02420
1.005 0.05792 0.04784 0.04032 0.03744 0.03446
1.01 0.08162 0.06713 0.05623 0.05195 0.04710
1.02 0.1147 0.09355 0.07746 0.07094 0.06316
1.04 0.1607 0.1289 0.1046 0.09444 0.08180
1.06 0.1956 0.1545 0.1231 0.1099 0.09331
1.08 0.2253 0.1752 0.1374 0.1215 0.1015
1.10 0.2520 0.1930 0.1491 0.1307 0.1078
1.12 0.2770 0.2088 0.1590 0.1384 0.1129
1.14 0.3012 0.2233 0.1677 0.1450 0.1171
1.16 0.3251 0.2369 0.1756 0.1508 0.1208
1.18 0.3493 0.2499 0.1827 0.1560 0.1240
1.20 0.3741 0.2625 0.1894 0.1607 0.1269
1.25 0.4426 0.2934 0.2045 0.1712 0.1329
1.30 0.5282 0.3250 0.2182 0.1803 0.1380
1.35 0.6492 0.3593 0.2314 0.1887 0.1424
1.40 0.3986 0.2444 0.1966 0.1463

a Use half-thickness for a slab on a ground plane.

TABLE 6-3 Thickness (λ0) of a Dielectric Slab Supporting a TE1 Modea

Dielectric Constant

P 2.21 2.94 4.50 6.00 9.80

1.001 0.4469 0.3689 0.2743 0.2260 0.1701
1.002 0.4720 0.3709 0.2774 0.2272 0.1705
1.005 0.4829 0.3765 0.2770 0.2302 0.1717
1.01 0.4961 0.3843 0.2810 0.2330 0.1736
1.02 0.5164 0.3962 0.2873 0.2373 0.1761
1.04 0.5494 0.4150 0.2968 0.2438 0.1797
1.06 0.5790 0.4313 0.3049 0.2492 0.1825
1.08 0.6078 0.4465 0.3122 0.2540 0.1851
1.10 0.6368 0.4613 0.3191 0.2585 0.1874
1.15 0.7140 0.4982 0.3356 0.2690 0.1928
1.20 0.8046 0.5372 0.3518 0.2790 0.1978
1.25 0.9182 0.5802 0.3683 0.2890 0.2026
1.30 1.0712 0.6291 0.3856 0.2992 0.2073

a Use half-thickness for a slab on a ground plane.

mode, the TE0 mode has no cutoff frequency for a free-space slab. Table 6-4 lists the
slab thicknesses for a given relative propagation constant for the TE0 mode.

The surface-wave power was found in terms of the relative propagation constant P [7]:

PSW = 15πk2n2µ3
r (P

2 − 1)

n2

(
1√

P 2 − 1
+

√
P 2 − 1

n2 − P 2

)
+ kh

[
1 + n4(P 2 − 1)

n2 − P 2

] (6-17)
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TABLE 6-4 Thickness (λ0) of a Dielectric Slab Supporting a TE0 Mode

Dielectric Constant

P 2.21 2.94 4.50 6.00 9.80

1.001 0.01274 0.00994
1.002 0.01684 0.01174 0.00661 0.00410 0.00250
1.005 0.02649 0.01666 0.00920 0.00638 0.00364
1.01 0.03772 0.02341 0.01289 0.00905 0.00514
1.02 0.05409 0.03345 0.01846 0.01286 0.00729
1.04 0.07872 0.04823 0.02640 0.01839 0.01040
1.06 0.09935 0.06027 0.03275 0.02276 0.01284
1.08 0.1184 0.07104 0.03832 0.02656 0.01494
1.10 0.1368 0.08113 0.04343 0.03002 0.01684
1.15 0.1833 0.1051 0.05507 0.03779 0.02106
1.20 0.2348 0.1290 0.06595 0.04489 0.02483
1.25 0.2968 0.1542 0.07661 0.05168 0.02835

We combine Eq. (6-1) for the space-wave power with Eq. (6-17) for the surface-wave
power to calculate efficiency in the same manner as Eq. (6-3). The results are similar.

6-3 RECTANGULAR MICROSTRIP PATCH ANTENNA

Although design equations will be given below for single-layer rectangular and circular
patches, serious design work should use one of the excellent available commercial
design codes [8]. Their use reduces the need to modify the final dimensions using a
knife to remove metal or metal tape to increase the patches. Antennas can be built
with tuning tabs, but the labor to trim these increases cost. Tuning tabs are unsuitable
for arrays when the input port to individual antennas cannot be accessed. As we add
layers to increase bandwidth, a cut-and-try method becomes extremely difficult, and
numerical methods are a necessity.

Rectangular patch antennas can be designed by using a transmission-line model [9]
suitable for moderate bandwidth antennas. Patches with bandwidths of less than 1%
or greater than 4% require a cavity analysis for accurate results, but the transmission-
line model covers most designs. The lowest-order mode, TM10, resonates when the
effective length across the patch is a half-wavelength. Figure 6-9 demonstrates the
patch fed below from a coax along the resonant length. Radiation occurs from the
fringing fields. These fields extend the effective open circuit (magnetic wall) beyond
the edge. The extension is given by [10]

�

H
= 0.412

εeff + 0.300

εeff − 0.258

W/H + 0.262

W/H + 0.813
(6-18)

where H is the substrate thickness, W the patch nonresonant width, and εeff the effective
dielectric constant of a microstrip transmission line the same width as the patch.

A suitable approximation for εeff is given by [11]

εeff = εr + 1

2
+ εr − 1

2

(
1 + 10H

W

)−1/2

(6-19)
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FIGURE 6-9 Coax-fed microstrip patch antenna.

where εr is the substrate dielectric constant. The transmission-line model represents
the patch as a low-impedance microstrip line whose width determines the impedance
and effective dielectric constant. A combination of parallel-plate radiation conductance
and capacitive susceptance loads both radiating edges of the patch.

Harrington [6, p. 183] gives the radiation conductance for a parallel-plate radiator as

G = πW

ηλ0

[
1 − (kH)2

24

]
(6-20)

where λ0 is the free-space wavelength. The capacitive susceptance relates to the effec-
tive strip extension:

B = 0.01668
�

H

W

λ
εeff (6-21)

Example Design a square microstrip patch antenna at 3 GHz on a 1.6-mm substrate
with a dielectric constant of 2.55 (woven Teflon fiberglass). The patch will be approx-
imately a half-wavelength long in the dielectric.
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Assume at first that the width is λ/2.

W = c

2f
√

εr

= 31.3 mm

By Eq. (6-19), εeff = 2.405. On substituting that value into Eq. (6-18), we obtain the
effective cutback on each edge; � = 0.81 mm. The resonant length is

L = c

2f
√

εeff
− 2� = 30.62 mm

When we use this length as the width (square patch) to calculate the effective dielectric
constant, we obtain 2.403, very close to the initial value. We can iterate it once more
and obtain 30.64 mm for the resonant length. The input conductance of the patch fed
on the edge will be twice the conductance of one of the edge slots [Eq. (6-20)]:

G = 30.64 mm

120(100 mm)

{
1 − [2π(1.6)/100]2

24

}
= 2.55 mS

R = 1

2G
= 196 �

A microstrip feeding line can be attached to the center of one of the radiating edges
but 50-� transmission lines become inconveniently wide on low-dielectric-constant
substrates. More convenient, 100-� narrower lines have about the same low loss and are
generally used in feed networks. To transform the 196-� input resistance of the example
above to 100 �, we use a 140-� quarter-wavelength transformer. The bandwidth of
the transformer far exceeds that of the antenna.

In the example above, we have a square patch. Why doesn’t the antenna radiate
from the other two edges? We can equally well say that the patch is a transmission
line in the other direction. The equal distances from the feed point to the nonradiating
edges produce equal fields from the patch to ground. Equal fields on the edges set up
a magnetic wall (virtual open circuit) through the centered feed line and create a poor
impedance match to the feed.

We expand the radiating edge fields in an odd mode, since the power traveling across
the patch loses 180◦ of phase. The odd mode places a virtual short circuit halfway
through the patch. A shorting pin through the center (Figure 6-9) has no effect on
radiation or impedance, but it allows a low-frequency grounding of the antenna. The
patch can be fed by a coax line from underneath (Figure 6-9). The impedance varies
from zero in the center to the edge resistance approximately as

Ri = Re sin2 πx

L
0 ≤ x ≤ L

2
(6-22)

where Ri is the input resistance, Re the input resistance at the edge, and x the
distance from the patch center. The feed location does not significantly affect the
resonant frequency. By using Eq. (6-22), we locate the feed point given the desired
input impedance:

x = L

π
sin−1

√
Ri

Re

(6-23)
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Compute the 50-� feed point in the example above:

x = 30.64

π
sin−1

√
50

196
= 5.16 mm

The feed pin currents add to the pattern by radiating a monopole pattern. Figure 6-10
shows this radiation for a patch using a free-space substrate where the E-plane radiating
edges are spaced λ/2. The pattern of Figure 6-10 has a null along the ground plane in
the E-plane, but the monopole radiation increases the radiation along the ground plane.
On one side the radiation adds and on the other it subtracts from the E-plane pattern
to form a null tilted above the ground plane. The H -plane pattern now contains cross-
polarization. We can reduce the monopole radiation by feeding the patch at a second
port located an equal distance from the center on the opposite side. This requires
an external feed network that divides the power equally between the two ports with
a 180◦ phase difference. The problem with this feed arrangement is that significant
power is coupled between the two feeds in the equivalent microwave circuit of the
patch. The estimated value of −6 dB coupling between the ports causes a portion of the
input power to be dissipated in the second port. At this level the patch efficiency drops
1.25 dB. We can reduce the monopole radiation by coupling to a second short-circuited
probe to the patch instead of directly feeding it. The gap between the second probe
and the patch is adjusted until the antenna radiates minimum cross-polarization in the
H -plane. This uses the microstrip patch as the feed network, and the second probe has
no resistive load to dissipate power.

The feed probe across the microstrip patch substrate is a series inductor at the input.
Higher-order modes excited in the patch by this feeding method add to the inductive
component of the antenna. Below resonance, the antenna is inductive and has near-
zero resistance. As the frequency increases, the inductance and resistance grow as
the parallel resonance is approached. Above the resonant frequency, the antenna is
capacitive as the impedance sweeps clockwise around the Smith chart (Figure 6-11)
and finally back to a slight inductive component near a short circuit. Increasing the

E-Plane

H-Plane

H-Plane,
X-Pol

FIGURE 6-10 Pattern of coax-fed, microstrip patch including feed pin radiation for free-space
substrate.
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FIGURE 6-11 Smith chart frequency response of under-, critically, and overcoupled patches
as the feed point moves toward one radiating edge of a rectangular patch.

input resistance by changing the feed point causes the resonant frequency response
circle to grow on the Smith chart and cross the resistance line at a higher level. We
call the left-hand curve the undercoupled case because the sweep of the curve fails
to enclose the center of the chart. The center curve is critically coupled and the right
curve is the overcoupled case. This general impedance response also holds for circular
patches. We use these terms for all resonance curves when they sweep around or toward
the Smith chart center from any peripheral point.

Figure 6-12 plots the Smith chart for a design with a patch on a 0.05λ-thick substrate
with dielectric constant 1.1 that includes the inductance of the feed pin. The response
locus lies above the real axis and is always inductive. We can tune this impedance
locus by adding a series capacitor at the input with a reactance −j50 at the center
frequency. The series capacitor moves the locus down until it sweeps around the
center of the chart in an overcoupled response. Figure 6-13 shows implementation of
the capacitor as a disk on the end of the feed pin. The pin passes through a hole
in the patch so that the only connection is through the capacitor disk. The disk can
be placed below the patch on a separate substrate in a multiple-layer construction.
Other configurations use an annular ring capacitor etching in the patch at the feed
point for small capacitors. Adding to this a series inductor and adjusting the series
capacitor improves the impedance match over a larger frequency range, as shown in
Figure 6-14, where the locus encircles the origin [12]. The patch with the single added
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W/Pin
Inductance

Added Series
Capacitor

FIGURE 6-12 Impedance improvement by adding a series capacitor to a patch on a thick
substrate.

Patch Disk
Capacitor

Feed Pin

Coax
Input

FIGURE 6-13 Cross section of a probe-fed patch with an added series capacitor.

series capacitor has a 9.1% 10-dB return-loss bandwidth while adjusting the series
capacitor, and adding a series inductor increases the impedance bandwidth to 15.4%.
Matching networks have limited ability to add resonances to broadband the impedance
match, but construction becomes difficult. Later, we will obtain extra resonances by
adding antenna elements.

We can feed patches from the edge by using an inset microstrip line as shown in
Figure 6-15, where the gap on either side of the microstrip line equals its width. A
FDTD analysis shows that the inset disturbs the transmission line or cavity model
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Series Capacitor
Series Inductor
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FIGURE 6-14 Impedance response of a patch with a two-element matching network.

Feed

Inset

Patch

Substrate

FIGURE 6-15 Inset-fed square patch.

and increases the impedance variation with distance compared to a coaxial probe feed
given a patch resonant length L and feed position x from the center [13]:

Ri = Re sin4 πx

L
0 ≤ x ≤ L

2
(6-24)
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Equation (6-24) is an approximate solution because at x = 0, the resistance remains
finite. We locate the feed from the equation using a radian angle measure:

x = L

π
sin−1

(
Ri

Re

)1/4

(6-25)

Compute the 50-� feed point in the example above:

x = 30.64

π
sin−1

(
50

196

)0.25

= 7.71 mm

The inset distance (7.3 mm) is less than the distance of the probe (9.8 mm) from
the edge.

Aperture Feed [14,15] A microstrip patch is a planar resonant cavity with open-
circuited sidewalls that leak power in radiation. We can also think of the rectangular
patch operating in the lowest-order mode as a low-impedance transmission line with
end susceptance and radiation conductance. Both models predict a resonant structure
with significant Q. Resonant cavities are readily excited by coupling to a transmission
line through an aperture or by direct feeding from a transmission line. The Q of the
resonant cavity limits the excitation fields to one of the modes. We can expand the
excitation in the cavity modes, but the lowest-order mode is usually the most significant
and contains most of the stored energy. We generally consider the voltage distribution
in a patch with its null plane located halfway across the patch through the center.
Whether we consider it as a cavity or a transmission line the standing-wave voltage
has a standing-wave current associated with it. This current is out of phase with the
voltage and its peak occurs along the virtual short circuit through the centerline. Along
the resonant length the current has a cosinusoidal distribution that vanishes at the
radiating edges in a single half-cycle for the lowest-order mode. The current has a
uniform distribution along the patch width.

We produce maximum coupling to a patch through a slot by distorting the currents
in the ground plane of the patch where they are maximum in the center of the patch.
To first order the currents flow along the resonant length. This means that we align the
slot perpendicular to the current flow for maximum excitation in the same manner as
slots in waveguides (Section 5-24). To excite the slot we pass a microstrip transmission
line across it perpendicularly. This leads to a three-layer structure. The patch is located
on the top layer. Its ground plane contains a coupling aperture usually placed under
the center of the patch for maximum coupling. The third layer contains a microstrip
transmission using the same ground plane as the patch and located under the center
of the slot to maximize coupling. Figure 6-16a shows an exploded view of the patch,
ground with its aperture, and the microstrip transmission line flipped over relative to
the patch. Figure 6-16b gives the general parameters associated with the slot aperture.
Although xos and yos are usually zero to maximize coupling, the patch current distri-
bution tells us how the coupling varies with slot location. Because the current in the
ground plane is uniform across the patch width W , coupling is independent of xos until
the slot starts to overlap the edge of the patch. The cosinusoidal distribution current
distribution along the resonant length direction L means that the coupling falls off
slowly as yos is moved off zero. The sign of yos does not matter because the distri-
bution is an even function. The slow variation of current near the patch center means
that the slot location has a loose tolerance.
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FIGURE 6-16 Aperture feed of square patch. (From [15], Fig. 1,  1986 IEEE.)

The microstrip transmission line excites the slot (aperture) from a standing-wave
with its maximum current located at the slot. We maximize the standing-wave current
by either using a shorting via from the microstrip line to the ground plane or by using
a quarter-wave open-circuited transmission line stub of length Ls . Ls will be less than
a quarter-wave in the effective dielectric constant of the microstrip line because the
open-circuit end has fringing capacitance and its capacitance must overcome the higher-
order modes of the microstrip patch, which load the input inductively. The reactance
of the stub, a series load to the input, is given by the equation

ZS = −jZ0 cot(keffLS)

where Z0 is the characteristic impedance of the microstrip feed line, keff the effective
propagation constant in the microstrip substrate, and Ls the stub length ≈0.22λeff.

We increase the coupling to the patch resonant cavity by increasing the aperture
size. Figure 6-17 shows the Smith chart variation with aperture size as the coupling
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Increasing Aperture

FIGURE 6-17 Effect of aperture size on coupling to a patch where larger openings move the
response to the right.

varies left to right as undercoupled, critically coupled, and overcoupled. When we
increase the bandwidth, we lower the Q, and the coupling aperture size must increase.
Waterhouse [8] suggests starting with a slot about one-half the patch width and using a
commercial code to analyze the response while adjusting dimensions before fabrication.
We control the rotational position on the Smith chart by varying the open-circuited stub
length. Shorter lengths, below λ/4, increase the capacitive reactance and the coupling
loop will rotate around a constant-resistance circle with its diameter determined by the
aperture size, as shown in Figure 6-18.

Figure 6-19 gives aperture shapes in order of increasing coupling. The longer slot of
(b) compared to slot (a) increases coupling. Widening the aperture as in (c) increases
coupling relative to (a). The H-shaped slot has a more uniform distribution along the
horizontal slot and increased coupling. The bowtie and hourglass apertures increase
coupling from a consideration of increased path length around the opening. The smooth
curve of the hourglass reduces current discontinuities at the edges and increases cou-
pling [16, pp. 158–159].

Aperture feeding eliminates the vertical pin structure in the microstrip patch and
eases construction but at the cost of a multiple-layer etching. The elimination of the
vertical pin removes the added monopole pattern, which increases cross-polarization.
When the patch is edge fed, whether directly or inset, the substrate for good patch
radiation does not match the one needed for good microstrip lines. With an aperture-
fed patch, each structure can use its optimum substrate, because they are independent
and connected only through the aperture. As we try to feed broadband patches, the
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FIGURE 6-18 Effect of varying length of an open-circuited stub in an aperture-fed patch
when critically coupled.
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FIGURE 6-19 Aperture shapes to increase coupling and bandwidth. (From [16], Fig. 4-29, 
2003 Artech House, Inc.)

Q decreases and the aperture size grows. This slot, although below a resonant size,
increases its radiation and decreases the front-to-back ratio because it radiates equally
on both sides. One solution is to enclose the microstrip line in a box to prevent
slot radiation on the back side. If we use a high-dielectric-constant substrate for the
microstrip line, the coupling through the aperture remains high, but the second ground
plane of the microstrip will reduce the coupling. The slot aperture adds a pole to the
patch circuit that can be used to broadband the impedance response. To use this pole
effectively, we must increase the aperture size until it becomes a significant radiator.



310 MICROSTRIP ANTENNAS

6-4 QUARTER-WAVE PATCH ANTENNA

When operation is in the lowest mode, a virtual short circuit forms through a plane
centered between the two radiating edges. We can make an antenna by using half the
patch and supplying the short circuit (Figure 6-20). The E-plane pattern broadens to
that of a single slot. The resonant length is about a quarter-wavelength in the dielectric
of the substrate. We use the effective dielectric constant εeff of a microstrip line of
patch width W and � given by Eq. (6-18) to determine the resonant length L of the
quarter-wave patch:

L

2
= λ

4
√

εeff
− � (6-26)

We can implement the short circuit with a series of pins or etched vias between the
ground plane and the patch. These add an inductive component to the transmission-line
model of the antenna. The effective shorting plane occurs further along the transmission
line. The equivalent extra length �l is found from the parallel-plate circuit model of
a row of evenly spaced pins [17, p. 104]. Given the pin center spacing S, their radius
r , and the wavelength in the dielectric λd = λ0/

√
εr , we compute the patch-length

reduction from the equation

�l = S

2π

[
ln

S

2πr
−

(
2πr

S

)2

+ 0.601

(
S

λd

)2
]

(6-27)

We have only the conductance and susceptance of a single edge that doubles the res-
onant resistance at the edge as compared with the full patch. It becomes difficult to
feed the antenna from microstrip because this raises the quarter-wavelength transformer
impedance and requires narrower lines. We can increase the edge width to reduce the
edge input resistance, but the antenna is usually fed from underneath. Equation (6-23)
gives the approximate feed location measured from the short circuit. The resonant fre-
quency shifts slightly as the feed point moves. During tuning for impedance match, the
length of the cavity will have to be adjusted to maintain the desired resonant frequency.
Quarter-wave and full-patch antennas have the same Q. A half-patch antenna has half

L/2

Input Coax

Shorting
wall

Feed Pin

∆

l

4√ eff

∋

E

E

E

Substrate

FIGURE 6-20 Quarter-wave patch.
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the radiation conductance but only half the stored energy of a full-patch antenna. Its
bandwidth is approximately the same as that of the full patch.

Example Design a half-patch antenna at 5 GHz on a 0.8-mm-thick substrate (εr =
2.21) with a radiating width of 0.75λ.

The edge width is 0.75(300 mm)/5 = 45 mm. By using Eq. (6-19), we compute the
effective dielectric constant in the cavity: εeff = 2.16. Equation (6-18) gives us the
cutback for fringing fields: � = 0.42 mm. The resonant length becomes

L

2
= λ

4
√

εeff
− � = 10.20 − 0.42 = 9.78 mm

The radiation conductance from the single edge is [Eq. (6-20)]

G = 45

120(60)
= 6.25 mS or R = 160 �

The 50-� feed point is found from Eq. (6-23):

x = 19.56

π
sin−1

√
50

160
= 3.69 mm

where x is the distance from the short.

The short circuit of this antenna is quite critical. The low impedance of the microstrip
cavity raises the currents in the short circuit. Without a good low-impedance short, the
antenna will detune and have spurious radiation. If the antenna is made from a machined
cavity, careful attention must be paid to the junction between the top plate and the
cavity to assure good electrical contact.

Figure 6-21 shows the calculated pattern of a quarter-wave patch on a free-space
substrate 0.04λ thick on an infinite ground plane. The antenna radiates primarily from
the single edge located opposite the short-circuited edge. A vertical probe feeds the

E-Plane

H-Plane

H-Plane
X-Pol.

FIGURE 6-21 Pattern of a quarter-wave patch on a free-space substrate.
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H-Plane
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FIGURE 6-22 Pattern of a quarter-wave patch mounted on (a) 2λ- and (b) 10λ-diameter
ground planes.
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antenna directly. The E-plane has a broad, nearly constant pattern. Radiation from
current on the probe and shorting pins adds to positive angle radiation of the equiv-
alent single slot while subtracting in the opposite direction. The H -plane pattern
(dashed curve) retains its null along the ground plane. The light-line curve gives
the cross-polarization in the H -plane. The feed probe and shorting pin currents pro-
duce a pattern similar to that from a monopole. The model that uses equivalent
magnetic currents fails to predict the high radiation from these currents. When the
quarter-wave patch is mounted on a finite ground plane, it exhibits behavior simi-
lar to that of a monopole. Figure 6-22a,b plots the pattern when it is mounted on
2λ- and 10λ-diameter ground planes. These show a monopole-type pattern, where
radiation spreads readily behind the ground plane. Currents flowing in the feed pin
and shorting wall distort the E-plane and cause asymmetry. The magnetic currents
flowing along the side slots no longer cancel as in the square patch and increase
cross-polarization.

If we close off the nonradiating edges with metal walls, the walls convert the
parallel-plate line into a waveguide and we use the waveguide propagation constant to
calculate the quarter-wavelength cavity depth. The slot fields vanish on the ends and
establish a sinusoidal slot distribution. We can offset the feed toward both the back wall
and the sidewall to reduce the input impedance. The peak voltage (minimum current
and peak resistance) occurs at the slot center. Figure 6-23 illustrates the pattern of
the waveguide quarter-wave patch on an infinite ground plane. The sidewalls reduce
the monopole radiation, and the H -plane cross-polarization is reduced compared to a
quarter-wave patch. When mounted on a 2λ-diameter disk, centered on the feed pin,
the pattern (Figure 6-24) exhibits lower-level radiation in the backlobe because the
monopole pattern has been reduced. The high radiation level at the disk edges still
causes considerable edge diffraction in the E-plane.

6-5 CIRCULAR MICROSTRIP PATCH

In some applications, a circular patch fits in the available space better than a rect-
angular one. In a triangularly spaced array, they maintain a more uniform element

E-Plane

H-Plane

H-Plane
X-Pol

FIGURE 6-23 Pattern of a quarter-wave waveguide patch.
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E-Plane
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FIGURE 6-24 Quarter-wave waveguide patch mounted on a 2λ-diameter disk.

environment. No suitable transmission-line model presents itself, and the cavity model
must determine the resonant frequency and bandwidth. The cutoff frequencies of TE
modes of circular waveguides give the resonant frequencies of circular patch antennas.
The patch with its magnetic walls and TM modes is the dual of the waveguide. The
resonant frequencies are given by

fnp = X′
npc

2πaeff
√

εr

(6-28)

where X
′
np are the zeros of the derivative of the Bessel function Jn(x) of order n, as

is true of TE-mode circular waveguides. The term aeff is an effective radius of the
patch [18]:

aeff = a

√
1 + 2H

πaεr

(
ln

πa

2H
+ 1.7726

)
(6-29)

where a is the physical radius and H is the substrate thickness. Using the effective
radius gives the resonant frequency within 2.5%.

We combine Eqs. (6-28) and (6-29) to determine radius to give a particular resonant
frequency:

aeff = X′
npc

2πfnp

√
er

(6-30)
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Since a and aeff are nearly the same, we can iterate Eq. (6-29) to compute a, the
physical radius [19, p. 119]:

a = aeff√
1 + 2H/πaεr

[
ln (πa/2H) + 1.7726

] (6-31)

We start by using aeff for a in Eq. (6-31), which converges rapidly. The lowest-order
mode, TM11, uses X

′
11 (1.84118) and produces a linearly polarized field similar to

a square patch. The TM01 mode (X
′
01 = 3.83171) produces a monopole-type pattern

from a uniform edge fringing field.

Example Design a circular microstrip patch antenna (TM11 mode) at 3 GHz on a
1.6-mm substrate that has a dielectric constant of 2.55 (woven Teflon fiberglass).

We calculate the effective radius from Eq. (6-30):

aeff = 1.84118(300 × 109 mm/s)

2π(3 × 109 Hz)
√

2.55
= 18.35 mm

The physical radius will be slightly less. By using aeff in the denominator of Eq. (6-
31), we obtain a physical radius: a = 17.48 mm. We can then substitute this back into
Eq. (6-31) and obtain a = 17.45 mm. Equation (6-31) converges in two iterations to a
reasonable tolerance, since another iteration gives the same value. Actually, a single
iteration gives the value within 0.2% on a formula accurate to only 2.5%.

The fields of the TM11 mode produce a virtual short circuit at the center of the
patch. We can reinforce the short circuit with a pin soldered between the patch and
ground. The radial line along which the feed is placed determines the direction of
the linear polarization. The nonuniform radiation along its edge gives a larger edge
impedance than the square patch. Experience shows that the 50-� feed point is located
from the center at about one-third the radius. Experiments, actual or numerical, will
be required to locate the proper point. Use a network analyzer with a Smith chart
display to measure the input impedance. If the resonance circle swings around the
origin, the impedance is too high (overcoupled). Move the feed toward the center. A
scalar return-loss display cannot give you the direction of movement required. Like
the rectangular patch, mismatching the impedance at center frequency to about 65�

increases the bandwidth slightly. Derneryd [20] gives an approximate expression for
the radial impedance variation:

Rin = Re

J 2
1 (kερ)

J 2
1 (kεa)

(6-32)

where Re is the edge resistance, ρ the radial distance, and J1 the Bessel function of the
first kind. kε is the propagation constant in the substrate dielectric constant: kε = k

√
εr .

Figure 6-25 gives the 2 : 1 VSWR bandwidth of a circular patch on various substrates
as a function of the substrate thickness. It has a slightly smaller bandwidth than that
of a square patch because it has a smaller volume. The curves on Figure 6-25 include
surface-wave radiation (or losses).
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FIGURE 6-25 2 : 1 VSWR bandwidth of circular microstrip patches versus substrate thickness
in free-space wavelengths, including surface-wave radiation.

6-6 CIRCULARLY POLARIZED PATCH ANTENNAS

Figure 6-26 show methods of achieving circular polarization with square patches fed
with two inputs. The patches are fed by equal signals 90◦ out of phase. The branchline
hybrid (Figure 6-26a) consists of four transmission lines connected in a square. The
hybrid shown (100-� system) produces equal outputs 90◦ out of phase at center fre-
quency. The two inputs produce patterns with opposite senses of circular polarization.
Both the VSWR and axial ratio bandwidths far exceed the singly fed patch bandwidth.
Reflections due to the patch mismatch are routed to the opposite input. Patch input
reflections, undetected at the input, reduce the efficiency of the antenna by the same
amount as the singly fed patch mismatches. The antenna can be fed from below in two
places by using a coupled line hybrid, but it suffers from the same efficiency problem.

The cross-fed antenna (Figure 6-26b) splits the signal to feed both edges. A quarter-
wavelength-longer line provides the extra 90◦ phase shift to give circular polarization.
Shifting the impedance from one input through a quarter-wavelength line before adding
the two in shunt cancels some of the reflection from the second line and increases the
impedance bandwidth. The impedance bandwidth approximately doubles compared to
the singly fed patch. The 6-dB axial ratio bandwidth roughly equals the singly fed
square-patch bandwidth. The polarization loss (0.5 dB) of a 6-dB axial ratio equals the
2 : 1 VSWR mismatch loss.

The antennas in Figure 6-27 use asymmetries to perturb the resonance frequencies of
two possible modes and achieve circular polarization [21]. The approximately square
patches have been divided into two groups: type A, fed along the centerline, and
type B, fed along the diagonal. All these antennas radiate RHC. We can understand the
operation of these patches from an analysis of the turnstile dipole antenna (Figure 6-28).
The orthogonal dipoles could be of equal length and fed from a 90◦ hybrid to achieve
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FIGURE 6-26 Dual-fed circularly polarized patch antennas: (a) branchline hybrid fed; (b)
cross-fed patch.

FIGURE 6-27 Classes of perturbed microstrip patches to generate circular polarization from
a single feed. (From R. Garg et al., Microstrip Patch Handbook, Fig. 8-15,  1999 Artech
House, Inc.)

circular polarization (like the patch in Figure 6-26a). Instead, the lengths are changed
to shift the phase of each dipole by 45◦ at resonance. If we lengthen the dipole beyond
resonance, the input impedance becomes inductive. The current becomes

I = V

R2 + jX2
= V (R2 − jX2)

R2
2 + X2

2
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FIGURE 6-28 Turnstile dipole antenna.

The radiated field phase decreases relative to the resonant-length dipole. Shortening
the dipole from resonance increases the far-field phase. We adjust the lengths until the
phase difference of the radiated fields is 90◦ and the susceptances from the two dipoles
cancel at center frequency. The combination of the two modes produces a Smith chart
response with a small loop or kink (see Figure 5-13). The best circular polarization
occurs at the frequency of the kink, and the response degrades below and above this
frequency. The axial ratio bandwidth is far less than the impedance bandwidth, because
the combination of the two modes causes a cancellation of transmission-line reflections
from the two modes and increases the impedance bandwidth. The phase required for
good circular polarization changes rapidly.

We denote the total change in area �S to achieve two resonances for a normal patch
area of S and it is proportional to the Q. A type A patch, fed along the square patch
axis, requires less area change than a type B patch, fed along the diagonal:

type A:
�S

S
= 1

2Q
type B:

�S

S
= 1

Q
(6-33a,b)

We achieve the same effect with a patch by perturbing the lengths of a square patch
and feeding both polarizations. An input along the diagonal (type B) feeds all edges
in two separate resonances. The ratio of the edge lengths is found in terms of Q

by a perturbation technique [4]. We rearrange Eq. (6-33b) to derive the ratio of these
lengths:

b

a
= 1 + 1

Q
(6-34)

We calculate resonant frequencies for the two lengths from Eq. (6-34):

f1 = f0√
1 + 1/Q

f2 = f0

√
1 + 1

Q
(6-35)
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Q is related to the VSWR bandwidth by Eq. (6-7). The 3-dB axial ratio bandwidth
of the antenna is limited to 35%/Q or 35% of the frequency difference between f1

and f2.

Example Compute resonant lengths for a corner-fed patch on a 1.6-mm substrate
with εr = 2.55 at 3 GHz.

We have λ = 100 mm and thickness/λ = 0.016. From Figure 6-7 we read the 2 : 1
VSWR bandwidth: 1.61%. From Eq. (6-7) we calculate Q:

Q = 1

0.0161
√

2
= 43.9

We use Eq. (6-35) to determine the resonant frequencies:

f1 = 3√
1 + 1/43.9

= 2.966 GHz

f2 = 3
√

1 + 1/43.9 = 3.034 GHz

By using the techniques of Section 6-3, we calculate the resonant lengths: a =
30.27 mm, b = 31.01 mm.

All perturbations by small areas in a circular patch can only be type A feeding.
The perturbation equations are related to the circular patch separation constant X′

11
(1.84118):

type A:
�S

S
= 1

X′
11Q

type B:
�S

S
= 2

X′
11Q

(6-36)

A circular patch perturbed into an elliptical patch radiates circular polarization when
fed on a 45◦ diagonal from the major or minor axis and produces type B feeding. The
ratio of major to minor axes is related to Q [4]:

b

a
= 1 + 1.0887

Q

with resonant frequencies

f1 = f0√
1 + 1.0887/Q

and f2 = f0

√
1 + 1.0887

Q
(6-37)

We compute Q by using Eq. (6-7) and read the bandwidths from Figure 6-25 for
circular patches. Use the techniques of Section 6-5 to calculate the physical radius of
the major and minor axes from the frequencies [Eq. (6-35)].

6-7 COMPACT PATCHES

The desire to produce small patches for cellular telephone handset use has lead to the
development of compact designs. The ideal antenna is one whose location the user is
unaware of and which is as small as possible. Because most signals arrive at the user
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after many bounces and edge diffractions, polarization is arbitrary. We do not need to
control the radiation pattern or its polarization carefully and it opens up a range of
possibilities. Shorting pins placed close to the feed pin reduce the patch size to about
1
8λ on a side, but its polarization is poorly controlled. If we can force the current to take
a longer path along the resonant-length path, we can shrink the overall size. We etch
notches in the patch to make the current wander or use various spiral-wound networks
on a flat substrate. Three-dimensional solutions consist of folding a patch by using the
vertical direction or some sort of winding around a cylinder. Many variations on these
ideas appear in the literature and in collections of these ideas [16,22,23].

Adding a shorting pin closely spaced to the vertical feed pin (Figure 6-29) greatly
reduces the resonant frequency of a given-size patch and produces a compact patch [24].
The idea is to make the current flow over a longer path from the feed point to the
radiation site; in other words, the transmission line has been folded to make the path
longer in the resonant cavity. We use this concept for all compact patches. In this con-
figuration the resonant wavelength is found from the patch perimeter. Given the width
W and the length L of the patch on a dielectric substrate εr , the resonant wavelength
is given by

λ0 = 4
√

εr(L + W) (6-38)

which reduces to a square patch λ/8 on a side. This patch has one-half the length
and one-fourth the area of a quarter-wave path, with its short circuit along an entire
edge. The circular shorting pin compact patch resonant diameter equals 0.14λ0/

√
εr .

Making a patch this small produces highly inductive input impedance, which we can see
by looking at the Smith chart of a coaxial probe-fed patch (Figure 6-12). The curve
sweeps clockwise as the frequency increases. At low frequency (or small size) the
patch is highly inductive. Figure 6-12 shows that using thicker substrates to increase
bandwidth makes the patch impedance even more inductive. The shorting pin next
to the feed pin forms a transmission line with it and adds a capacitive component
to the input impedance that counteracts the patch and feed pin inductance. As the
shorting pin is moved farther away from the feed pin, the capacitance decreases and
the shorting pin becomes an inductive component, as it is in the quarter-wave patch.

(xps, yps)

(xps, yps)

(a) L

(b)

(xp, yp)

Shorting Post

(xp, yp)

y y

z

d

q

εr

xxR
W

FIGURE 6-29 Compact patch with a shorting pin near the feed. (From [24], Fig. 1,  1998
IEEE.)
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The recommended position of the shorting pin is 80 to 90% of the distance from the
center to the outer edge and a diameter of 0.008λ. You will need to iterate the position
of the feed probe, usually one-half the diameter of the shorting pin, to achieve an
impedance match. Table 6-5 lists the bandwidth achieved versus substrate thickness on
foam, εr = 1.07 [25, p. 207].

Figure 6-30 gives the calculated pattern of a shorting pin compact patch on 0.034λ

free-space substrate. The broad E-plane pattern has 10-dB dip on the broadside matched
by the H -plane Eφ component. The large current in the shorting pin produces a signif-
icant monopole pattern seen in the Eθ radiation in the H -plane. This small antenna is
a combination of a top-loaded monopole and a patch. Thinner antennas have a lower
pattern dip broadside to the substrate because the monopole is shorter.

The planar inverted F antenna (PIFA) is similar electrically to the shorting pin com-
pact patch. We move the shorting pin to one corner and often make it a small shorting
plate. We locate the feed pin close to the small shorting plate to again form a transmis-
sion line whose capacitance with the feed pin counteracts the inductive component of
the small patch. We use Eq. (6-38) to determine its resonant wavelength. If we rotate
the coordinates so that the shorting plate and diagonal lie on the x-axis, we obtain the
pattern response of Figure 6-30. Since there is practically no difference between the
two antennas, Table 6-5 gives the bandwidth of the PIFA versus thickness [26].

TABLE 6-5 Bandwidth of a Single Shorting Pin
Compact Patch

Thickness
(λ0)

Bandwidth,
2 : 1 VSWR

(%)

Feed-to-Pin
Center

Distance (λ0)

0.01 1.6 0.0071
0.02 2.2 0.0076
0.03 2.7 0.0081
0.04 3.4 0.0085
0.05 4.3 0.0101
0.06 5.7 0.0135

E-Plane

H-Plane

H-Plane
X-Pol

FIGURE 6-30 Pattern of a compact patch.
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(a) (b)

FIGURE 6-31 Reduced-size microstrip patches using meandered current paths. (From [22],
Fig. 1-3,  2002 John Wiley & Sons, Inc.)

Modest size reduction can be obtained by making the currents flow along a longer path
along the resonant length. Figure 6-31 shows two planar antennas where slits cut from the
width sides and disrupting the resonant-length path cause wandering of the current. The
bowtie patch also makes the current path longer. These antennas radiate normal patch
patterns with broader beamwidths in the E-plane because the notches bring the radiating
edges closer together. The antennas in Figure 6-32 shrink the resonant length by folding
the antennas vertically. The total length along the path is approximately λ/2, but the
radiating edges are closer together. A large number of variations using slots have been
investigated and offer interesting approaches to both shrink the patch size and produce
dual-frequency antennas by using both the patch mode and slot radiation [22].

(a)

(b)

(c)

Ground Plane

Ground Plane

Ground Plane

Bent Edge
Air-Substrate
Thickness

Folded Edge

Double-Folded Edge

FIGURE 6-32 Folding microstrip patches to reduce size. (From [22], Fig. 1-4,  2002 John
Wiley & Sons, Inc.)
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6-8 DIRECTLY FED STACKED PATCHES

Figure 6-7 illustrates the limited impedance bandwidth achievable from a single-
resonator microstrip patch. When we increase the substrate thickness to widen the
bandwidth, the antenna excites more surface waves (Figure 6-8) difficult to control,
and we accept them as losses. In Section 6-3 we discussed the use of external circuit
elements to improve the impedance response. These have limited usefulness, although
the simple series capacitor input to overcome the inductance of a long feed probe
and the inductive nature of the higher-order modes is easily implemented. These
external elements add poles to the resonant circuit to increase bandwidth. We can
increase the number of poles by adding antenna elements instead. One solution is
to couple to additional patches located around the fed patch on the same substrate
surface. This increases the antenna size and reduces pattern beamwidths. This solution
is difficult to use in an array because the large spacing between elements produces
grating lobes. Stacking patches vertically above the driven patch and coupling to
them electromagnetically produces the best solution in terms of pattern response. The
disadvantage of this approach is the additional fabrication cost. Our discussion of
aperture-coupled patches in Section 6-3 points out that large apertures also add resonant
poles that can increase the bandwidth. These added resonant elements complicate the
design and call for the application of analytical tools instead of a cut-and-try approach.

Although either patch in a two-element stacked patch design can be fed, feeding the
lower element produces a design with minimum feed pin inductance. Aperture coupling
through the ground plane feeds the lower patch directly as well. If we use an edge feed,
we want the input transmission line to be as narrow as possible to reduce radiation
by feeding the lower patch. Initially, we consider the probe-fed stacked patch [27].
A coaxial probe feeds directly a lower substrate of thickness d1 and dielectric con-
stant εr1 through a hole in the ground plane. Figure 6-12 shows that the feed probe
adds inductance for a thick substrate and the resonant loop is located on the upper
inductive portion of the Smith chart. When we couple the lower patch to an upper
patch with thickness d2 and dielectric constant εr2, its circuit response becomes more
inductive. We need to start with the impedance locus of the lower patch to be capac-
itive without the upper patch. This can be achieved by using an overcoupled feed.
Figure 6-11 illustrates the overcoupled patch whose impedance locus sweeps around
the origin of the Smith chart. The inductance of the feed probe rotates these curves
clockwise around the center of the chart and the overcoupled response has significant
capacitive reactance when it sweeps around the origin. If we matched the lower patch
critically, upward movement of the locus due to the coupled patch would reduce the
impedance bandwidth. Figure 6-33 illustrates these design steps. Figure 6-33b shows
that increasing the lower patch thickness leads to a longer feed probe that sweeps
across the center from a more inductive portion of the Smith chart. Adding the second
patch fails to increase the bandwidth relative to the thinner optimum lower patch. The
thickness of the upper patch substrate d2 controls the tightness of the resonant loop. A
greater thickness d2 produces a tighter loop in the Smith chart response that leads to
a lower VSWR over a narrower bandwidth. Remember that we cannot use Eq. (6-7)
to determine the bandwidth for different VSWR levels because we now have multiple
resonators.

If we use a foam upper substrate, the dielectric constant and thickness of the lower
substrate determines the surface-wave efficiency. Waterhouse [27] used a dielectric
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FIGURE 6-33 Effect of coupling to a second patch: (a) overcoupled single lower patch
response forms resonant loop with the second coupled patch; (b) increasing lower patch thickness
causes rotation on a Smith chart and lower bandwidth. (From [27], Fig. 3,  1999 IEEE.)

constant of 2.2 for the lower substrate with a thickness of 0.04λ0 and a foam upper
substrate 0.06λ0 to achieve optimum bandwidth with acceptable surface-wave losses.
The lower patch was overcoupled so that it swept through the 250-� resistance point
at resonance. Since the impedance locus sweeps clockwise on the Smith chart as
frequency increases, this resonant point should be slightly below the lower end of the
desired frequency band. We adjust the second substrate thickness to move the resonant
loop on the Smith chart in the vertical direction. As we increase the size of the upper
patch, the loop moves around an arc in the clockwise direction, which we use to center
the impedance response on the Smith chart for optimum bandwidth. This method
produces impedance bandwidths of around 25%. The pattern bandwidth exceeds this
bandwidth and we expect little change in pattern over this frequency range.

Another successful stacked patch fed from a coaxial probe is the hi-lo configuration,
in which a high dielectric substrate (εr1 = 10.4) is used for the lower substrate and a
foam (εr2 = 1.07) for the upper substrate [25, pp. 178–182]. The upper patch captures
the surface wave of the lower patch and greatly improves the overall efficiency by
radiating this power in a space wave. Although the two patches have different sizes, the
coupling remains sufficient to produce a broadband antenna with impedance bandwidths
approaching 30%. In this design the lower patch is designed for the high dielectric of
the lower substrate with little consideration for the upper patch except for making it
a little overcoupled. The upper patch can be designed using the substrate thickness
and dielectric constant assuming that the high dielectric substrate acts as the ground
plane. When we mount the upper patch over the smaller lower patch, small adjustments
must be made to the dimensions to achieve a 50-� impedance match. The example
given used a lower substrate thickness of 0.032λ0 with εr1 = 10.4, and by Figure 6-8
would have −1.3-dB surface-wave loss. Locating the second patch on a 0.067λ0-thick
foam substrate directly over the first patch reduced the surface-wave loss to better than
−0.7 dB over the entire band.
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6-9 APERTURE-COUPLED STACKED PATCHES

The discussion on aperture feeding of a patch in Section 6-3 stated that we can uti-
lize the aperture as another resonator to broadband the antenna. Figure 6-34 shows
the stacked patch antenna fed from an aperture. In this implementation we make the
coupling slot long enough to be one of the resonators, which increases the number
of resonators to three: the aperture, the lower patch, and the upper patch. We must
use element spacing to control coupling because frequencies control resonator sizes.
By careful control of parameters two loops will form in the Smith chart response of
impedance and be made to wrap tightly around the center of the chart [28] as shown
in Figure 6-35b. We form these loops by coupling resonators. Undercoupling produces
small tight loops; overcoupling produces large loops.

Figure 6-35 illustrates the effect of aperture size. The left Smith chart shows under-
coupling between the aperture and the lower patch by the small left loop. We increase
the coupling by increasing the aperture slot length (Figure 6-35b) or by increasing the

Patch 2(PL2, PW2, Layer N2)

Patch 1(PL1, PW1, Layer N1)

Ground Plane

Aperture(SL, SW)

Feedline(Wf, doff, Lstub)

Layer N(εrN, dN, tan dN)

Layer N2(εrN2, dN2, tan dN2)

Layer N1(εrN1, dN1, tan dN1)

Layer 1(εr1, d1, tan d1)

Feed Substrate 
(εrf, df, tan df)

FIGURE 6-34 Construction of a resonant aperture coupled dual patch in exploded view.
(From [28], Fig. 1,  1998 IEEE.)

(a) (b) (c)

FIGURE 6-35 Effect on increasing slot length, SL, of apertures in stacked dual patches: (a)
SL = 8 mm; (b) SL = 10 mm; (c) SL = 12 mm. (From [28], Fig. 4,  1998 IEEE.)
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lower patch size or reducing the lower patch thickness. The best results have been
obtained by having the lower-frequency (left) loop determined by the lower patch
and aperture. Overcoupling the aperture to the lower patch produces the impedance
locus of Figure 6-35c. We control the upper loop size by varying the upper patch
size, the relative size between the two patches, and the upper substrate thickness. The
lower patch size is a critical parameter because it affects the coupling and size of
both loops while shifting their center frequencies. For fixed sizes of the other two res-
onators, decreasing the lower patch size decreases the coupling to the aperture while
increasing the coupling to the upper patch. Increasing aperture size increases cou-
pling to the aperture and decreases coupling to the upper patch. By remembering that
overcoupling produces larger Smith chart loops, we determine in which direction to
change parameters by observing changes in analytical results on the Smith chart to
produce optimum designs.

Because the slot aperture is one of the three resonators, we cannot vary its length
to determine coupling to the lower patch. The overcoupled large slot produces high
resistance at the microstrip input. We can lower this impedance by offset feeding the
slot or by using a wide transmission line. A single offset line will unbalance the fields
in the slot and lead to unbalanced excitation of the patches. This unbalanced excitation
on the patches increases cross-polarization. The dual balanced offset feeding shown in
Figure 6-36, where we join the two lines in a reactive power divider, both lowers the
resistance and balances the patch excitation.

A design using rectangular patches for a single linear polarization achieved a 67%
2 : 1 VSWR bandwidth [28]. The only significant problem with the design is the poor
front-to-back ratio, which is reduced to 6 dB at the upper frequencies as the aperture
radiation increases. Placing a reflector patch below the microstrip feed line, it can
be sized to reduce the F/B ratio by forming a Yagi–Uda antenna with the stacked
patch [29]. Figure 6-37 illustrates an exploded view of a dual polarized aperture stacked
patch. The potential bandwidth shrinks because we lose width as a parameter with
square patches to optimize impedance. The key element of this design is the feed
crossed slot [30]. The crossed-slot feeding aperture is located on a ground plane shared
by microstrip networks located below and above the aperture. Each network consists
of a reactive power divider to raise the impedance of the feed lines and allow offset
feeding of the slot for each polarization. The balanced feed reduces cross-polarization
and cross coupling between the two ports that would occur in both the crossed slot

Low Impedance
Line

Lstub Lstub

50Ω Line 50Ω Line

100Ω Line

2doff

(a) (b)

FIGURE 6-36 Impedance matching for resonant aperture dual stacked patches: (a) wide trans-
mission line; (b) dual offset feed. (From [28], Fig. 3,  1998 IEEE.)
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FIGURE 6-37 Exploded view of construction of a dual polarized aperture-fed stacked patch
utilizing a crossed strip reflector. (From [8], Fig. 3.6.22,  2003 Kluwer Academic Publishers.)

and the patch elements. This shows that the slot that couples to a patch resonator can
be fed by a microstrip line located either below or above the slot. The ground plane
between the two networks for each polarization eliminates direct coupling between the
microstrip networks and symmetrical feeding reduces coupling in the slot.

Because we use long slots to feed the lower microstrip patch in an overcoupled
excitation, direct coupling of the upper microstrip to the lower patch is minimal in
comparison. We use thin substrates of moderate dielectric constant (εr = 2.2) to sup-
port the etched patches and foam layers between to separate the patches to increase
bandwidth and control coupling. Figure 6-37 shows a crossed dipole used as a reflector
element below the microstrip feed lines to reflect direct radiation from the crossed slot
that reduces the F/B ratio.

6-10 PATCH ANTENNA FEED NETWORKS

Patch antenna arrays may be fed from below (Figure 6-9) by using a stripline distribu-
tion network. The connections between the boards greatly complicate the assembly. A
connection made vertically from the center strip of a stripline unbalances the fields and
induces parallel-plate modes. Shorting pins between the ground planes suppress this
mode. It is far easier to etch the feed network on the microstrip and use either edge
feeds or aperture feeds with the network located below the patch layer. Feed networks
radiate very little in comparison with the patches when etched on the same substrate
because radiation from fringing fields on the two sides of the microstrip lines cancel
each other except at discontinuities (corners and steps).

Consider the equally fed array (Figure 6-38). Equal amplitude and phase feeding
generates virtual magnetic walls between the patches as shown. We can join the edges
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FIGURE 6-38 Equally fed microstrip patch array.

between the patches without effect, since the midpoint remains a virtual open circuit
and the separate patches join into a continuous strip. The feeds must be spaced close
enough together to prevent grating lobes and to provide uniform amplitude along the
edges. These antennas can be wrapped around missiles to provide omnidirectional
coverage about the roll axis. To eliminate pattern ripple, feeds must be spaced about
every 0.75λ in a circular array. The resistance at each feed at resonance will be the
combination of the radiation conductances from the portions of the edges between the
magnetic walls.

Figure 6-38 illustrates an equally fed four-element array. Starting from the patch, a
quarter-wavelength transformer reduces the roughly 200-� impedance to 100�. Two
100-� lines join in shunt to 50� at their juncture. A 70.7-� quarter-wavelength line
transforms the 50� back to 100�. We continue this sequence for any 2N -array for
reactive power dividers at each junction. Equal path lengths from the input excite
them with equal phases. Arrays with the number of elements different from 2N -are
possible, but they require more difficult feed networks. A 100-� system was picked
because 50-� lines on low-dielectric-constant substrates are quite wide.

The reactive power divider (Figure 6-38) has more bandwidth than the patch while
it is matched at the input but not at its outputs. The network can be analyzed by using
even and odd modes and shows that the output return loss is 6 dB, and it provides
only 6 dB of isolation between outputs. The power reflected from a damaged antenna
distributes to the other elements of the array and produces an effect greater than that
of just a missing element. Making power dividers with isolation resistors reduces this
problem, but we cannot justify the added difficulty of mounting resistors when both
good etchings and low probability of damage make them unnecessary.

We must be wary of coupling between different parts of the feed network. We
want to pack the feed network into the smallest area, but coupled signals between the
lines produce unexpected anomalies. Distinguishing direct radiation from the feed and
coupling redistribution is difficult. Although couplings are predictable, they appear as
random errors when we cannot perform a full analysis. Unfortunately, the coupling
between microstrip lines falls off quite slowly. Table 6-6 lists the coupling and peak
errors for 100-� lines; those of 50-� lines are very similar. We read the amplitude
and phase errors from Scales 1-8 and 1-9.
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TABLE 6-6 Peak Feed Errors Due to Microstrip
Coupling for 100-� Lines (εr = 2.4)

Spacing/Substrate
Thickness

Coupling
(dB)

Amplitude
Error (dB)

Phase
Error (deg)

1.0 16 1.5 9.0
2.0 23 0.7 4.0
3.0 28 0.4 2.3
4.0 32 0.22 1.5
5.0 35 0.12 1.0

6-11 SERIES-FED ARRAY

If we reduce the width of the patch, the radiation conductance is insufficient to match
the input. We can use the microstrip patch as a transmission line and connect a line
opposite the feed to lead to other patches (Figure 6-39). If we space the patches by half-
wavelengths, the impedances of the patches will add in phase at the input, because
it rotates once around the Smith chart in λ/2. The characteristic impedance of the
connecting lines has no effect at center frequency. The junction of the transmission-
line feeder and the patch introduces excess phase shift. In arrays of a few elements, the
extra phase shift can be ignored, but arrays with a large number of elements, or when
we design for critical amplitude taper, must account for δ. Of course, traveling-wave
or resonant arrays can be designed. The frequency dispersion of the traveling-wave
array can be used to frequency-scan the beam.

Various experimental methods have been devised to measure the parameters of the
series array. Metzler [31] performed experiments on uniform-width element arrays to
determine the radiation conductance and excess phase shift. Measuring the transmission
loss through the array as a network with input and output connectors determines the
radiation conductance of the patches. An empirical equation was obtained:

G = 0.0162

(
W

λ0

)1.757

0.033 ≤ W

λ
≤ 0.254 (6-39)

where G is the total radiation conductance of each patch, with half from each edge.
Measurement of the beam direction of the uniform traveling-wave array determines
the excess phase shift in each patch.

Jones et al. [32] model the patch (Figure 6-39) with extensions � due to the fringing
fields as a transmission line: L + 2� long. The other excess phase shift, due to the step,
is modeled as extensions to the input lines (δ). Jones et al. perform measurements on
single elements to establish these lengths. � is found from the resonant frequency of the
patch: L + 2� = λ/2

√
εeff, where εeff is given by Eq. (6-19). When the transmission-

line phase is measured through the patch at resonance, the excess phase beyond π is
equated to a phase shift length in the narrow feeder lines:

2δ = λN

2π
φexcess

where λN is the wavelength in the narrow line.
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(c)

(b)

(a)

FIGURE 6-39 Series-fed patch and its equivalent circuit. (From [32], Fig. 2,  1982 IEEE.)

When designing the array, we vary the widths of the patches to achieve the desired
amplitude taper. The voltage distribution at each patch is given by V

√
g, where g is

the patch conductance. Standing-wave (resonant) arrays require that the sum of the
conductances be equal to the input conductance desired. We have some latitude when
we feed the array through a quarter-wavelength transformer. The nonresonant array
requires a matched load on the end to prevent standing waves. We must pick the ratio
of the power dissipated to the radiated power that gives us an extra parameter with
which to optimize the design. We control the beam direction by spacing the elements
to achieve the phase shift required.

6-12 MICROSTRIP DIPOLE [33]

As the width W of a patch narrows, the input impedance increases. When the width
approaches that of a microstrip feed line, either the patch fails to be a resonator or the
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feed line becomes very narrow in trying to transform the impedance. The microstrip
dipole solves these problems by having a coupled line feeder. The dipole is a half-
wavelength strip whose width equals that of a microstrip feed line. A line etched
on a substrate below feeds the dipole by coupling into the strip (Figure 6-40a). The
equivalent circuit (Figure 6-40b) transforms the high impedance of the dipole through
the unequal coupled lines. By varying the coupling, we can change the input impedance
at resonance. Best results occur for quarter-wavelength overlap where the equivalent
stubs (Figure 6-40b) do not contribute reactance. We vary the coupling by changing
the thickness of the substrate between the strips or by offsetting the lower strip.

The dipole radiates as a narrow patch and not as a dipole. No pattern nulls appear
along the axis of the strip, but they occur more strongly in the direction of the equivalent
magnetic currents of the edges. The H -plane pattern becomes quite broad for the narrow
strip width. The feed distribution circuit is etched on the substrate below the dipoles.
With the feed circuit on a separate level, we have greater freedom in the feed network
design to excite desired distributions. Also, because the dipoles are small, we can use
density tapering of the dipoles to that end. Proper design requires measurement [34]
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FIGURE 6-40 (a) Microstrip dipole; (b) equivalent circuit. [(b) From G. L. Matthaei et al.,
Microwave Filters, Impedance Matching Networks, and Coupling Structures,  1980 Artech
House, Inc.]
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to obtain the desired effect, since mutual coupling will change the distribution by
changing the active impedance of each dipole. The feed network must compensate for
the coupling.

6-13 MICROSTRIP FRANKLIN ARRAY [35]

An electrically long line with a standing wave on it fails to radiate on broadside
because the many cycles cancel each other. We obtain a pattern with many nulls and
lobes. By folding the lines with out-of-phase standing-wave currents close together, we
can prevent their radiation. The other portions are free to radiate (Figure 6-41a). The
Franklin array consists of straight sections λ/2 long connected by λ/4 shorted stubs.
The standing-wave currents on the straight portions add in phase.

We can construct a microstrip version (Figure 6-41b). Half-wavelength lines act as
radiators (patches). We connect them with half-wavelength lines folded into stubs so
that the counteracting standing-wave currents do not radiate. The straight lines are
narrow patches. The total radiation conductance of each strip is

G = 1

45

(
W

λ

)2

(6-40)

for narrow strip widths W , where λ is the free-space wavelength. Using lines for
the stubs whose impedance is twice the radiating strip impedance reduces unwanted
internal reflections. The two stubs add in shunt. Since the antenna is quite narrowband
and the length of the lines between patches is a half-wavelength long, the impedance
of these connecting arms has a secondary effect.

Example Design an eight-wavelength array at 10 GHz. There are 16 patches in
the array.

The radiation conductances add for elements spaced at λ/2 intervals. For a 100-�
input, each patch supplies a conductance 0.01/16. We solve Eq. (6-40) for the width:

W = λ

√
0.01(45)

16
= 0.168λ

l/2 l/2 l/2 l/2

l/4

l

ll

L
l/2

W

Connecting line

(a)

(b)

Patch

FIGURE 6-41 (a) Dipole and (b) microstrip Franklin arrays.
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If we use Eq. (6-39) from the series patch, we obtain W = 0.157λ, within the range of
the empirical formula. For 10 GHz, W = 4.71 mm. On an 0.8-mm substrate (εr = 2.21),
W/H = 5.89 and the impedance of the strip radiator Z0 = 44.01 �. We need to find the
effective dielectric constant of the strip to determine the patch length and impedance.
From Eq. (6-19), εr = 1.97.

We calculate the cutback from each end by using Eq. (6-18); � = 0.40 mm. Each
radiating strip is

L = 300 × 109

1010(2)
√

1.97
− 2(0.40) = 9.88 mm

The radiating-strip impedance is Z0/
√

εeff = 31.3 �. We need 62.6-� connecting lines
in the stubs to achieve the broadest bandwidth. With so few radiators, we could use
100-� connecting arms with little change in bandwidth and have more reasonable
connecting arm widths: 0.71 mm.

The example shows that the microstrip Franklin array works best for high frequen-
cies or long arrays. The elements are narrow, and the interconnecting arms are thin.

6-14 MICROSTRIP ANTENNA MECHANICAL PROPERTIES

A microstrip patch antenna has very desirable mechanical properties. It can withstand
tremendous shock and vibration. Because the antenna is on a solid substrate, the patch
cannot flex, and small changes in the substrate thickness have only a minor effect on
the resonant frequency. The commonly used soft substrate (Teflon and fiberglass) has
a good damped resilience. Microstrip patch antennas have been used to telemeter data
from artillery shells and high-velocity rockets, which have high shock and vibration
levels. The repeatability of the dimensions of the patches depends only on the etcher’s
art. Complicated shapes and feed networks are produced as cheaply as simple ones.

The antennas can withstand exposure to high temperatures when covered by a
radome made of the same soft dielectric as the substrate. The cover protects the metal
patches but has only a minor effect on the resonant frequency [36]. High temperatures
on the surface of the radome or ablation fail to change the resonance significantly
because the radome itself has only a minor effect. Variation in the dielectric constant
of the substrate from lot to lot causes problems with repeatability. The narrowband
antennas require measurement of the dielectric constant of each lot, and sometimes of
each sheet, to get the center frequency desired. A series of etching masks can be made
to cover the expected range. The antennas can be tuned with inductive shorting pins or
capacitive screws, but tuning is prohibitive when the number of elements in an array is
large. Careful quality control of the dielectric constant is the answer. Close monitoring
of the etching process may also be needed to prevent excessive undercutting.

Temperature variations can be a problem with thin substrates when the bandwidth
is narrow. The patch and substrate size grow when the temperature rises, but they are
overshadowed by the change in dielectric constant of soft substrates. Instead of decreas-
ing the resonant frequency because of the increased patch size, a lowered dielectric
constant raises the center frequency.

Whenever we need more bandwidth than a microstrip patch can provide, we must
turn to cavity antennas. We increase the antenna volume by penetrating the vehicle for
the cavity, but we gain a design parameter.
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7
HORN ANTENNAS

Horn antennas have a long history, traced in part in the collection of papers by Love [1]
together with papers on every other horn topic. Horns have a wide variety of uses, from
small-aperture antennas to feed reflectors to large-aperture antennas used by themselves
as medium-gain antennas. Horns can be excited in any polarization or combination of
polarizations. The purity of polarization possible and the unidirectional pattern make
horns good laboratory standards and ideal reflector feeds. Horns also closely follow
the characteristics predicted by simple theories.

Horns are analyzed using a variety of techniques. Barrow and Chu [2] analyzed
a sectoral horn, flaring in only one plane, by solving the boundary value problem
in the wedge. They expanded the fields in terms of Hankel functions in cylindrical
coordinates. The fields form an equiphase surface over a cylindrical cap to which the
Kirchhoff–Huygens equivalent current method [Eq. (2-23)] can be applied to com-
pute the pattern. Similarly, Schorr and Beck [3] use spherical Hankel and Legendre
functions to analyze conical horns. The integration surface consists of a spherical cap.
Schelkunoff and Friis [4] use the mouth of the horn as the aperture and approximate
the phase distribution as quadratic. Both aperture theories have the same valid pattern
range. The method predicts patterns accurately in the area in front of the aperture.
The error increases as the plane of the aperture is approached. The predicted pattern
remains continuous and gives no indication of its increasing error. GTD methods [5]
predict the pattern both in back and in front of the aperture while providing estimates
of the error in the predictions. Most of the details needed for design can be obtained
from the aperture theory. Only GTD predicts sidelobes accurately, since no assumption
of zero fields outside the horn aperture is made.

Figure 7-1 shows the general horn geometry. The input waveguide can be either
rectangular or circular (elliptical). W is the width of a rectangular aperture, and a is
the radius of a circular aperture. The distance from the junction of the projected sides
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FIGURE 7-1 General geometry of a horn.

to the aperture is the slant radius R. The distance along the centerline from the aperture
to the waveguide is the axial length. We derive the aperture field amplitude from the
input waveguide mode while the phase distribution is approximately quadratic across
the aperture. We assume that the aperture fields radiate in spherical waves from the
projected juncture of the sides, and the extra distance along the sides compared with
the distance to the center of the aperture is given by

� = R −
√

R2 − a2

= R


1 −

√
1 − a2

R2




≈ R

[
1 −

(
1 − a2

2R2

)]
= a2

2R
= W 2

8R

We divide by wavelength to obtain the dimensionless constant S of the quadratic phase
distribution:

S = �

λ
= W 2

8λR
= a2

2λR
(7-1)

Since the semiflare angle θ0 of most practical horns is small, we use the quadratic
phase error approximation.

7-1 RECTANGULAR HORN (PYRAMIDAL)

The rectangular horn flares out of a rectangular or square waveguide with flat metal
walls. Figure 7-2 shows the horn geometry. The slant radiuses along the sides will
be unequal, in general. The input waveguide dimensions are width a and height b.
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FIGURE 7-2 Rectangular horn geometry.

The aperture has width W in the H -plane and height H in the E-plane. Each aperture
coordinate has its own quadratic phase distribution constant:

Se = H 2

8λRe

Sh = W 2

8λRh

(7-2)

The TE10 mode of the lowest-order waveguide mode has the field distribution

Ey = E0 cos
πx

a

Combining these ideas, the aperture electric field is approximated by

Ey = E0 cos
πx

W
exp

{
−j2π

[
Se

(
2y

H

)2

+ Sh

(
2x

W

)2
]}

(7-3)

The ratio of the electric and magnetic fields approaches the impedance of free space
for large apertures. In this case we use the Huygens source approximation and need
only the electric field with Eq. (2-24) to find the pattern. Small-aperture horns require
Eq. (2-23) with an arbitrary ratio of the magnetic and electric fields.

We compute the E-plane pattern by using a uniform aperture distribution and the H -
plane pattern from a cosine distribution. Both have a quadratic phase error. Figures 7-3
and 7-4 plot the E- and H -plane universal patterns in U -space of the Taylor distri-
bution with S as a parameter. We can use them to determine the pattern of a general
rectangular horn.

Example Compute the pattern level at θ = 15◦ in the E- and H -planes of a horn
with the following measured dimensions:

Aperture: W(H -plane) = 28.9 cm, H(E-plane) = 21.3 cm
Input waveguide: width a = 3.50 cm, height b = 1.75 cm
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FIGURE 7-3 E-plane universal pattern of a rectangular, TE10 mode.

The slant distance from the aperture to the waveguide along the center of each plate
of the flare was measured: Dh = 44.8 cm and De = 44.1 cm. We calculate the slant
radius from similar triangles:

Rh

Dh

= W

W − a

Re

De

= H

H − b
(7-4)

Slant radius: Rh = 50.97 cm, Re = 48.05 cm

The frequency is 8 GHz (λ = 3.75 cm). Using Eq. (7-2), we compute Sh = 0.55 and
Se = 0.31. We use Figures 7-3 and 7-4 to determine the universal pattern field inten-
sity (voltage):

W

λ
sin θ = 2.0

H

λ
sin θ = 1.47

The fields from the figures are 0.27 (H -plane) and 0.36 (E-plane). We must include
the obliquity factor of the Huygens source element pattern: (1 + cos θ )/2 to obtain the
proper pattern level. At θ = 15◦, the obliquity factor is 0.983. We calculate the pattern
level in decibels from 20 times the logarithm of the product of the field intensity from
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FIGURE 7-4 H -plane universal pattern of a rectangular, TE10 mode.

the figures and the obliquity factor:

H -plane : −11.5 dB E-plane : −9 dB

We can calculate gain of this horn by using aperture efficiencies:

H -plane (cosine) (Table 4-1) : 0.91 dB E-plane (uniform) : 0 dB

These values hold for all rectangular horns excited by the TE10 mode. The quadratic
phase distributions give us the phase error loss. From Table 4-42 we interpolate these
losses:

Sh = 0.55 cosine distribution PEL = 2.09 dB

Se = 0.31 uniform distribution PEL = 1.50 dB

The directivity is given by

directivity = 10 log
4πWH

λ2
− ATLh − ATLe − PELh − PELe = 22.9 dB (7-5)

The aperture efficiency is 35.5%, since ATL + PELh + PELe = 4.5 dB.
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We usually equate gain to directivity, since the wall losses are very small. Of course,
for millimeter-wave horns we must include wall losses. Although we can use Table 4-42
along with the fixed-amplitude taper loss of 0.91 dB to determine the aperture efficiency
of a rectangular horn, Schelkunoff and Friis [4] give the following closed-form equation
for the directivity:

directivity = 8RhRe

WH
{[C(u) − C(v)]2 + [S(u) − S(v)]2}[C2(z) + S2(z)]

where

u = 1√
2

(√
λRh

W
+ W√

λRh

)
v = 1√

2

(√
λRh

W
− W√

λRh

)
z = H√

2λRe
(7-6)

and

C(x) =
∫ x

0
cos

πt2

2
dt S(x) =

∫ x

0
sin

πt2

2
dt

are the Fresnel integrals. Closed-form expressions for these integrals are available [6].

7-1.1 Beamwidth

We can use Figures 7-3 and 7-4 to compute beamwidths. The 3-dB point corresponds
to 0.707 and the 10-dB point to 0.316 on the graphs. Table 7-1 lists the 3- and 10-
dB points (values of U ) for different quadratic phase constants S in the H -plane.
Similarly, Table 7-2 lists the E-plane points. The tables are more convenient than the
graphs. Because we remove the obliquity factor to get a universal pattern, we must
modify the beamwidths found by using the tables. We find the beamwidth, but then
we must add the obliquity factor to the beamwidth level. The beamwidth is found for

TABLE 7-1 Rectangular-Horn H -Plane Beamwidth Points, TE10 Mode

(W/λ) sin θ (W/λ) sin θ

S 3 dB 10 dB S 3 dB 10 dB

0.00 0.5945 1.0194 0.52 0.8070 1.8062
0.04 0.5952 1.0220 0.56 0.8656 1.8947
0.08 0.5976 1.0301 0.60 0.9401 1.9861
0.12 0.6010 1.0442 0.64 1.0317 2.0872
0.16 0.6073 1.0652 0.68 1.1365 2.2047
0.20 0.6150 1.0949 0.72 1.2445 2.3418
0.24 0.6248 1.1358 0.76 1.3473 2.4876
0.28 0.6372 1.1921 0.80 1.4425 2.6246
0.32 0.6526 1.2700 0.84 1.5320 2.7476
0.36 0.6716 1.3742 0.88 1.6191 2.8618
0.40 0.6951 1.4959 0.92 1.7071 2.9744
0.44 0.7243 1.6123 0.96 1.7991 3.0924
0.48 0.7609 1.7143 1.00 1.8970 3.2208
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TABLE 7-2 Rectangular-Horn E -Plane Beamwidth Points, TE10 Mode

(H/λ) sin θ (H/λ) sin θ

S 3 dB 10 dB S 3 dB 10 dB

0.00 0.4430 0.7380 0.24 0.4676 1.4592
0.04 0.4435 0.7405 0.28 0.4793 1.5416
0.08 0.4452 0.7484 0.32 0.4956 1.6034
0.12 0.4482 0.7631 0.36 0.5193 1.6605
0.16 0.4527 0.7879 0.40 0.5565 1.7214
0.20 0.4590 0.8326 0.44 0.6281 1.8004

a lower pattern level than specified. Since the beamwidth levels are close, we use a
relation by Kelleher [7, p. 12–5] with good results:

BW2

BW1
=

√
level2(dB)

level1(dB)
(7-7)

Example Compute 3- and 10-dB beamwidths for the horn in the preceding example.
We have Sh = 0.55 and Se = 0.31. From Tables 7-1 and 7-2,

W

λ
sin θh3 = 0.851

H

λ
sin θe3 = 0.4915

W

λ
sin θh10 = 1.8726

H

λ
sin θe10 = 1.588

W

λ
= 28.9

3.75
= 7.707

H

λ
= 21.3

3.75
= 5.68

θh3 = 6.34 θh10 = 14.06 θe3 = 4.96 θe10 = 16.24

We consider the obliquity factor, (1 + cos θ)/2, at these angles, and apply Eq. (7-7) to
reduce the beamwidths found.

BWh3 = 12.68◦at 3.03 dB BWh3x = 12.62◦at 3.01 dB

BWe3 = 9.92◦at 3.02 dB BWe3 = 9.89◦at 3.01 dB

BWh10 = 28.12◦at 10.13 dB BWh10 = 27.94◦at 10 dB

BWe10 = 32.48◦at 10.18 dB BW10 = 32.2◦at 10 dB

Including the obliquity factor has a very small effect on the results, but the effect
increases with larger beamwidths (smaller apertures).

Aperture theory fails for small horns because the beam is determined more by edge
diffraction than the aperture fields. Empirical data were collected and reduced to simple
formulas for small rectangular horns based on aperture size only [8, p. 46–22]:

BW10e = 88◦ λ

H
and BW10h = 31◦ + 79◦ λ

W
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7-1.2 Optimum Rectangular Horn

A rectangular horn has extra parameters, which we can use to design various optimum
horns. Given a desired gain, we can design any number of horns with the same gain.
Any optimum design depends on the requirements. Without any particular require-
ments, we will pick an antenna with equal E- and H -plane 3-dB beamwidths [9], but
even this does not determine the design totally.

If we pick a constant slant radius and vary the aperture width, the gain increases
with increasing aperture width, but the quadratic phase error loss increases faster and
produces a maximum point. The maximum occurs in the two planes at approximately
constant phase deviations independent of the slant radius:

Sh = 0.40 Se = 0.26 (7-8)

At these points we read the 3-dB points from Tables 7-1 and 7-2:

W

λ
sin θ = 0.6951

H

λ
sin θ = 0.4735

On dividing these equations to eliminate the constant sin θ in the two planes, we derive
the ratio of width to height to give a constant 3-dB beamwidth in the two planes for
this optimum point:

H

W
= 0.68 (7-9)

The ratio depends on the beamwidth level. For 10-dB beamwidths,

H

W
= 1.00 (7-10)

These values of S determine the efficiency of the optimum horn. We read the PEL of
the quadratic phase distribution from Table 4-42 by using a cosine distribution for the
H -plane and a uniform distribution for the E-plane. The H -plane distribution has an
ATL of 0.91 dB.

PELh = 1.14 dB PELe = 1.05 dB ATL = 0.91 dB

or an efficiency of 49%:

gain = 4πHW

λ2
0.49

We solve for H and W for a given gain, since we know the ratio between them
[Eq. (7-9)]:

W

λ
=

√
gain

4π(0.68)(0.49)

H

λ
=

√
gain(0.68)

4π(0.49)

W

λ
= 0.489

√
gain

H

λ
= 0.332

√
gain (7-11)
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We combine Eqs. (7-8) and (7-11) to calculate slant radiuses:

Rh

λ
= 0.0746 · gain

Re

λ
= 0.0531 · gain (7-12a, b)

If, given gain, we use Eqs. (7-11) and (7-12) to design a horn, the dimensions will not
be practical with an arbitrary input waveguide. The axial lengths from the waveguide to
the aperture must be equal in the E- and H -planes, so the horn will meet the waveguide
in a single plane. Given waveguide dimensions a and b, the axial lengths are

Lh = W − a

W

√
R2

h − W 2

4
Le = H − a

H

√
R2

e − H 2

4
(7-13a, b)

We have a choice between retaining the E- or H -plane slant radius given by Eq. (7-12)
and forcing the other radius to give the same axial length. The primary factor affecting
gain is the aperture dimensions, which we retain from Eq. (7-11). The slant radius is
secondary. We retain the H -plane radius calculated from Eq. (7-12) and modify the
E-plane radius. Modifying the H -plane radius would give us a second optimum design:

Re = H

H − b

√
L2 + (H − b)2

4
(7-14)

To obtain the proper gain, we must iterate, since we cannot use both Eq. (7-12). Design
the horn by using Eqs. (7-11), (7-12a), (7-13a), and (7-14). Calculate the gain from
the dimensions and obtain a new design gain from

Gd,new = GrequiredGd,old

Gactual
(7-15)

where Grequired is the required gain, Gactual is the actual gain, and Gd,old is the old
design gain.

Example Design a horn fed from WR-90 waveguide to have 22 dB of gain at 10 GHz.
The waveguide dimensions are 2.286 cm × 1.016 cm (0.9 in. × 0.4 in.) and Greq =

Gd = 1022/10 = 158.5.
On substituting in Eq. (7-11), we calculate aperture dimensions: W = 18.47 cm and

H = 12.54 cm. From Eqs. (7-12a) and (7-13a), Rh = 35.47 cm and L = 30.01 cm. To
get the same axial length in the E-plane [Eq. (7-14)], Re = 33.25 cm. We now calculate
gain and compare it with the gain required. The amplitude taper loss and phase error
loss in the H -plane remain constant, since Sh is fixed.

ATL = 0.91 dB PELh = 1.14 dB at Sh = 0.40

Calculate Se:

Se = H 2

8λRe

= 0.197 PELe = 0.60 dB (Table 4-42)

Gactual(dB) = 10 log
4πHW

λ2
− ATL − PELh − PELe = 22.45 dB

= 175.8



RECTANGULAR HORN (PYRAMIDAL) 345

We must pick a new design gain [Eq. (7-15)]:

Gd,new = 158.5(158.5)

175.8
= 142.9

A second iteration with this gain gives the following dimensions:

W = 17.54 cm H = 11.91 cm L = 26.75 cm Rh = 31.98 cm

Re = 29.84 cm Se = 0.198 PELe = 0.60

gain = 10 log
4πHW

λ2
− 0.91 − 1.14 − 0.60 = 22.00 dB

We obtain the gain desired, but the 3-dB beamwidths are only approximately equal:
H -plane: 13.66◦, E-plane: 13.28◦.

Scales 7-1 to 7-3 provide the dimensions of the optimum rectangular horn for a
given gain. During their generation, a waveguide with a 2 : 1 aspect was used, but they
are close to the proper values for nearby aspects. They design horns to within 0.1 dB.
These scales produce short rapidly flaring horns for low-gain antennas. In these cases
it is better to deviate from the optimum design that gives the lightest horn for a given
gain and design a horn with a small value of S. Scales 7-4 to 7-6 give designs for
S = 0.1 to be used for low-gain designs.

Aperture Width, l

Optimum Rectangular Horn Gain, dB

SCALE 7-1 Aperture width of an optimum pyramidal horn for a 2 : 1-aspect waveguide.

Aperture Height, l

Optimum Rectangular Horn Gain, dB

SCALE 7-2 Aperture height of an optimum pyramidal horn for a 2 : 1-aspect waveguide.

Aperture Length, l

Optimum Rectangular Horn Gain, dB

SCALE 7-3 Axial length of an optimum pyramidal horn for a 2 : 1-aspect waveguide.
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Aperture Width, l

S = 0.1 Rectangular Horn Gain, dB

SCALE 7-4 Aperture width of a pyramidal horn with S = 0.1 connected to a 2 : 1 waveguide.

Aperture Height, l

S = 0.1 Rectangular Horn Gain, dB

SCALE 7-5 Aperture height of a pyramidal horn with S = 0.1 connected to a 2 : 1 waveguide.

Aperture Length, l

S = 0.1 Rectangular Horn Gain, dB

SCALE 7-6 Axial length of a pyramidal horn with S = 0.1 connected to a 2 : 1 waveguide.

7-1.3 Designing to Given Beamwidths

The beamwidths in the two planes of a rectangular horn can be designed independently.
The axial lengths in the two planes must be equal if the design is to be realizable, but
the aperture width and height can be adjusted to give the desired beamwidths. We pick
S in one plane and then vary S in the other plane to produce the required beamwidth
and the same axial length as in the first plane. Since the first S is arbitrary, the design
is not unique, but in only a limited range of S will designs be realizable.

Example Design a rectangular horn for the following 10-dB beamwidths: 30◦
H -

plane and 70◦
E-plane at 7 GHz using a 3.5-cm × 1.75-cm waveguide.

Since the H -plane has the narrower beamwidth and therefore the wider aperture, we
use it to determine length. Pick Sh = 0.20 (an arbitrary choice). The obliquity factor at
15◦ is 0.15 dB. When using Table 7-1 we must design for wider than a 30◦ beamwidth
to compensate for the obliquity factor:

BWd =
√

10.15

10
(30◦

) = 30.22◦

The horn width to provide that beamwidth is

W

λ
= 1.0949

sin(BWd/2)
= 4.200
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W = 18.00 cm at 7 GHz Rh = 47.25 [Eq. (7.2)]

Use Eq. (7-13a) to determine the axial length: Lh = L = 37.36 cm. Because the E-
plane beamwidth is wider than the H -plane beamwidth, the E-plane aperture will
be smaller. We try a smaller value of Se than Sh for our initial guess: Se = 0.04.
The obliquity factor at 35◦ adds 0.82 dB to the pattern loss and requires a larger
design beamwidth.

BWd =
√

10.82

10
70◦ = 72.82◦

H

λ
= 0.7405

sin(BWd/2)
= 1.248 (Table 7-2) H = 5.246

We use Eqs. (7-2) and (7-13b) to calculate slant radius and axial length: Re = 20.84 cm
and Le = 13.90 cm. The axial lengths in the two planes do not match, so we pick a
smaller Se because the E-plane is shorter than the H -plane beamwidth. At Se = 0.02,
H = 5.337 cm, Re = 41.54 cm, and Le = 27.86 cm. Le has doubled when Se changes
from 0.04 to 0.02, but H changes by only 0.01 cm. We change our method and pick
H = 5.33 cm and force Re to give the same axial length as the H -plane: Re = 55.69 cm
[from Eq. (7-14)] or Se = 0.0149.

7-1.4 Phase Center

We define the phase center as the point from which it appears that an antenna radiates
spherical waves. Measurements show that the phase center is seldom a unique point in a
plane, but depends on the pattern angle. The E- and H -plane phase centers will also be
unequal in general. Usually, they are extremes, and the axial position varies elliptically
between the planes. Even with the phase-center location fuzzy, it is a useful point. We
place the phase center of a feed at the focus of a parabolic reflector to minimize the
reflector aperture phase error loss.

An aperture with a quadratic phase distribution appears to be radiating from a point
behind the aperture. Without quadratic phase error (S = 0), the phase center is located
at the aperture plane. Increasing S moves the phase center toward the apex of the
horn. Muehldorf [10] has calculated the phase-center location as a function of S, and
Table 7-3 summarizes his results. The phase center located inside the aperture is given
as a ratio of the slant length.

TABLE 7-3 Phase-Center Axial Location of a
Rectangular Horn (TE10 Mode) Behind the Aperture
as a Ratio of the Slant Radius

S

H -Plane
Lph/Rh

E-plane
Lph/Re S

H -plane
Lph/Rh

E-plane
Lph/Re

0.00 0.0 0.0 0.28 0.258 0.572
0.04 0.0054 0.011 0.32 0.334 0.755
0.08 0.022 0.045 0.36 0.418
0.12 0.048 0.102 0.40 0.508
0.16 0.086 0.182 0.44 0.605
0.20 0.134 0.286 0.48 0.705
0.24 0.191 0.416 0.52 0.808
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Example Calculate the phase-center location for the beamwidth design example
above.

Sh = 0.20 Rh = 47.25 cm

Se = 0.015 Re = 55.69 cm

From Table 7-3, we interpolate

H -plane phase center = 0.134(47.25 cm) = 6.33 cm

E-plane phase center = 0.004(55.69 cm) = 0.22 cm

The difference in the phase-center location in the two planes is 1.43λ.

As in the example, antennas with widely differing beamwidths will have widely
separated phase centers.

7-2 CIRCULAR-APERTURE HORN

With a circular-aperture horn, we lose independent control of the beamwidths in the
principal planes. The circular waveguide can support any orientation of the electric
field and thereby allows any polarization in the horn. We use the same aperture field
method as with the rectangular horn and the waveguide mode determines the aperture
amplitude. The cone of the horn projects to a point in the feed waveguide where we
assume a point source radiating to the aperture. The aperture phase is approximately
quadratic. The waveguide fields are given by

Eρ = E0

ρ
J1

(
x

′
11ρ

a

)
cos φc

Eφc
= −E0x

′
11

a
J

′
1

(
x

′
11ρ

a

)
sin φc (7-16)

where J1 is the Bessel function, ρ the radial component in the waveguide, a the radius,
and φc the cylindrical coordinate. x

′
11 (1.841) is the first zero of J

′
1(x). Equation (7-16)

has its maximum electric field directed along the φc = 0 plane.
We add the quadratic phase factor to Eq. (7-16) and calculate the Fourier transform

on the circular aperture to determine the far field. The direction of the electric field
changes from point to point in the aperture. For a given direction (θ , φc) we must
project the fields in the aperture onto the θ̂ and φ̂ directions before integrating over
the aperture:

Eθ = E0

∫ 2π

0

∫ a

0

[
J1(x

′
11ρ/a)

ρ
cos φc

θ̂ žρ̂

cos θ
− x

′
11

a
J

′
1

(
x

′
11ρ

a

)
sin φc

θ̂ žφ̂c

cos θ

]

× ρ exp

{
j

[
kρ sin θ cos(φ − φc) − 2πS

(ρ

a

)2
]}

dρ dφc (7-17)
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Eφ = E0

∫ 2π

0

∫ a

0

[
J1(x

′
11ρ/a)

ρ
cos φcφ̂ · ρ̂ − x

′
11

a
J

′
1

(
x

′
11ρ

a

)
sin φcφ̂ · φ̂c

]

× ρ exp

{
j

[
kρ sin θ cos(φ − φc) − 2πS

(ρ

a

)2
]}

dρ dφc (7-18)

θ̂ · ρ̂ = cos θ(cos φ cos φc + sin φ sin φc)

θ̂ · φ̂c = cos θ(sin φ cos φc − cos φ sin φc)

φ̂ · ρ̂ = cos φ sin φc − sin φ cos φc

φ̂ · φ̂c = cos φ cos φc + sin φ sin φc

By a suitable change of variables in the integrals, universal radiation patterns can
be generated for the E-and H -planes (Figures 7-5 and 7-6). The equality of S in the
two planes ties the curves together. The axis is the k-space variable. We can calculate
a few pattern points for a given horn with those curves if we remember to add the
obliquity factor to the values taken from the curves.
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FIGURE 7-5 E-plane universal pattern of a circular, TE11 mode. (From T. Milligan, Universal
patterns ease circular horn design, Microwaves, vol. 20, no. 3, March 1981, p. 84.)
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FIGURE 7-6 H -plane universal pattern of a circular, TE11 mode. (From T. Milligan, Universal
patterns ease circular horn design, Microwaves, vol. 20, no. 3, March 1981, p. 84.)

Example A horn has an aperture radius of 12 cm and a slant radius of 50 cm. Compute
the pattern level at θ = 20◦ at 5 GHz.

From Figures 7-5 and 7-6 we interpolate the pattern voltage level:

H -plane level = 0.18 (−14.7 dB) E-plane level = 0.22 (−13.1 dB)

The obliquity factor is 20 log[(1 + cos 20◦
)/2] = −0.3 dB, and the plane level at 20◦

becomes
H -plane level = −15 dB E-plane level = −13.4 dB

7-2.1 Beamwidth

Table 7-4 lists the 3- and 10-dB points from Figures 7-5 and 7-6. We can use them to
compute beamwidths from dimensions.

Example Calculate 10-dB beamwidths of the horn in the example above. S = 0.24,
a = 12 cm, and λ = 6 cm.
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TABLE 7-4 Circular-Horn Beamwidths, TE11 Mode

(2πa/λ) sin θ

3 dB 10 dB
ATL + PEL

S E-Plane H -Plane E-Plane H -Plane (dB)

0.00 1.6163 2.0376 2.7314 3.5189 0.77
0.04 1.6175 2.0380 2.7368 3.5211 0.80
0.08 1.6212 2.0391 2.7536 3.5278 0.86
0.12 1.6273 2.0410 2.7835 3.5393 0.96
0.16 1.6364 2.0438 2.8296 3.5563 1.11
0.20 1.6486 2.0477 2.8982 3.5799 1.30
0.24 1.6647 2.0527 3.0024 3.6115 1.54
0.28 1.6855 2.0592 3.1757 3.6536 1.82
0.32 1.7123 2.0676 3.5720 3.7099 2.15
0.36 1.7471 2.0783 4.6423 3.7863 2.53
0.40 1.7930 2.0920 5.0492 3.8933 2.96
0.44 1.8552 2.1100 5.3139 4.0504 3.45
0.48 1.9441 2.1335 5.5375 4.2967 3.99
0.52 2.0823 2.1652 5.7558 4.6962 4.59
0.56 2.3435 2.2089 6.0012 5.2173 5.28
0.60 3.4329 2.2712 6.3500 5.6872 5.98
0.64 4.3656 2.3652 7.6968 6.0863 6.79
0.68 4.8119 2.5195 8.4389 6.4622 7.66
0.72 5.1826 2.8181 8.8519 6.8672 8.62

From Table 7-4 we read the k-space values at 10 dB:

H -plane k-space = 2πa

λ
sin θh = 3.6115

E-plane k-space = 2πa

λ
sin θe = 3.0024

BWh = 2 sin−1 3.6115

4π
= 33.40◦ BWe = 2 sin−1 3.0024

4π
= 27.65◦

We must add the obliquity factor to the 10-dB universal pattern level:

1 + cos 16.7◦

2
: 0.18 dB H -plane

1 + cos 13.8◦

2
: 0.13 dB E-plane

BWh10 =
√

10

10.18
33.40◦ = 33.10◦ BWe10 =

√
10

10.13
27.65◦ = 27.48◦

We can also use Table 7-4 to design a horn to a given beamwidth, but we can design
to only one plane. Any number of horns can be designed to a given beamwidth, since
S is an independent parameter. Table 7-4 lists the combined amplitude taper loss and
phase error loss as a function of S for the circular horn. With this table we can easily
estimate the gain of a given horn or design a horn to a given gain.
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Example Compute the gain of a horn with a 12-cm aperture radius and 50-cm slant
radius at 5 GHz.

From the examples above we read S = 0.24 and λ = 6 cm:

gain = 20 log
πD

λ
− GF where GF = ATL + PEL (dB)

= 20 log
24π

6
− 1.54 = 20.4 dB (7-19)

Example Design a circular horn at 8 GHz with a gain of 22 dB.
The quadratic phase distribution constant S is arbitrary. Pick S = 0.20. Rearrange

Eq. (7-19) to find the diameter:

D = λ

π
· 10(gain+GF)/20

= 3.75

π
· 10(22+1.30)/20 = 17.45 cm (7-20)

R = D2

8λS
= 50.77 cm

We can determine an optimum circular horn in the sense of minimizing the slant radius
at a given gain. When we plot gain as a function of aperture radius for a fixed slant
radius, we discover a broad region in which the gain peaks. By plotting a series of
these lines with a voltage gain ordinate, we see that a single line corresponding to
S = 0.39 can be drawn through the peaks. This is our optimum with GF = 2.85 dB
(ATL + PEL).

Example Design an optimum horn at 8 GHz with gain of 22 dB.
From Eq. (7-20),

D = 3.75

π
· 10(22+2.85)/20 = 20.86 cm R = D2

8λS
= 20.862

8(3.75)(0.39)
= 37.2 cm

The optimum is quite broad. A horn designed with S = 0.38 has a 0.07-cm-longer
slant radius and a 0.25-cm-smaller aperture diameter.

7-2.2 Phase Center

The phase-center location behind the aperture plane is a function of S. Table 7-5 lists
the phase-center location as a ratio of the slant radius. As S increases, the phase center
migrates toward the horn apex and the difference between the phase-center locations
in the E- and H -planes increases.

Example Use Table 7-5 to compute phase-center locations in the E- and H -planes
for the circular horns of the preceding two examples.

R = 50.77 cm S = 0.20

H -plane phase center = 0.117(50.77) = 5.94 cm

E-plane phase center = 0.305(50.77) = 15.48 cm
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TABLE 7-5 Phase-Center Axial Location of a
Circular-Waveguide Horn TE11 Mode Behind the
Aperture as a Ratio of the Slant Radius

S

H -Plane
Lph/Rh

E-Plane
Lph/Re S

H -Plane
Lph/Rh

E-Plane
Lph/Re

0.00 0.0 0.0 0.28 0.235 0.603
0.04 0.0046 0.012 0.32 0.310 0.782
0.08 0.018 0.048 0.36 0.397 0.801
0.12 0.042 0.109 0.40 0.496 0.809
0.16 0.075 0.194 0.44 0.604 0.836
0.20 0.117 0.305 0.48 0.715 0.872
0.24 0.171 0.416

The phase centers differ by 2.5 wavelengths at 8 GHz. The optimum horn has the
dimensions

R = 37.2 cm S = 0.39

H -plane phase center = 0.471(37.2) = 17.5 cm

E-plane phase center = 0.807(37.2) = 30.0 cm

The phase centers of the optimum horn differ by 3.3 wavelengths. The difference
increases with increasing S.

7-3 CIRCULAR (CONICAL) CORRUGATED HORN

Normal smooth-wall horns present problems that can be eliminated by corrugating the
walls. Many applications require dual linear or circular polarizations. The horn aperture
must be square or circular and the beamwidths in the two planes are unequal. When
the smooth-wall horn feeds a reflector, we have astigmatism (unequal phase centers in
orthogonal planes). A horn has higher sidelobes in the E-plane than in the H -plane.
Finally, the diffraction off E-plane walls causes backlobes. The aperture theory fails to
predict them, but measurement or a GTD analysis shows them. Corrugating the walls
can prevent all these problems.

Figure 7-7 shows the cross sections of two types of corrugated horns. The small-
flare horn (a) is nominally the corrugated horn, and the wide-flare horn (b) is the scalar
horn of Simmons and Kay [11]. Many papers on corrugated horns appear in Section VI
of Love’s [1] collection of papers. Thomas [12] provides a good design summary in a
topic with many papers. The corrugations that extend circumferentially should be cut
normal to the slant radius as in (b), but they may be cut normal to the axis (a) for
small flare angles. Horns can be built either way, but when cut normal to the axis, the
depth is different on the two sides.

The corrugated wall presents the same boundary conditions to the electric and
magnetic fields when it is capacitive (slots λ/4 to λ/2 deep). When excited in the
transition between the smooth-wall waveguide and the corrugated-wall cone, the TE11

and TM11 waveguide modes, have equal phase velocities. The combination of these
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FIGURE 7-7 (a) Corrugated horn; (b) scalar horn. (From [12],  1978 IEEE.)

modes forms the hybrid mode HE11 when the mode phases are equal. When the
modes are out of phase by 180◦, the hybrid mode is denoted EH11. The ratio of
the modes is called γ , and γ = 1 for the balanced HE11 mode. γ = 0 corresponds
to having only the TM11 mode and γ = ∞ to having only the TE11 mode. γ = 1
occurs when the corrugation depth is λ/4, but the horn parameters vary slowly with
changing γ [13]. We consider only γ = 1. Changing γ has its biggest effect on the
cross-polarization [12,14].

When γ = 1, the amplitude of the aperture fields is given by [15]

Eρ = J0

(x01ρ

a

)
cos φc

Eφ = −J0

(x01ρ

a

)
sin φc

(7-21)

where x01 = 2.405 is the first zero of J0(x), the Bessel function. The fields vanish at
the walls and prevent edge diffractions that produce sidelobes and backscatter. The
lower-order slope diffractions still produce small sidelobes and backlobes, but we get
H -plane-type lobes in all planes. In amplitude the aperture fields are symmetrical about
the axis and all patterns through the cone axis are identical.

A Huygens source analysis of the aperture fields with a quadratic phase distribution
produces Figure 7-8, valid when the 10-dB beamwidth is less than 74◦ [12]. For greater
beamwidths the flange changes the beamwidths of the small-aperture horn in the two
planes and we should use the scalar horn. Table 7-6 lists the 3-, 10-, and 20-dB points
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FIGURE 7-8 Universal pattern of a circular corrugated horn: HE11 mode.

TABLE 7-6 Resonant Circular Corrugated Horn Beamwidth Points (2πa/λ) sin θ , HE11

Mode

S 3 dB 10 dB 20 dB
ATL + PEL

(dB) S 3 dB 10 dB 20 dB
ATL + PEL

(dB)

0.00 2.0779 3.5978 4.6711 1.60 0.52 2.3688 4.9532 7.9936 4.04
0.04 2.0791 3.6020 4.6878 1.62 0.56 2.4411 5.2720 8.4261 4.44
0.08 2.0827 3.6150 4.7405 1.66 0.60 2.5317 5.5878 8.9472 4.86
0.12 2.0887 3.6371 4.8387 1.73 0.64 2.6469 5.8913 9.4352 5.31
0.16 2.0974 3.6692 5.0061 1.83 0.68 2.7966 6.1877 9.8514 5.79
0.20 2.1088 3.7129 5.3052 1.96 0.72 2.9946 6.4896 10.2337 6.30
0.24 2.1234 3.7699 5.8451 2.12 0.76 3.2597 6.8134 10.6250 6.83
0.28 2.1415 3.8433 6.3379 2.30 0.80 3.6061 7.1788 11.0735 7.39
0.32 2.1637 3.9372 6.6613 2.52 0.84 4.0189 7.6042 11.6356 7.96
0.36 2.1906 4.0572 6.9179 2.76 0.88 4.4475 8.0852 12.2658 8.54
0.40 2.2231 4.2112 7.1534 3.04 0.92 4.8536 8.5773 12.8236 9.13
0.44 2.2624 4.4090 7.3939 3.34 0.96 5.2331 9.0395 13.3059 9.72
0.48 2.3103 4.6578 7.6633 3.68 1.00 5.5984 9.4701 13.7706 10.29
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from Figure 7-8. We use the table to find beamwidths of given horns or design to
given beamwidths. Table 7-6 also lists the sum of ATL and PEL(GF) for various S.
We estimate gain or design to a given gain with this listing.

Example Calculate 10-dB beamwidth and gain of a corrugated conical horn with an
aperture radius of 12 cm and a slant radius of 50 cm at 5 GHz:

S = a2

2λR
= 122

2(6)(50)
= 0.24

From Table 7-7 we read the k-space value at 10 dB for S = 0.24:

2πa

λ
sin θ = 3.7699 or θ = 17.46◦

We include the obliquity factor, since the pattern loss will be greater than 10 dB at
θ = 17.46◦:

(1 + cos 17.46◦
)/2 : −0.20 dB BW10 =

√
10

10.20
34.92◦ = 34.57◦

A smooth-wall horn with the same dimensions has a similar H -plane beamwidth (33.4◦).
We calculate gain from the distribution losses and aperture area:

GF = ATL + PEL = 2.12 dB gain = 20 log
πD

λ
− GF = 19.86 dB

The smooth-wall horn has about 0.5 dB more gain (20.4 dB).

Example Design a circular corrugated-wall horn at 8 GHz with a gain of 22 dB.
We use Eq. (7-20) with the GF from Table 7-6. Choose S = 0.20 (arbitrary):

D = 3.75 cm

π
· 10(22+1.96)/20 = 18.83 cm

R = D2

8λS
= 59.10 cm

TABLE 7-7 Phase-Center Axial Location of a
Circular Corrugated Horn (HE11 Mode) Behind the
Aperture as a Ratio of the Slant Length

S Lp/R S Lp/R

0.00 0.0 0.36 0.386
0.04 0.005 0.40 0.464
0.08 0.020 0.44 0.542
0.12 0.045 0.48 0.614
0.16 0.080 0.52 0.673
0.20 0.124 0.56 0.718
0.24 0.178 0.60 0.753
0.28 0.240 0.64 0.783
0.32 0.310 0.68 0.811
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The phase center, like that of other horns, starts at the aperture for S = 0 (R = ∞)

and moves toward the apex as S increases. Table 7-7 lists the phase-center location as
a ratio of the slant radius. Because the aperture distribution is the same along all radial
lines of the aperture, the phase center is the same in all planes. We measure some
variation, since the balance between modes will not be perfect, and some higher-order
modes will be generated. The phase center moves least over a frequency band for long
horns (small S). A wide-flare-angle horn has its phase center at the apex and is better
described as a scalar horn.

7-3.1 Scalar Horn

A scalar horn has a wide half-flare angle, θ0. Its beamwidth depends on the half-flare
angle. Since the phase distribution in the aperture is large, there is an optimum diameter
for a given flare angle. Table 7-8 lists the optimum diameter versus the flare angle.
The beamwidth is approximately a linear function of the half-flare angle, θ0, for the
optimum horn:

BW3 dB = 0.74θ0

BW10 dB = 1.51θ0

BW20 dB = 2.32θ0

(7-22)

A scalar horn has a wider bandwidth as a reflector feed than that of a small-flare-angle
corrugated horn, because the phase center is fixed at the horn apex.

7-3.2 Corrugation Design

The corrugations present a capacitive reactance to the passing wave. When a corrugated
surface is inductive, it will support surface waves. The depth of corrugations must be
between λ/4 and λ/2. Less than λ/4 or greater than λ/2, it is inductive. Between 3λ/2
and λ it will be capacitive again, but this second passband is seldom used. A quarter-
wavelength corrugation depth balances the two modes and gives the best results. The
corrugations need be only λ/4 at the aperture. Before the aperture we find it better
to deepen the slots. Quarter-wavelength-deep corrugations mismatch the horn in the
transition region, where the TM11 mode is generated from the TE11 mode and depths
approaching λ/2 have the least effect on match.

TABLE 7-8 Optimum Diameter of a Scalar Horn

Half-Flare
Angle, θ0

(deg)

Aperture
Diameter

(λ)

Half-Flare
Angle, θ0

(deg)

Aperture
Diameter

(λ)

15 10.5 45 3.5
20 8.0 50 3.0
25 6.4 55 2.8
30 5.2 60 2.6
35 4.5 65 2.4
40 3.9 70 2.3

Source: [16, p. 429].
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To design for a particular band, limited to about 1.5 : 1 for a good match, we design
with tapered corrugation depths. We make the corrugations λ/4 deep at the aperture
at the low-frequency end. The high-frequency band edge determines the corrugation
depth at just short of λ/2 in the throat. The horn needs at least four corrugations per
wavelength along the slant radius. The high-frequency end determines the corrugation
spacing. The first few corrugations can be used to match the horn to the waveguide, and
we can improve the match by shaping the corrugation widths [14]. The slots should be
as wide as practical spacers will allow. Mechanical considerations, such as shock and
vibration, will determine the limits on the thinness of spacers, but corrugations greatly
increase the strength of the bell.

The circular geometry of the horn changes the corrugation depth necessary for the
balanced HE11 mode from λ/4. An empirical formula for the depth is given by [17]

d = λ

4
exp

(
1

2.5 ka

)
ka > 2 (7-23)

We increase the depth slightly at the horn aperture.

7-3.3 Choke Horns

We can place corrugations in the flanges of small-aperture horns and design wide-
beamwidth antennas with good pattern symmetry and low cross-polarization. The choke
horn (Figure 7-9) is the limit of a scalar horn opened to θ0 = 90◦. The corrugations
consist of concentric rings about the aperture and are generally a quarter-wavelength
deep. The best location for the corrugated rings may not be in the same plane as the
aperture but instead somewhat behind as reported for a feed for f/D = 0.3 reflector
[18;19, pp. 200–209].

The design for the reflector feed [18] used four corrugations. James [20] and Kumer
[21] show that using only one corrugation is quite effective. More corrugations improve
the design but only add marginally. Small apertures need the corrugations to reduce
the cross-polarization that peaks in the diagonal planes between the E- and H -planes.

We usually assume a Huygens source in the aperture plane of the horn. This approx-
imation collapses as we shrink the aperture to achieve wide beamwidths. In the limit

FIGURE 7-9 Choke horn.
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we have only a slot analyzed from magnetic currents replacing the electric field in the
aperture. The magnetic field is ignored in the slot while a Huygens source assumption
is that the ratio of the electric to magnetic field is the same as the impedance of free
space. Waveguides have high wave impedances, which implies small magnetic fields.
To calculate the far field, Eq. (2-23) must be used with the actual ratio of fields in the
aperture instead of Eq. (2-24), with its Huygens source approximation. Restricting the
aperture dimensions to achieve wide beamwidths will limit the bandwidth as well as
the cross-polarization isolation, because reducing volume raises Q.

7-3.4 Rectangular Corrugated Horns

We can design rectangular horns with corrugated walls, but we only need to cut cor-
rugations in the E-plane walls to produce a cosine distribution in the E-plane. Only
for dual polarization do we need corrugations in the H -plane walls. We analyze the
horn as having an H -plane distribution (cosine) in both planes and use the results
of Section 7-1. The larger aperture dimension in the diagonal plane decreases the
beamwidth slightly, but the rectangular horn still provides an acceptable design. Both
planes have a linear amplitude taper loss of 0.91 dB. We use the cosine column of
Table 4-42 for the quadratic phase error loss. We design beamwidths using Table 7-1.
Equalizing the distributions in both planes of square horns results in equal phase
centers, given by Table 7-3 (H -plane).

Example Compute the gain of a square corrugated horn with an aperture width of
24 cm and a slant radius of 50 cm at 5 GHz.

From Eq. (7-1),

S = W 2

8λR
= 242

8(6)(50)
= 0.24

We use the cosine column of Table 4-42 for the phase error loss: PELx = PELy = 0.42
(cosine). The amplitude taper loss is the same in both planes: 0.91 dB.

Gain = 10 log
4πW 2

λ2
− ATLx − ATLy − PELx − PELy

= 23.03 − 0.91 − 0.91 − 0.42 − 0.42 = 20.4 dB

A circular corrugated horn with a diameter equal to the width and having the same
slant radius has a gain of 19.9 dB or 0.5 dB less. The larger aperture area increases the
gain over the circular horn.

7-4 CORRUGATED GROUND PLANE

The corrugated surface (Figure 7-10) supports surface waves (TM) when the slot depth
is less than λ/4 (inductive). As with the corrugated horn, we assume many slots per
wavelength along the direction of propagation. The fields attenuate exponentially above
the ends of the corrugations in a surface wave. We derive the fields from a poten-
tial function

ψ = A1 exp

(−2πbx

λ

)
exp(−jkzz) (7-24)
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FIGURE 7-10 Corrugated ground plane.

above the corrugations, where A1 is an amplitude constant, x the distance out of
the corrugations, and α(= 2πb/λ) the attenuation constant of the fields above the
corrugations. We expand the fields and take the ratio of the z-directed electric field to
the y-directed magnetic field to find the wave impedance into the corrugated surface:

Ez = 1

jωε0
(k2 − k2

z )ψ = −
(

2πb

λ

)2
A1

jωε0
exp

(
−2πb

λ

)
exp(−jkzz)

Hy = −∂ψ

∂x
= 2πb

λ
A1 exp

(
−2πb

λ

)
exp(−jkzz)

Z−x = Ez

Hy

= j (2πb/λ)

ωε0
= j (2πb/λ)

√
µ0

ω
√

ε0µ0
√

ε0
= j (kb)

k
η = jbη (7-25)

where η is the impedance of free space and b is related to α [Eq. (7-24)]. The structure
must present this impedance to the wave. The corrugated surface is a parallel-plate
transmission line to Ez, and it presents a per unit length impedance of

Zc = jη tan kd (7-26)

where d is the corrugation depth. We equate Eqs. (7-25) and (7-26) to determine the
constant b:

b = tan kd (7-27)

We use Eq. (7-27) in Eq. (10-16) for the relative propagation constant:

P =
√

1 + b2 =
√

1 + tan2 kd (7-28)

We include the effect of the corrugation thickness by averaging between the parallel-
plate impedance and the zero impedance along the corrugation edges. Equation (7-28)
becomes

P =
√

1 +
(

g

g + t

)2

tan2 kd (7-29)

where g is the gap distance and t is the corrugation thickness. P increases without
bound as the depth d approaches λ/4. The fields become tightly bound to the surface
and attenuate rapidly to zero above the corrugations—the normal electric field vanishes
as in a corrugated horn E-plane wall. We design the depth of the corrugations by using

d = λ

2π
tan−1 g + t

g
√

P 2 − 1
(7-30)
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When the corrugation depth approaches λ/4, the surface impedance [Eq. (7-26)]
approaches infinity and the tangential magnetic field vanishes on the surface to create
an artificial PMC (Section 2-3) for waves polarized along the z-axis. The reflection
coefficient is +1 instead of −1 for the PEC surface. Waves polarized along the y-axis
encounter closely spaced corrugations that approximately produce a PEC surface with
the usual metal wall reflection coefficient of −1. Whereas a PEC reflects an incident
circularly polarized wave with opposite sense of circular polarization, the artificial PMC
(soft) surface [22, pp. 276–280] reflects the wave with the same sense of polarization.
We can use these surfaces to shape the pattern of a wide-beamwidth circularly polarized
antenna to narrow the beamwidth without generating the opposite sense polarization,
which would be generated by metal walls.

A ground plane covered with circular coaxial corrugations λ/4 deep reduces the edge
diffraction that produces a large backlobe for a monopole antenna mounted in the center
(Figure 5-23). The artificial soft wall causes the reduction of circumferential magnetic
fields and the associated GTD diffraction (Section 2-7.11) [23]. This increases the
forward gain by reducing the backlobe. It is not necessary to corrugate the entire top
surface. Figure 7-11 illustrates a surface with only two coaxial corrugations around
the outer rim. These reduce the backlobe for a dipole mounted over the ground plane
without generating significant cross-polarization from a pair of orthogonal dipoles fed
for a circular polarization. Corrugating the entire surface would cause radiation of cross-
polarization because the region below the dipole pair radiates oppositely sensed circular
polarization. The corrugated surface reflects the same sense of circular polarization as
incident. The PEC surface reverses the sense of circular polarization of the reflected
wave and both waves add. The corrugations only reduce the backlobe. The choke
horn uses the same type of corrugations to reduce the backlobe radiated from the
small-diameter horn aperture.

The corrugations can be placed radially below the ground plane by using short-
circuited radial transmission lines (Figure 7-12) and also reduce the backlobe. We

FIGURE 7-11 Ground plane with two coaxial corrugations to reduce edge diffraction.

FIGURE 7-12 Ground plane with short-circuited radial transmission-line corrugations.
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TABLE 7-9 Radial Transmission Outer Choke
Depth at Resonance

Outer Radius
(λ)

Depth
(λ)

Outer Radius
(λ)

Depth
(λ)

0.25 0.188 0.70 0.230
0.30 0.199 0.80 0.233
0.35 0.208 1.0 0.236
0.40 0.213 2.0 0.243
0.50 0.222 4.0 0.247
0.60 0.227

compute the reactance at the outer radius from the following equation, which uses
Bessel and Neumann functions:

X = j
ηb

2πr

N0(kr)J0(kro) − J0(kr)N0(kro)

J1(kr)N0(kro) − N1(kr)J0(kro)

The short-circuited wall is located at radius ro and the spacing between the plates is
b. Reactance X grows rapidly as r approaches resonance. For a large outer radius the
difference r − ro approaches λ/4 but is less for a small radius. Table 7-9 gives the
difference in radius versus the outer radius for resonance.

Corrugations on the upper surface are more effective than radial corrugations, but the
radial line chokes fit easily behind a small ground plane. In both cases the corrugations
enhance radiation behind the ground plane at frequencies below resonance λ/4 depths,
because a surface wave is generated along the corrugations. Corrugated surfaces are
useful structures because they can be used to enhance or reduce radiation, depending
on their depth.

7-5 GAUSSIAN BEAM

Corrugated horns and simple reflector feeds can be approximated with Gaussian beams.
An infinite circularly symmetrical Gaussian aperture distribution located in the x –y

plane radiates a Gaussian beam along the z-axis. The radial exponent of the Gaus-
sian distribution determines the spread of the wave as it propagates along the z-axis.
We use the distribution to calculate the radiation pattern and then add the Huygens
source (Section 2-2.2) for polarization. The analysis is divided into far- and near-field
approximations. The near-field approximation consists of a paraxial wave. The Gaus-
sian beam satisfies Maxwell’s equations by using the free-space Helmholtz equation
and produces correct patterns when applied with physical optics (PO).

The free-space Green’s function satisfies the Helmholtz equation: e−jkR/R. We
derive the Gaussian beam from a point source placed at a complex position along the
z-axis: z0 = −jb. A source at this position produces a Gaussian distribution in the
z = 0 plane.

exp

(−ρ2

W 2
0

)
with ρ2 = x2 + y2
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W0 is the beam waist radius where amplitude has dropped by 1/e. We relate the waist
radius W0 to the position b by [24, pp. 80–90]

W 2
0 = 2b

k
where k = 2π

λ

As the wave propagates along the z-axis, its amplitude retains the Gaussian distribution
in the radial direction ρ but the waist spreads:

W 2(z) = W 2
0

[
1 +

( z

b

)2
]

The waist surface is a hyperboloid with a ring focus at radius b located at z = 0.
The wave amplitude reduces by the ratio of the waists and combines with the radial
Gaussian distribution:

W0

W(z)
exp

[
− ρ2

W 2(z)

]

The phase of the paraxial (near-field) wave has two terms. The first is the normal
z-directed wave phase exp (−jkz) and the second is a quadratic phase term that arises
from the complex location of the point source at z = −jb. The quadratic phase term
slant radius depends on the location along the z-axis:

Rc(z) = z

[
1 +

(
b

z

)2
]

The paraxial Gaussian beam has an additional slippage phase term ζ(z) = tan−1(z/b).
The paraxial Gaussian beam phase term is the sum

exp

[
−jkz − jk

ρ2

2Rc(z)
+ jζ(z)

]

The constant phase (eikonal) surfaces between the hyperboloid amplitude surfaces are
ellipsoids with a ring focus at radius b located at z = 0. At z = 0 the eikonal surface is
planar. We combine the amplitude and phase terms for the complete paraxial Gaussian
beam equation:

− jE0 cos2 θ

2

W0

W(z)
exp

[
− ρ2

W 2(z)

]
exp

[
−jkz − jk

ρ2

2Rc(z)
+ jζ(z)

]

× (θ̂ cos φ − φ̂ sin φ) (7-31)

The Huygens source polarization for an x-directed wave [Eq. (1-38)] and the obliquity
factor [Eq. (2-14)] have been added to Eq. (7-31). We determine the constant E0 by
equating the radiation between this paraxial beam and the far-field expression for a
Gaussian beam with a given input power. The recommended distance to equate the
two representations is z = 200W 2

0 /λ.
We calculate the far-field Gaussian beam by substituting the point source position

into e−jkR/R and approximating R with a far-field expression [25, pp. 96–106]:

R =
√

x2 + y2 + z2 − b2 + j2bz =
√

r2 − b2 + j2br cos θ (7-32)
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In the far field we can ignore b2 and expand Eq. (7-32) in a Taylor series and retain
the first two terms, which reduces e−jkR/R to ekb cos θ e−jkr/r . We combine this term
with the Huygens source radiation to produce the far-field Gaussian beam equation for
an x-directed linear polarization in the aperture normalized at θ = 0 to directivity:

E(r, θ, φ) =
√

P0 · directivity · η
4π

cos2 θ

2
ekb(cos θ−1)(θ̂ cos φ − φ̂ sin φ)

e−jkr

r
(7-33)

The directivity is found by integrating the pattern of Eq. (7-33):

directivity = 4(2 kb)2

2(2 kb) − 2 + 1/(2 kb) − e−2(2 kb)/(2 kb)
(7-34)

Scale 7-7 gives the relationship between gain and the 10-dB beamwidth for a Gaus-
sian beam.

Given the beamwidth (BW) at a given level L(dB), we solve Eq. (7-33) for the
complex-plane point source position b:

b = 2 log[cos(BW/4)] + |L/20|
k[1 − cos(BW/2)] log e

(7-35)

Scale 7-8 relates Gaussian beam half-depth of focus, b, to its 10-dB beamwidth, and
Scale 7-9 gives the minimum waist diameter.

We simplify the expression for the Gaussian beam for small angles by expanding
cos θ in a Taylor series cos θ ≈ 1 − θ2/2, which reduces Eq. (7-33):

E(r, θ, φ) = E0 cos2 θ

2
e−(θ/θ0)

2
(θ̂ cos φ − φ̂ sin φ)

e−jkr

r
(7-36)

10-dB Beamwidth (degrees)

Gaussian Beam Gain, dB

SCALE 7-7 Gaussian beam gain compared to a 10-dB beamwidth.

Half Depth of Focus b, l

Gaussian Beam, 10-dB Beamwidth (degrees)

SCALE 7-8 Gaussian beam half-depth of focus, b, compared to a 10-dB beamwidth.
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Minimum Waist Diameter 2W, l

Gaussian Beam, 10-dB Beamwidth (degrees)

SCALE 7-9 Gaussian beam minimum waist diameter compared to a 10-dB beamwidth.

The angle θ0 is the beam divergence [24, pp. 80–90], given by

θ0 = 2

kW0
=

√
2

kb

Equation (7-36) cannot be used beyond θ0 because it is based on a small-angle approx-
imation.

We can use a Gaussian beam to approximate the pattern of a corrugated horn [26, pp.
170–176]. The minimum waist is located behind the horn aperture Lp, the phase-center
distance given the aperture radius a and the slant radius R:

Lp = R

1 + [2R/k(0.644a)2]2
(7-37)

Lp is the location of z = 0 of the Gaussian beam. The minimum waist radius W0 is
given by

W0 = 0.644a

1 + [k(0.644a)2/2R]2
b = W 2

0 k

2
(7-38)

For a 22 dB-gain corrugated horn, Eq. (7-38) produces a Gaussian beam with the
same gain as the horn for S = 0.134. For different values of S, Eq. (7-38) gives only
approximate Gaussian beams to match the gain of corrugated horns. The Gaussian
beam has a 10-dB beamwidth of 27.5◦ and the corrugated horn has a beamwidth of
27.2◦. The phase center of the Gaussian beam given by Eq. (7-37) is 2.44λ behind the
aperture and the actual horn phase center is at 0.89λ. The Gaussian beam approximation
finds the near-field pattern of the corrugated horn because it includes the finite waist
size instead of assuming a point source at the phase center of the horn. A PO analysis
using the equivalent currents in the aperture [27, pp. 141–156] also finds the near-field
pattern but requires greater calculation effort.

7-6 RIDGED WAVEGUIDE HORNS

Inserting ridges in the E-plane of a waveguide lowers the cutoff frequency compared to
a waveguide of the same width. The ridges raise the cutoff frequencies of the next two
higher modes and can produce a waveguide that operates over a 10 : 1 frequency range
or more. If we use this as the input waveguide to a horn and taper the ridges until they
do not block the horn aperture, the horn radiates a pattern similar to the smooth-wall
horn. Near the aperture the horn can support many higher-order waveguide modes
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as frequency increases. The horn generates some higher-mode content to the fields
which distorts the pattern over narrow frequency ranges, but for many applications
such distortions are acceptable. Initial designs [28] used dual ridges for a single linear
polarization, while later designs increased the number of ridges to four (quad-ridge) to
allow for dual linear (or circular) polarization.

Design concentrates on the input waveguide dimensions. We apply transverse res-
onance to the waveguide to calculate its cutoff frequencies. A rectangular waveguide
with the electric field parallel to the narrow wall can be considered as a parallel-plate
transmission line with the wave traveling between the two narrow wall shorts at cutoff
(see Section 5-24). The parallel-plate transmission-line impedance is ηb for a height of
b (meters). The lowest-order mode cutoff frequency for a normal rectangular waveg-
uide occurs when the width a = λ/2. The transverse resonance method considers half
the width as a transmission line and cutoff occurs when the impedance at the cen-
terline is an open circuit (odd-order mode) or a short circuit (even-order mode) (i.e.,
a/2 = Nλ/4) for mode TEN0. Of course, we ignore the impedance of the parallel-plate
line because it is uniform.

Figure 7-13a shows the cross section of a dual-ridged waveguide. The diagram
illustrates feeding the waveguide with a coaxial line running through the center of
one ridge. The center conductor extends across the gap to feed the second ridge. The
center pin does not need to touch the second ridge but can be coupled capacitively. The
transverse resonance circuit of a dual-ridged horn used to determine cutoff frequencies
consists of two transmission-line segments with a shunt capacitor due to the step. The
capacitance depends on the ratio of the heights α = b2/b1, where b2 < b1 [29]:

C = ε0

π

(
α2 + 1

α
cosh−1 1 + α2

1 − α2
− 2 ln

4α

1 − α2

)
(7-39)

For the dual-ridged waveguide we analytically place a ground plane halfway across the
waveguide E-plane and divide the waveguide into two half-height waveguides. Later
we will consider the impedance, and the total impedance of the guide is these two

(a) (b)

FIGURE 7-13 Coaxial feeds of ridged waveguides: (a) dual ridge; (b) quad ridge.
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half-height guides in series. Given the waveguide width a1 and height 2b1, and the
ridge width a2 with gap 2b2, we solve for the cutoff frequency using a transcendental
equation in admittance at the transition point between the two half-height waveguides.
Odd-order TE modes have a virtual open circuit in the center of the ridge and a short
circuit at the wall. Cutoff occurs for kc = 2π/λc = 2πfc/c for c equal to the speed of
light [30]:

tan(kca2/2)

ηb2
+ kccC − cot[kc(a1 − a2)/2]

ηb1
= 0 (7-40)

We solve Eq. (7-40) numerically for kc for odd-order modes. The even modes have
a virtual short circuit in the center, which leads to a similar equation for the cutoff
number kc:

−cot(kca2/2)

ηb2
+ kccC − cot[kc(a1 − a2)/2]

ηb1
= 0 (7-41)

We use Eq. (7-40) to calculate the cutoff wavelengths of modes TE10 and TE30 and
Eq. (7-41) to compute the cutoff wavelength of mode TE20 for given dimensions.

We design the waveguide to have a suitable low-frequency cutoff with an impedance
equal to the input coax, whose outer conductor is connected to one ridge, with the center
conductor jumping the gap to feed the other. The impedance at an infinite frequency
is given by the equations

Y∞ = 1

kηb2

{
ka2

4
+ sin ka2

4
+ b2

b1

cos2(ka2/2)

sin2(ka1/2)

(
ka1

4
− sin ka1

4

)

+ 2b2

λ
ln

[
csc

(
π

2

b2

b1

)
cos2 ka2

2

]}

Z∞ = 1

Y∞
(7-42)

The impedance at a finite frequency increases:

Z0 = Z∞√
1 − (fc/f )2

(7-43)

An approximate value for the gap can be found from the impedance of microstrip.
The infinite impedance equals slightly less than twice the impedance of microstrip the
same width as the ridge with one-half the gap. The extra fringing capacitance between
the sides of the ridges lowers the impedance compared to microstrip. You can use
a microstrip line design program to find an approximate gap and a few evaluations
of Eq. (7-42) to determine the correct gap. Design for Z∞ because the impedance
approaches Z∞ rapidly as frequency increases by Eq. (7-43) and ridged horns operate
over a large bandwidth.

Quad-ridged waveguide, illustrated in Figure 7-13b, requires modifications at the
input to a horn. To achieve Z∞ = 50 �, the gap must be reduced and the ridges
made with a rooftop shape so that they fit within each other. The capacitance between
the ridges for one polarization is a series combination of the two capacitors to the
ridges for the second polarization. Similar to the dual-ridged waveguide, we divide the
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waveguide along the centerline through the second set of ridges and analyze a single-
ridged waveguide. Given a square waveguide with width w, ridge width s, and gap g

between the ridges of different polarizations, the equivalent single-ridged waveguide
has parameters given by the expressions

a1 = w + s(
√

2 − 1) a2 = s
√

2

b1 = w − s/2 b2 = g (7-44)

For the quad-ridged waveguide the infinite impedance equals slightly less than four
times the impedance of microstrip the same width as the equivalent ridge a2 with one-
half the gap. We use the parameters of Eq. (7-44) in Eqs. (7-39) through (7-43) to find
the parameters of quad-ridged waveguide. Figure 7-13b demonstrates that the feed pin
of one coax passes over the other to reduce coupling between them. The difference in
distance to the waveguide shorting wall for the two coaxial lines produces different
impedances for the two inputs.

We can use the expressions above for circular waveguides. We design with a width
equal to the diameter. The infinite impedance is lower by the factor π/4. The cutoff
frequency is about 1.25 times the cutoff frequency of the equivalent square waveg-
uide [31].

Figure 7-14 gives a cross-sectional drawing of a ridged horn and demonstrates the
key elements of design. A coax is fed through the center of one ridge and the center
conductor jumps the gap and feeds the second ridge. We locate the coax close to the
end of the ridge truncated before it reaches the waveguide back wall short circuit,
leaving a small gap. Without ridges the waveguide is cutoff at the low-frequency end
of the horn operation. Operating the waveguide below its cutoff frequency does not

FIGURE 7-14 Dual-ridged waveguide horn cross section.
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prevent the wave from reaching the back wall because the distance is short. The original
horns [28] used waveguides in cutoff at the feed point at the lowest frequencies. By
tapering the sidewalls the waveguide operates above cutoff in a short distance from
the feed and the waves propagated to that region. Cutoff only means that a wave will
not propagate in a long waveguide, but it attenuates as it moves along the waveguide.
Figure 7-14 shows optional shorting pins between the back wall and the ridges. These
prevent an additional resonance in impedance that may arise at a frequency when the
height of a single ridge approaches λ/2. Not all designs need these pins.

We space the ridges to form a transmission line matched to the feed coax at the
input. A uniform section of ridged waveguide extends to the throat of the horn. The
horn shown in Figure 7-14 uses an exponentially tapered ridge that has an additional
linear taper with slope 0.02 [28] empirically found to improve the impedance match.
It would seem that designing a classical tapered impedance transformer would give a
better impedance match, but the simple exponential physical taper produces an excel-
lent impedance match. The gain of the horn falls short of the equivalent open horn
because multiple modes are excited and beamwidth broadens. In a dual-ridged horn
the power concentrates between the ridges in the E-plane, and we can replace the
H -plane sidewalls with a few rods. We space the rods close enough to block radiation
at the lower frequencies and allow high-frequency radiation through the spaces. Since
the fields are concentrated between the ridges at high frequencies, the side H -plane
walls have little effect on the pattern. A quad-ridged horn requires solid walls.

A circular quad-ridged horn was measured as a possible feed for a Cassegrain
reflector from 6 to 18 GHz. The horn has a 13.2-cm aperture diameter and a 37.6-cm
slant radius and operates from 2 to 18 GHz. Figure 7-15 plots the measured E- and
H -plane 10-dB beamwidths along with the beamwidths of both smooth and corrugated
wall horns of the same size. Neither smooth wall nor corrugated wall horns could be
designed to operate over this wide bandwidth; they are shown only for comparison. The

FIGURE 7-15 Measured 10-dB beamwidths of a circular quad-ridged horn compared to the
calculated beamwidths of smooth- and corrugated-wall horns.
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FIGURE 7-16 Measured directivity of a circular quad-ridged horn compared to those of
smooth- and corrugated-wall horns.

quad-ridged horn has wider beamwidths in both planes compared to the other horns.
This reduces the gain shown in Figure 7-16. Similar to the corrugated horn, the quad-
ridged horn operates with multiple modes. We can determine the circular waveguide
modes radiated by using physical optics analysis on the measured pattern. We radiate
a plane wave into a circular aperture plane equal to the physical horn aperture and
placed at the average phase center. Each plane wave, weighted by the pattern level and
sin θ , excites Huygens source currents on the patches that cover the aperture by using
Eq. (2-33). We normalize the currents to 1 watt and project the currents for each mode
of a circular waveguide horn onto the incident wave currents by integrating over the
aperture to determine their excitation levels bm:

bm =
∫∫
S

Ja·J∗
m dS (7-45)

We use the aperture currents Ja and mode currents Jm in Eq. (7-45), where we take the
complex conjugate of the vector for projection in the same manner as polarization cal-
culations (section 1-11). We operate on the electric currents only because the magnetic
currents are proportional to the electric currents for Huygens sources. Figure 7-17
plots the levels of the TE11, TM11, and diagonally oriented TE21 modes. TE11 and
TM11 modes are also excited in a corrugated horn, but the level of the TM11 mode
is approximately −5 dB relative to the TE11 mode. Further measurements of the horn
show that it has approximately equal power in the TE11 and TM11 modes, all the way
down to 2.7 GHz. Below that frequency the horn aperture will not support the TM11

mode and the pattern reverts to the TE11 mode only, which narrows the beamwidth.
Analysis shows that the diagonally oriented TE21 mode peaks at an angle halfway
around from the ridges and increases cross-polarization in the diagonal plane. The
unmatched beamwidths in the E- and H -planes also increases the Huygens source
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TM11

TE11

TE12

FIGURE 7-17 Modal decomposition into circular waveguide modes of the measured pattern
of a circular quad-ridged horn.

cross-polarization (section 1-11.2) in the diagonal plane. Square quad-ridged horns
have similar modes. Measurements on a 63.5-cm-square aperture horn with a 140-cm
slant length produced nearly equal levels of TE10 and TM12 modes, similar to the TE11

and TM11 circular modes in field distribution. The TE10 and TM12 modes have approx-
imately the same phase. The horn radiated the TE12 mode at the higher-frequency end
of the band, which caused pattern distortion over a narrow frequency range. Both the
TM12 and TE12 modes are excited by the electric field between the ridges. The interplay
of these three modes causes rapid changes in the beam shape as frequency changes.
The horn exhibits these changes at the high end of the frequency band when all three
modes exist with nearly equal power. Measurements on a dual-ridged horn produced
patterns that reduced to the same three dominant modes as the square quad-ridged horn
radiated and produced similar results.

We fail to obtain a close match with the measured pattern of the quad-ridged horn
by using the aperture currents beyond the 10-dB beamwidth for an aperture small in
wavelengths. If we include currents excited along the outside of the horn bell in the
physical optics analysis, we better match the measured pattern. This illustrates that the
pattern of a horn is determined not only by aperture fields but also by the currents
that flow down the bell. Figure 7-18 shows the measured E- and H -plane patterns and
the cross-polarization in the diagonal plane. The three-dimensional measured pattern
plot in Figure 7-19 at 6 GHz shows the four cross-polarization lobes in the diagonal
planes.

The average pattern beamwidth matches a reflector with f/D = 1 and has an aver-
age illumination loss of 3 dB, with the value ranging from 2.5 to 4 dB. The average
taper loss is 1.07 dB and the average spillover loss 1.08 dB. The cross-polarization
exhibited in Figure 7-19 contributes an average 0.7 dB of loss. The phase-center loca-
tion measurements show that the horn has up to 2λ astigmatism, which contributes
0.4 dB of loss when used as a reflector feed.
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FIGURE 7-18 Measured pattern of a circular quad-ridged horn.

Huygens Polarization,
Co-Polarization

Huygens Polarization,
Cross-Polarization

FIGURE 7-19 Spherical radiation pattern of a circular quad-ridged horn showing four-way
symmetry of cross-polarization in diagonal planes.

7-7 BOX HORN [32, pp. 377–380]

With a box horn (Figure 7-20), multiple waveguide modes are used to decrease the
H -plane amplitude taper loss and axial length of the horn. We add the TE30 mode to
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FIGURE 7-20 Box horn.

the TE10 mode to reduce the cosine distribution taper of the H -plane. By phasing the
modes 180◦ out of phase in the center of the aperture, the cos 3πx distribution subtracts
from the TE10-mode distribution in the center and adds in the region near the edges.

A step in the width of a waveguide generates TEN0 modes when fed by the TE10

mode. Any modes not cut off by the waveguide will propagate to the aperture. If
we maintain symmetry about the axis of the waveguide, only odd-order modes (TE30,
TE50, etc.) will be generated. The width W of the waveguide (Figure 7-20) beyond the
step determines the possible propagating modes: λc = 2W/N , where N is the mode
number. If we limit the modes to the TE10 and TE30 modes in the aperture, the cutoff
wavelength of the TE50 mode determines the maximum width: Wmax = 2.5λ. The
TE30-mode cutoff wavelength establishes the minimum width: Wmin = 1.5λ. Within
this range, short horns with good aperture efficiency can be designed. We can flare
the E-plane to increase its aperture (Figure 7-20), but the limited axial length of the
horn bounds the possible flare without an excessive phase error loss. The H -plane can
also be flared, but flaring it complicates the design for the proper length L. The step
generates smaller amplitudes of higher-order modes with each increase in N . Small
amounts of higher-order modes (TE50, TE70, etc.) will decrease the efficiency only
marginally, since the mode amplitudes are small.

The step generates modes in phase with the input TE10 mode, since the higher-order
modes must peak in the center and subtract from the TE10 fields on the back wall of the
larger waveguide section. The aperture distribution is a sum of TE10 and TE30 modes:

Ey(x) = a1 cos
πx

W
exp(−jk10L) + a3 cos

3πx

W
exp(−jk30L) (7-46)

where k10 and k30 are the propagation constants of the two modes. The amplitude
distribution in the H -plane will be more nearly uniform if the phase between the modes
is 180◦. The modes travel from the step with different phase velocities, depending on
their cutoff frequencies. We adjust the length L to give a 180◦ phase difference between
the modes:

(k10 − k30)L = π

where k10 = k
√

1 − (λ/2 W)2 and k30 = k
√

1 − (3λ/2 W)2. We solve for the length:

L = λ/2√
1 − (λ/2 W)2 − √

1 − (3λ/2 W)2
(7-47)
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TABLE 7-10 Box Horn Characteristics

Ratio of Input Linear
(W /λ) sin θ

TE30/TE10 Waveguide to ATLw

(Voltages) Aperture (dB) 3 dB 10 dB

0.00 1.000 0.91 0.594 1.019
0.05 0.940 0.78 0.575 0.981
0.10 0.888 0.67 0.558 0.947
0.15 0.841 0.58 0.544 0.917
0.20 0.798 0.52 0.530 0.890
0.25 0.758 0.48 0.518 0.866
0.30 0.719 0.46 0.507 0.844
0.35 0.682 0.46 0.496 0.824
0.40 0.645 0.47 0.487 0.806
0.45 0.609 0.50 0.479 0.790
0.50 0.573 0.54 0.471 0.775
0.55 0.537 0.60 0.463 0.761
0.60 0.500 0.66 0.456 0.749
0.65 0.462 0.74 0.450 0.737
0.70 0.424 0.82 0.444 0.726

The ratio of the modes generated by the step can be found from mode matching on
the input waveguide aperture of width a:

aN

a1
=

∫ a/2

−a/2
cos(πx/a) cos(Nπx/W)dx

∫ a/2

−a/2
cos(πx/a) cos(πx/W)dx

(7-48)

where aN is the TEN0 mode amplitude. Table 7-10 lists the step dimensions needed to
design to a given ratio of modes. The amplitude taper loss is a minimum at a3/a1 =
0.32. The possible 3-dB beamwidths with a single mode, TE10, range from 20 to 44◦.

Example Design a box horn with an H -plane 10-dB beamwidth of 50◦.
We pick a3/a1 = 0.35. From Table 7-10, (W/λ) sin θ = 0.824. The obliquity factor

at 25◦ adds 0.42 dB of loss. We must design with a wider 10-dB beamwidth. This
is within the permissible range for only two modes in the aperture. We calculate the
length to phase the modes by 180◦ by using Eq. (7-47): L = 1.451λ. The horn is
shorter than the aperture width.

7-8 T-BAR-FED SLOT ANTENNA

A T-bar-fed slot antenna (Figure 7-21) looks more like an open-circuited waveguide
to coax transition than a slot. Like a slot, its pattern is very broad. The antenna
has been designed experimentally [33, pp. 184–190] and those dimensions provide
a good starting point. Table 7-11 lists two designs [33] referred to Figure 7-21. The
aperture admittance is a combination of the radiation admittance and a capacitive
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FIGURE 7-21 T-bar-fed cavity slot antenna. (From [34],  1975 IEEE.)

TABLE 7-11 Dimensions for Two Antenna Designs

Dimensions Antenna 1 Antenna 2

b/a 0.323 0.226
W/a 0.323 0.295
x/a 0.118 0.113
D/a 0.118 0.090
I/a 0.059 0.045
E/a 0.118 0.090
F/a 0.057 0.045

susceptance. Behind the feed point, the length of short-circuited waveguide adds an
inductive susceptance that grows as frequency decreases. The horizontal bar produces
a capacitive susceptance at the input to counteract the back-wall susceptance. These
susceptances track with frequency changes; each one decreases to maintain the sum
near resonance.

Later experimental work [34] revealed further properties of the antenna.
Measurements on antenna 1 show that the lower-end 2 : 1 VSWR band edge occurs
when a = 0.57λ and the upper end when a = 0.9λ. The bandwidth is about 1.6 : 1.
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Antenna 2 was reported [33] as having less bandwidth than antenna 1. When the round
rod was replaced with a flat strip, whose width across the guide was the same as the
diameter of the rod, almost identical results were obtained. We have a choice. The flat
strip is an easier construction, but the round rod gives better mechanical support in all
axes to withstand shock and vibration.

The flat strip adds to the freedom of design. The bandwidth potential increases when
H is decreased while I is held constant. Newman and Thiele [34] found that when H

was decreased, the nominal impedance level was raised. When the input impedance
is plotted on the Smith chart, the locus is centered about a higher resistance. By
adding a broadband impedance transformer on the input, we can achieve the higher
bandwidth potential. Newman and Thiele achieved a nearly 2 : 1 VSWR bandwidth
from a = 0.52λ to a = 1.12λ, or 2.3 : 1 bandwidth.

7-9 MULTIMODE CIRCULAR HORN [35]

A step in the diameter of a circular waveguide generates a TM11 mode to satisfy the
boundary conditions. The fields of the TM11 mode can be phased to cancel the fields
from the TE11 mode at the edges of the aperture in the E-plane. The tapering of the
fields in the aperture reduces the E-plane sidelobes while broadening the beamwidth.
Equalizing the field distributions in the two planes helps to bring the E- and H -plane
phase centers closer together.

The modes generated by the step are more complicated than those for the box horn.
Symmetry eliminates generation of the unwanted modes: TM01, TE21, and TE01. The
step transition shifts the phase of the TM11 mode relative to the TE11 mode [36]. Since
the waveguide modes have different phase velocities, they can be phased to produce the
desired field at the aperture. Although calculated information [36] is helpful, the designs
must be completed empirically. The required phasing to achieve field cancellation
limits the bandwidth, but for narrowband applications a stepped horn is cheaper than
a corrugated horn.

Satoh [37] loads the flare of a conical horn with a conical dielectric step to generate
the TM11 mode. Symmetry prevents the excitation of unwanted modes. He places
the step at a diameter where the TM11 mode can propagate. By using two steps, the
bandwidth can be increased because the lengths can be adjusted to give perfect mode
cancellation at two frequencies. We can replace the dielectric cone by metal steps each
of which generates the TM11 mode and thereby achieve good results, in theory, at
multiple frequencies.

7-10 BICONICAL HORN [4]

A biconical horn consists of two cones with a common vertex. The angle of the
generating lines of the cones is measured from a common axis. The cones of the usual
antenna have angles that sum to 180◦. Spherical modes describe the fields between the
cones, but we can use approximations with good results. The lowest-order mode is TEM
between the cones and is easily excited by a coax line. The outer conductor connects
to one cone, and the second cone feeds out of the center conductor. The electric field
of the TEM mode is polarized in the direction of the axis. The first higher-order mode
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has a circulating electric field with the magnetic field in the direction of the axis. It
can be excited either from a TE01-mode circular waveguide or by an array of slots on
a cylinder. The distance between cones must be at least λ/2 at the point of excitation
of the TE01 biconical mode.

We approximate the distribution of the zeroth-order mode, TEM, as uniform along
the axis. The first-order mode, TE01, distribution is approximately cosine along the axis.
We calculate gain by using aperture distribution losses. We describe the horn with a
slant radius along the generating line and a height between the ends of the cones. The
expansion in spherical modes requires integration over a spherical cap at the aperture if
a constant phase surface is used. We obtain good results by using a cylindrical aperture
and a quadratic phase distribution. The antenna has circular symmetry about the z-axis
that bounds the directivity to 2L/λ. We use linear distribution efficiencies to compute
directivity (gain):

gain = 10 log
2L

λ
− ATLx − PELx (7-49)

The TEM mode has a uniform distribution, so we use the “uniform” column of
Table 4-42 to calculate phase error loss. The uniform distribution has no amplitude
taper loss. The cosine distribution of the first-order mode requires an ATL = 0.91 dB
and use of the cosine distribution quadratic phase error loss of Table 4-42. Given the
height between the ends of the cones, H , and the slant radius R, we determine the
quadratic phase distribution constant from

S = H 2

8λR
(7-50)

Example Compute the gain of a biconical horn with a slant radius of 10λ and cone
angles of 75◦ and 105◦. H = 2R cos 75◦ = 5.176λ and S = 0.33.

From Table 4-42, we read

PELTEM = −1.76 dB PELTE−01 = −0.79 dB

Vertical mode, TEM: gain = 10 log[2(5.176)] + PELTEM:

10.15 dB − 1.76 dB = 8.4 dB

Horizontal mode, TE01: gain = 10 log[2(5.176)] + PELTE−01 + ATLcosine:

10.15 dB − 0.79 dB − 0.91 dB = 8.45 dB

We can calculate beamwidths by using the results of the rectangular horn, where
we measure the angles from θ = 90◦ for the complementary-angled biconical horn.

Example Compute the 3-dB beamwidths of the horn above. S = 0.33 and H =
5.176λ.

Use Table 7-2 with the TEM mode and α as the angle from θ = 90◦:

H

λ
sin α = 0.5015 α = 5.56◦
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The obliquity factor is insignificant.

HPBW = 11.1◦ TEM mode

Use Table 7-1 with the TE01 mode.

H

λ
sin α = 0.6574 HPBW = 14.6◦ TE01 mode

The two modes have about the same gain, but the TE01 mode has a greater beamwidth.
When we refer to Figures 7-3 and 7-4, we see that the TEM-mode horn has about 7-dB
sidelobes and the TE01-mode horn has practically no sidelobes. The sidelobes reduce
the gain of the TEM mode with its narrower beamwidth.
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8
REFLECTOR ANTENNAS

The importance of reflector antennas cannot be overstated. Large-aperture antennas can
be built only with reflectors or arrays and reflectors are far simpler than arrays. The
arrays give us more degrees of freedom than is necessary in many applications. With
plenty of room and slow scan rates, a reflector becomes a better design than an array.
Of course, there can be many valid reasons for using an array in an application, but
a reflector should always be considered. An array needs an elaborate feed network,
whereas a reflector uses a simple feed and free space as its feed network.

Most reflector designs require extensive calculations together with full character-
ization of the feed antenna. Many types of analysis have been developed. As with
horn antennas, Love [1] has collected significant papers on reflector antennas. In his
classic book, Silver [2] provides the foundation for an analysis based on aperture
theory and physical optics (induced currents on the reflector). Aperture theory or
physical optics reduced to aperture theory is still used for most designs. Rusch and
Potter fully develop aperture and physical optics theories for the design and analy-
sis of both prime focus and dual-reflector (Cassegrain) antennas [3]. Other methods
have been developed either to increase the range of valid patterns or to decrease
the pattern calculation time so that optimization techniques can be applied. Wood [4]
collects ideas for designing by using spherical wave expansions that allow for an
overall system optimization using only a few terms. GTD methods [5,6] find increas-
ing applications as an analysis technique suitable for a full pattern analysis except at
boresight. Improved methods of calculating the secondary pattern have been devel-
oped using aperture fields, such as FFT methods [7] and Jacobi–Bessel series [8].
Many of these techniques and hardware implementations of reflectors are summa-
rized in a handbook [9, Chaps. 2 and 3]. Although all these methods are available,
aperture theory and physical optics remain the main techniques of reflector design
and analysis.

Modern Antenna Design, Second Edition, By Thomas A. Milligan
Copyright  2005 John Wiley & Sons, Inc.
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8-1 PARABOLOIDAL REFLECTOR GEOMETRY

Figure 8-1 shows the geometry of the parabolic reflector. We form the reflector by
rotating the figure about its axis or by moving the figure along an axis out of the
paper to form a cylindrical reflector. Because the cylindrical reflector requires a line
source, it is less important than the circularly symmetrical reflector fed from a single
point source. A paraboloidal reflector transforms a spherical wave radiated by the
feed located at its focus into a plane wave. Although the feed wave spreads from the
focus, which reduces its amplitude, geometric optics predicts a plane wave reflection
that remains constant. The reflected wave does not remain a plane wave but spreads
because the fields must be continuous across the reflection boundary of the beam plane
wave column because fields can be discontinuous only across physical boundaries.
Nevertheless, we will use the aperture theory on the projected diameter to predict its
performance. Since the reflected rays are parallel, we can place the aperture plane
anywhere along the axis, but somewhat close in front of the reflector. The equations
for the reflector surface are

r2 = 4f (f + z)

rectangular
coordinates

ρ = f

cos2(ψ/2)

polar
coordinates

(8-1)

where f is the focal length, D the diameter, ρ the distance from the focus to the
reflector, and ψ the feed angle from the negative z-axis. The reflector depth from the
rim to the center is z0 = D2/16f .

D

n̂

Parabolic Reflector

Focus

r

y

y0

r

z

F

FIGURE 8-1 Geometry of a parabolic reflector.
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Parabola f/D

Feed Subtended Angle (degrees)

SCALE 8-1 Parabola f/D compared to a feed total subtended angle.

We eliminate the dimensions of the reflector by using the ratio f /D. The half
subtended angle of the reflector, ψ0, relates to f/D by

ψ0 = 2 tan−1 1

4f/D
(8-2)

Scale 8-1 computes the total feed subtended angle from reflector f/D. When we place
the aperture plane at the focus, the ray path distance becomes

ρ + ρ cos ψ = 2ρ cos2 ψ

2
= 2f

all ray path lengths are equal, and the aperture plane is a constant-phase surface
(eikonal).

The normal unit vector at a point on the reflector (r , z) is found from the feed angle:

n̂ = − sin
ψ

2
r̂ + cos

ψ

2
ẑ

At this point we need the radius of curvatures in the principal planes to apply Eq. (2-77)
reflection from a curved surface: R1 in the r –z plane and R2 in the φ–z plane:

R1 = 2f

cos3(ψ/2)
and R2 = 2f

cos(ψ/2)

The spherical wave spreads from the feed as 1/ρ. At the surface of the reflector the
wave curvature changes to a plane wave and propagates to the aperture plane at a
constant amplitude. The spherical wave spreading multiplies the feed distribution by
[Eq. (8-1)] cos2(ψ/2) in the aperture. Then

added edge taper = cos2 ψ0

2
voltage (8-3)

Deeper reflectors (smaller f/D) have greater edge tapers than shallow reflectors (larger
f/D). Scale 8-2 provides a quick calculation of the added edge taper due to spherical
wave spreading.

Example Calculate the edge taper of a paraboloidal reflector for f/D = 0.5 and an
isotropic feed.

From Eq. (8-2), ψ0 = 2 tan−1 1
2 = 53.13◦. The edge taper is [Eq. (8-3)]

edge taper = 20 log cos2 53.13◦

2
= −1.94 dB
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Added Edge Taper, dB

Parabola f/D

SCALE 8-2 Added edge taper due to a spherical wave from feed.

If the feed has its 10-dB pattern point directed toward the reflector edge, the aperture
edge taper is 11.9 dB.

8-2 PARABOLOIDAL REFLECTOR APERTURE DISTRIBUTION LOSSES

We manipulate Eq. (4-2) for ATL to eliminate the dimensions and relate the integrals
to the feed pattern:

ATL =

[∫ 2π

0

∫ a

b

∣∣Ea(r
′, φ′)

∣∣ r ′ dr ′ dφ′
]2

πa2

∫ 2π

0

∫ a

b

∣∣Ea(r
′, φ′)

∣∣2 r ′ dr ′ dφ′
(8-4)

where a is the aperture radius, b the central blockage radius, and Ea(r
′, φ′) the aperture

field. We make the following substitutions into Eq. (8-4):

r ′ = ρ sin ψ = 2 sin
ψ

2
cos

ψ

2

f

cos2(ψ/2)
= 2f tan

ψ

2

dr ′ = f sec2 ψ

2
= ρdψ

(8-5)

The aperture field is related to the feed pattern by

Ea(r
′, φ′) = E(ψ ′, φ′)

ρ

These substitutions eliminate dimensions in Eq. (8-4):

ATL =

[∫ 2π

0

∫ ψ0

ψb

|E(ψ, φ)| tan(ψ/2) dψ dφ

]2

π[tan2(ψ0/2) − tan2(ψb/2)]
∫ 2π

0

∫ ψ0

ψb

|E(ψ, φ)|2 sin ψ dψ dφ

(8-6)

where ψb = 2 tan−1[b/(2f )]. When we substitute the relations in Eq. (8-5) into Eq. (4-9)
to eliminate dimensions in the integrals, we obtain an expression with only the feed
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pattern:

PEL =

∣∣∣∣
∫ 2π

0

∫ ψ0

ψb

E(ψ, φ) tan(ψ/2) dψ dφ

∣∣∣∣
2

[∫ 2π

0

∫ ψ0

ψb

|E(ψ, φ)| tan(ψ/2) dψ dφ

]2 (8-7)

PEL is the efficiency at the boresight. We modify Eq. (8-7) when we scan the beam
to give off-boresight values as in Eq. (4-3).

The amplitude taper efficiency (ATL) of Eq. (8-6) and the phase error efficiency
(PEL) of Eq. (8-7) do not account for the total directivity loss of the aperture. The
reflector does not intercept all the power radiated by the source and some of it spills
over the edge. Spillover adds little to the pattern except as sidelobes, since usual feeds
have small backlobes. We consider this spilled-over power as a loss (SPL):

SPL =

∫ 2π

0

∫ ψ0

ψb

|E(ψ, φ)|2 sin ψ dψ dφ

∫ 2π

0

∫ π

0
|E(ψ, φ)|2 sin ψ dψ dφ

(8-8)

This expression for spillover includes the scattered portion of the central blockage
efficiency, but not the loss of potential aperture. We include the remainder in the
directivity calculation.

We have ignored the cross-polarized power radiated by the source. We define cross-
polarization efficiency (XOL) as

XOL =

∫ 2π

0

∫ π

0
|EC(ψ, φ)|2 sin ψ dψ dφ∫ 2π

0

∫ π

0
(|EC(ψ, φ)|2 + |EX(ψ, φ)|2) sin ψ dψ dφ

(8-9)

where Ec is the co-polarized field and Ex is the cross-polarized field. These polar-
izations correspond to Ludwig’s [10] third definition of cross-polarization. A Huygens
source produces straight reflector surface currents when projected to the aperture plane.
Including the cross-polarization efficiency gives us the true average radiation intensity
as in Eq. (1-17).

If we express the efficiencies as ratios, the directivity will be found from

directivity =
(π

λ

)2
(D2

r − D2
b)SPL · ATL · PEL · XOL (ratio) (8-10)

where Dr is the reflector diameter and Db is the diameter of the central block-
age. Equation (8-10) includes the nonscattered blockage loss of potential aperture.
Equation (8-10) can be expressed in terms of decibel ratios:

directivity = 10 log

[(π

λ

)2
(D2

r − D2
b)

]
+ SPL(dB) + ATL(dB)

+ PEL(dB) + XOL(dB) (8-11)
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Of course, all the decibel ratios of the efficiencies will be negative and subtract from
the directivity calculated from the area.

When measuring an actual feed, we can ignore the cross-polarized power. We mea-
sure the efficiency as the difference between directivity and gain. Actual directivity
includes the co-polarizations and cross-polarizations in the average radiation intensity.
If we ignore the cross-polarization, the measured efficiency decreases by the cross-
polarization loss because the measured and true directivity differ by that loss. We must
measure the cross-polarization pattern distribution of the feed if we want to calculate
the cross-polarized secondary (reflector) pattern. When the cross-polarization pattern is
not required, we save time without loss of accuracy by measuring only the co-polarized
feed pattern.

Equations (8-8) and (8-9) are by no means unique. We could include the cross-
polarized power in the spillover calculation [Eq. (8-8)] and limit the integration limits
in Eq. (8-9) to the reflector. A set of efficiency relations is correct when the equations
account for all the power radiated by the feed. When we use calculated feed patterns, we
must determine cross-polarization efficiency, since we can only estimate the efficiency
due to material losses. The cross-polarization efficiency cannot be included as it is in
measurements, and the division of cross-polarized power between Eqs. (8-8) and (8-9)
is arbitrary.

8-3 APPROXIMATE SPILLOVER AND AMPLITUDE TAPER TRADE-OFFS

We use the approximate pattern cos2N(ψ/2) for a feed pattern to establish trends.
Of course, if the actual feed pattern distribution is available, we should use Eqs. (8-
6) to (8-9). We obtain closed-form expressions when we substitute this pattern into
Eqs. (8-6) and (8-8). Ignoring any central blockage, we get

spillover efficiency = 1 − u2(N+1) (8-12)

amplitude taper efficiency = 4(N + 1)(1 − uN)2

N2[1 − u2(N+1)]
cot2

ψ0

2
(8-13)

where u = cos(ψ0/2). We combine Eqs. (8-12) and (8-13) and plot their combination
to find the beamwidth for minimum loss. In Figure 8-2 the loss versus the 10-dB
beamwidth for various f/D values is plotted. At narrow beamwidths little feed power
spills over the reflector edge, but the reflector is underilluminated. Increasing the
beamwidth improves the illumination but increases the spillover. The efficiency peaks
when the feed 10-dB beamwidth is approximately the subtended angle of the reflector.
Figure 8-2 shows a broad peak for any given f/D. Small changes in the beamwidth
near the peak have no practical effect on the reflector’s gain. Scale 8-3 relates the
average illumination loss reduction given the feed pattern level in the direction of the
reflector rim for typical antennas.

Example Estimate the amplitude taper loss for a reflector with f/D = 0.5 whose
feed has a 10-dB edge taper.

Compare the loss with that of the circular Gaussian and the Hansen single-parameter
distributions: ψ0 = 2 tan−1 1

2 = 53.13◦. The 10-dB beamwidth of the feed is then
106.26◦. We modify Eq. (1-20) to compute the exponent N of the cos2N(ψ/2) feed
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SCALE 8-3 Mean illumination loss change of a reflector given the feed pattern level in the
rim direction.

pattern approximation,

N = log 0.1

2 log cos(106.26◦/4)
= 10.32

From Eq. (8-13), u = cos(53.13◦
/2) = 0.894:

ATL(dB) = 4(1 − 0.89410.32)2(11.32)

10.322(1 − 0.89422.64)
cot2(53.13◦

/2) = 0.864

= 10 log 0.864 = −0.63 dB

The extra distance from the feed to the reflector edge compared with the center distance
adds 1.94 dB and increases the aperture amplitude taper to 11.94 dB. We interpolate
Table 4-29 for the circular Gaussian distribution and Table 4-30 for the Hansen single-
parameter distribution to find the following data:

Gaussian Hansen
ATL(dB) = −0.62 dB ATL(dB) = −0.57 dB
Sidelobe level = 26.3 dB Sidelobe level = 24.7 dB
Beamwidth factor = 1.142 Beamwidth factor = 1.136
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We multiply Eq. (4-83) by the beamwidth factor to estimate the reflector beamwidth:

HPBW = 67.3◦ λ

D
and HPBW = 67◦ λ

D

These compare well with the approximation, HPBW = 70◦
λ/D for a parabolic reflec-

tor. An integration of the aperture distribution for the far-field pattern gives the fol-
lowing results:

HPBW = 67.46◦ λ

D
sidelobe level = 27 dB

8-4 PHASE ERROR LOSSES AND AXIAL DEFOCUSING

All rays starting at the reflector focus travel the same distance through reflection to the
aperture plane. The aperture plane is any convenient plane in front of the dish whose
normal is the axis of the reflector. If we could build a feed with a unique phase center
and place it at the focus of a perfect paraboloidal reflector, we would eliminate phase
error loss in the aperture plane because it would have a constant phase. The feed, the
positioning of the feed, and the reflector surface all contribute to the phase error loss.

We discussed techniques for obtaining unique phase centers in the various planes
for horns. Unlike smooth-wall horns, corrugated horns can have equal phase centers
in all planes through the axis, but even their position will wander with changes in
frequency. We measure the feed pattern distribution (amplitude and phase) to predict
the contribution of the feed to the overall efficiency. From those measurements we
define the practical phase center as the point on the feed leading to the minimum
phase error loss when placed at the focus. The random and systematic phase error
contributions can be measured directly on the feed and calculated numerically using
Eq. (8-7).

The feed phase center cannot always be placed at the focus. The phase-center
location wanders with changes in frequency, and in any wideband application we
expect axial defocusing. For example, the location of the phase center of a log-periodic
antenna moves toward the apex as frequency increases. Figure 8-3 is a plot of the
phase error loss due to axial defocusing. Each feed has its 10-dB beamwidth equal
to the reflector subtended angle. Axial defocusing affects deep dishes (lower f/D)
more than shallow dishes. We can estimate the axial defocusing phase error loss by
approximating the distribution with a quadratic aperture phase distribution. Given z as
the axial defocusing, the maximum phase deviation in cycles is

S = z

λ

[
1 − cos

(
2 tan−1 1

4f/D

)]
(8-14)

We combine this with the quadratic phase error loss of the circular Gaussian distribution
to estimate the loss. With z = λ we obtain a scaling factor for S (Scale 8-4) given z

from Eq. (8-14). The scaling factor decreases with increasing f/D.

Example Estimate the phase error loss for z = 2λ when f/D = 0.6 and the feed
10-dB beamwidth equals the reflector subtended angle.
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SCALE 8-4 Quadratic phase factor S for axial defocusing of a paraboloidal reflector.

From Scale 8-4, S = 0.30(2) = 0.60. We use Eq. (8-3) to compute the edge taper:

ψ0 = 2 tan−1 1

2.4
= 45.2◦

edge taper = 20 log cos2 ψ0

2
= −1.4 dB

An equivalent truncated Gaussian aperture distribution tapers to

10 dB + 1.4 dB = 11.4 dB ρ = 11.4

8.69
= 1.31

We use Eq. (4-118) to calculate phase error efficiency of the truncated Gaussian distri-
bution: PEL = 0.305 or PEL (dB) = −5.2 dB. This matches the value from Figure 8-3
found by integration of the actual distribution. The optimum feed beamwidth pro-
duces an average aperture edge taper of 11.8 dB. Scale 8-5 evaluates Eq. (4-118) for
this taper.

We detect axial defocusing by looking at the patterns of the reflector. Axial defocus-
ing fills-in nulls between sidelobes. We adjust the feed location to maximize the null
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Truncated (-11.8 dB) Circular Gaussian Distribution PEL, dB

Quadratic Phase Factor, S

SCALE 8-5 Truncated circular Gaussian distribution (−11.8 dB taper) phase error loss
given S.

depth, but antenna range errors and receiver sensitivity limit our ability to eliminate
this defocusing.

8-5 ASTIGMATISM [11]

Both the feed and the reflector can have astigmatism: unequal phase centers in different
planes. We measure the feed by itself to discover its astigmatism. When the feed is
mounted in the reflector, we detect astigmatism by the depth of nulls in the various pat-
tern planes. A series of measurements can separate the feed and reflector astigmatism,
but the feed must be able to move along the reflector axis and to rotate by 90◦ during
the measurements. Move the feed along the axis to find the locations that give maxi-
mum nulls. The extrema of the reflector focuses may not occur in the E- and H -planes
and will require a search in the other planes. At this point we cannot separate the feed
astigmatism from the reflector astigmatism. We rotate the feed and repeat the measure-
ments. The feed phase center locations shift, and the reflector focuses remain fixed.
Simple manipulation of the data from the two measurements separates the two sources
of astigmatism. The reflector can be shimmed to remove its astigmatism, or the feed
phase centers can be matched to the reflector focuses. Figure 8-4 shows the magnitude
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FIGURE 8-4 Paraboloidal reflector phase error loss due to feed astigmatism.
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of phase error losses due to feed astigmatism. Astigmatism loss is not as severe as axial
defocusing because in two planes the feed phase center is at the reflector focus. As is
true of axial defocusing loss, deep dishes are affected more than shallow reflectors.

8-6 FEED SCANNING

Moving the phase center of the feed off axis laterally scans the reflector beam to a
limited extent without severe pattern problems. Figure 8-5 shows the k-space pattern
effects of feed scanning. The sidelobes show the effects of coma (cubic phase errors)
where the sidelobes on the boresight side grow and the sidelobes on the other side
decrease. We call these coma lobes, although no new lobes are generated. In fact, we
see one lobe disappearing as a vestigial lobe with increased scan (Figure 8-5). Suppose
that the feed is offset from the axis by a distance d . We measure the offset angle ψS

from the axis to a line from the feed to the reflector vertex: d = f tan ψS . We ignore
the slight amplitude distribution change due to the small lateral offset. Referred to
the focus, the movement produces a phase factor in the feed pattern: −kd sin ψ cos φc

when the feed is moved along the negative x-axis.
Equation (8-7) predicts only the boresight phase error loss. Like Eq. (4-3), we must

calculate the phase error efficiency at any angle to determine the loss at the pat-
tern peak:

PEL(θ, φ) =

∣∣∣∣
∫ 2π

0

∫ ψ0

0
E(ψ, φc) tan(ψ/2)ejk2f tan(ψ/2) sin θ cos(φ−φc) dψ dφc

∣∣∣∣
2

[∫ ∫
|E(ψ, φc)| tan(ψ/2) dψ dφc

]2 (8-15)

When we include the offset along φ = 0, the phase factor becomes

exp

[
jkf cos φc

(
2 tan

ψ

2
sin θ − tan ψS sin ψ

)]
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FIGURE 8-5 Feed-scanned paraboloidal reflector f/D = 0.5 and feed beamwidth = 60◦.
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For large reflectors we make the approximations ψS ≈ tan ψS and θ ≈ sin θ . The pat-
tern scale and the offset phase factor become kaθ and kaψS .

A flat plate would reflect the ray at an equal angle on the other side of the axis for
an offset feed, but a curved reflector modifies that result slightly. The offset factor in
Figure 8-5 is 8, and the beam peak is at 7. We call the ratio of the beam maximum to
offset angle the beam deviation factor (BDF) [12]:

BDF = θm

ψS

= 7

8
θm = BDF · ψS

The BDF varies from less than 1 for a concave reflector to greater than 1 for a convex
reflector. BDF equals 1 for a flat reflector. Table 8-1 lists the BDF values for various
f/D and Scale 8-6 gives the relationship. The BDF approaches 1 as f/D approaches
infinity (flat plate). The approximate expression for BDF is

BDF = (4f/D)2 + 0.36

(4f/D)2 + 1
(8-16)

Feed scanning increases the phase error loss. When normalized to beamwidths of scan,
a single loss curve can be drawn for each f/D (Figure 8-6). Scanning also raises the
sidelobes. Table 8-2 gives the approximate level of the peak coma lobe for a given
scan loss. It is almost independent of f/D.

TABLE 8-1 Feed-Scanned Paraboloidal Reflector
Beam Deviation Factor

f/D BDF f/D BDF

0.30 0.724 0.80 0.945
0.35 0.778 0.85 0.951
0.40 0.818 0.90 0.957
0.45 0.850 1.00 0.965
0.50 0.874 1.10 0.970
0.55 0.893 1.20 0.975
0.60 0.908 1.40 0.981
0.65 0.921 1.60 0.986
0.70 0.930 1.80 0.989
0.75 0.938 2.00 0.991

Beam Deviation Factor

Parabola f/D

SCALE 8-6 Feed-scanned reflector beam deviation factor given f/D.
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TABLE 8-2 Sidelobe Level of a Feed-Scanned
Paraboloidal Reflector

Scanning
Loss (dB)

Sidelobe
Level (dB)

Scanning
Loss (dB)

Sidelobe
Level (dB)

0.50 14.1 1.75 10.1
0.75 12.9 2.0 9.7
1.00 11.9 2.5 9.0
1.25 11.2 3.0 8.5
1.50 10.6

Example A reflector with a 50λ diameter is feed-scanned to 6◦. Compute the offset
distance and scanning loss when f/D = 0.6.

Use the approximation HPBW = 70◦
λ/D = 1.4◦. The reflector is scanned 6/1.4 =

4.3 beamwidths:

scanning loss (Figure 8-6) = 0.4 dB

sidelobe level (Table 8-2) = 14.6 dB

The angle between the axis and the feed point to vertex must be greater than the scan
angle, since the reflector is concave:

ψS = θS

BDF
= 6◦

0.908
= 6.61◦

(Table 8-1)

The offset distance is f tan 6.61◦ = 0.6(50λ) tan 6.61◦ = 3.48λ.
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The scalar analysis of this section gives only approximate results. Large feed scan-
ning produces higher-order aberrations other than coma [13–15]. The optimum gain
point moves off the focal plane but fails to follow the curve predicted from optics
for reflectors extremely large in wavelengths [14]. The reflector f /D and illumina-
tion taper determine the maximum gain contour for feed-scanning a reflector. Vector
analysis improves the match between calculated and measured results [15].

8-7 RANDOM PHASE ERRORS

Reflector anomalies reduce the gain predicted from the feed analysis. We must specify
reasonable manufacturing tolerances for the frequency of operation. It would appear
that gain can be increased without bound by increasing the reflector diameter, but
the tolerance problems of large reflectors limit the maximum gain. We consider only
surface anomalies so small that on average the reflector retains its basic shape. The
surface imperfections change the optical path length from the feed to the reflector
aperture plane by δ(r, φ), which gives us

PEL =

∣∣∣∣
∫ 2π

0

∫ a

0
E(r, φ)ejδ(r,φ)r dr dφ

∣∣∣∣
2

[∫ 2π

0

∫ a

0
|E(r, φ)|r dr dφ

]2 (8-17)

Cheng [16] bounds the phase error loss by using a limit on the integrals. Given a peak
phase error of m (radians), the change in gain is bounded:

G

G0
≥

(
1 − m2

2

)2

(8-18)

This gain loss estimate is too conservative, but it is useful as an upper bound.
Ruze [17] improved the random surface error loss estimate by using a Gaussian

distributed error correlated over regions. Dents or segments making up the reflector
are correlated with the errors over a nearby region. The error at a point depends on the
location of nearby points in the correlation region. The phase error efficiency becomes
an infinite series:

PEL = exp(−δ
2
) + 1

η

(
2C

D

)2

exp(−δ
2
)

∞∑
n=1

(δ
2
)n

n · n!
(8-19)

where C is the correlation distance, D the diameter, and η the aperture efficiency
(ATL). δ

2
is the mean-square phase deviation, given by

δ
2 =

∫ 2π

0

∫ a

0
|E(r, φ)|δ2(r, φ)r dr dφ∫ 2π

0

∫ a

0
|E(r, φ)|r dr dφ

(8-20)
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If we include the correlation distance, PEL decreases. The infinite series [Eq. (8-19)]
converges rapidly. When the correlation distance is small compared with the diameter,
the phase error efficiency becomes

PEL = exp

(−4πε0

λ

)2

= exp(−δ
2
) (8-21)

where ε0 is the effective reflector tolerance. We use 4π instead of 2π because the wave
travels to and from the reflector and the phase distance is twice the reflector tolerance.
From Eq. (8-20) we derive the effective RMS tolerance:

ε2
o =

∫ 2π

0

∫ a

0
|E(r, φ)|ε2(r, φ)r dr dφ∫ 2π

0

∫ a

0
|E(r, φ)|r dr dφ

(8-22)

Ruze gives the distance ε in terms of the z-axis deviation 	z and the surface normal

ε = 	z

1 + (r/2f )2
ε = 	n√

1 + (r/2f )2
(8-23)

We evaluate the constants in Eq. (8-21) and convert to a decibel ratio:

PEL(dB) = −685.8
(ε0

λ

)2
(8-24)

Example Compute the required reflector tolerance at 30 GHz to limit the RMS surface
tolerance phase error loss to 1 dB.

Using Eq. (8-24), we get

ε0

λ
=

√
1

685.8
= 0.038

At 30 GHz, λ = 1 cm and ε0 = 0.38 mm. We can also use Eq. (8-18), which gives the
upper bound on surface error loss:

m = 4πε0

λ
=

√√√√2

(
1 −

√
G

G0

)
= 0.466 at 1 dB

ε0 = 0.037λ or ε0 = 0.37 mm at 30 GHz. Both methods give about the same answer
in this case.

Zarghamee [18] extended tolerance theory to include the effects of the surface error
distribution. Some antennas have better support and construction in some areas and
are more accurate in those areas. This improves the reflector performance. Zarghamee
defined a second variation of surface deviations by

η4
0 =

∫ 2π

0

∫ a

0
|E(r, φ)|[ε2(r, φ) − ε2

0]r dr dφ∫ 2π

0

∫ a

0
|E(r, φ)|r dr dφ
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The phase error efficiency becomes

PEL = exp

(−4πε0

λ

)2

exp
(πη0

λ

)4

The correlation of random errors increases the probable sidelobe level. The sidelobe
level increases with the size of the correlation interval and decreases for larger aperture
diameters. Increasing the amplitude taper of the distribution makes the aperture pattern
more susceptible to random-error sidelobes, since increasing the taper is somewhat
equivalent to decreasing the aperture diameter. Blockage and feed diffraction also limit
the achievable sidelobe level in a reflector. A simple feed cannot carefully control the
aperture distribution necessary for low sidelobes. Hansen [19, p. 74] discusses sidelobe
limitations caused by random phase error in some detail.

Paraboloidal reflectors can be made in an umbrella shape where the ribs are parabolic
and wire mesh is stretched between them [20]. The gore shape causes phase error loss
and their periodicity produces extra sidelobes. Given the number of gores NG and the
focal length of the ribs fr , the surface is given by

f (ψ) = fr

cos2(π/NG)

cos2 ψ

where ψ is measured from the centerline between the ribs. We calculate the average
focal length by integrating across the gore half-angle π/NG and dividing by π/NG:

fav = fr

sin(2π/NG)

2π/NG

(8-25)

We use Eq. (8-25) to calculate the rib focal length given the average focal length of
the reflector.

The peak sidelobe due to the periodic gores occurs at an angle θp found from the
number of gores and the diameter D:

θp = sin−1

(
1.2NG

λ

πD

)
(8-26)

Given the average f /D of the reflector, we determine the peak-to-peak phase deviation
across the gore by the approximate equation

	 = 800 − 500(f/D − 0.4)

N2
G

D

λ
(8-27)

Scale 8-7 lists the phase error loss for a feed edge taper of 10 dB. Increasing the feed
taper decreases the phase error loss due to gore construction. When we use a 20-dB
feed taper, the values given by Scale 8-7 reduce by 0.16 dB for 0.5 dB of loss, 0.31 dB
for 1 dB, and 0.45 dB for 1.5 dB. The gain losses due to underillumination by the 20-dB
edge taper feed exceed these values.

Example Given a reflector with D/λ = 35 with a limit of 0.5 dB loss due to gore
construction for f/D = 0.34, we discover that the allowable peak-to-peak phase error
from Scale 8-7 is 124◦. Using Eq. (8-27), we solve for the number of ribs:

N2
G = 830

124
35 = 234 or NG = 16
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Phase Error Loss, dB

Peak-to-Peak Phase Error due to Gores (degrees)

SCALE 8-7 Phase error loss due to gore construction of a paraboloidal reflector.

We use Eq. (8-26) to compute the angle of the peak gore sidelobe, θp = 10.0◦.
Equation (8-27) shows that the phase deviation 	 is proportional to frequency. If
the frequency increases by 1.5 times, then by Eq. (8-27), 124◦ increases to 186◦ and
we read 1.1 dB of loss from Scale 8-7 while the peak gore sidelobe becomes θp = 6.7◦.

8-8 FOCAL PLANE FIELDS

We improve the efficiency and pattern response of a reflector if we match the feed fields
to the focal plane fields. GO assumes a point focus, but an actual focus is extended. We
determine the reflector and feed efficiency from the field match over the focal plane.
When the reflector f /D value is large, we use the diffraction pattern of a circular
aperture, the Airy function:

E = J1(krψ0)

krψ0
(8-28)

where ψ0 is the half subtended angle of the reflector (radians), r the radial coordinate,
k the propagation constant, and J1 the Bessel function.

In a more exact method the currents induced on the reflector (2n × H) and the mag-
netic vector potential are used to calculate the focal plane fields. As f /D decreases,
the currents on the reflector interact and modify their distribution, but it is a secondary
effect [21]. Iterative physical optics analysis (section 2-4) can find these current mod-
ifications. We calculate the reflector efficiency from the field match of the focal plane
fields (E1, H1) and the fields of the feed (E2, H2) using Robieux’s theorem [4]:

η =

∣∣∣∣∣∣
∫∫
S

(E1 × H2 − E2 × H1) · dS

∣∣∣∣∣∣
2

4P1P2
(8-29)

where P1 and P2 are the input powers to produce the fields and η is the efficiency.
Equation (8-29) is the magnitude squared of Eq. (2-35), the reactance equation equiv-
alence applied to Eq. (1-55) for the coupling between two antennas S21. The finite size
of the feed causes spillover. The extent of amplitude and phase mismatch between
the two fields determines the efficiency. By illuminating the reflector with a cross-
polarized wave, we compute the cross-polarization radiation level through its field
match [Eq. (8-29)].

We maximize efficiency [Eq. (8-29)] by conjugate-matching the focal plane fields
with the feed fields. Corrugated horns can be designed by expanding the focal plane
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fields in axial hybrid modes of the horn and mode matching [22,23]. Wood [4] expands
the reflector and feed fields in spherical harmonics and matches them at a boundary.
Both sets of fields can be approximated very well by just a few terms, and this method
can handle dual-reflector and offset reflector systems as well as axisymmetric prime
focus reflectors.

We can feed the reflector with an array to match the focal plane fields [24–26].
The array samples the focal plane field and conjugate-matches it so that the powers
sum in phase. The array can form multiple beams and also correct reflector aberra-
tions [24]. By using the multiple feeds of the array, coma can be reduced for scanned
beams and efficiency improved. However, quantization of the array element loca-
tions and excitations, amplitude, and phase reduces efficiency and raises the sidelobe
level [27].

We apply Eq. (1-55) for the coupling between two antennas to determine the feed-
ing coefficients of an array feed for a dish. Assume an incident field distribution on
the reflector that includes the incident wave direction and the desired aperture distri-
bution for the reflector. Using physical optics, we calculate the currents induced on
the reflector surface. If the reflector has significant curvature so that the patches face
each other, iterative PO can be used to account for their interaction. We calculate the
fields radiated by each feed on the reflector surface and apply Eq. (1-55) to calcu-
late coupling. This method applies the feed pattern to the calculation instead of the
point matching used in a focal plane solution. Similar to scanning of an array, we
use conjugative matching for the feed array elements to produce the beam desired.
This method can determine array feed element amplitude and phase for any composite
reflector aperture distribution that includes aperture distribution to control sidelobes or
include multiple beams. The method reduces coma to the minimum possible with a
given array.

Analysis finds the array distribution desired, but we do not achieve this distribution
merely by designing the feed network to produce these amplitudes and phases because
the feed elements have significant mutual coupling. We need to include the effect of
the paraboloidal reflector when computing mutual coupling because the field radiated
by one feed induces currents on the reflector that couple to other feed elements. Below
we show that the effect of the reflector diminishes as the reflector diameter increases.
If the mutual coupling is significant whether direct or due to the reflector, we need
to apply the corrections given in Section 3-11 to adjust the feeding coefficients of
the array.

8-9 FEED MISMATCH DUE TO THE REFLECTOR

The feed receives some of its transmitted power because it reflects from the parabola
and returns as a mismatch at the feed terminals. We calculate the reflected field at the
feed by using surface currents and the magnetic vector potential. The only significant
contribution comes from areas near where the normal of the reflector points at the feed.
Around every other point, the phase of the reflection varies rapidly and cancels and
we need to consider only points of stationary phase. We calculate the reflection from
each point of stationary phase from [2]


 = −j
Gf (ρ0)

4kρ0

√
ρ1ρ2

(ρ1 + ρ0)(ρ2 + ρ0)
e−j2kρ0 (8-30)



398 REFLECTOR ANTENNAS

where 
 is the reflection coefficient, ρ0 the distance to the stationary phase point,
Gf (ρ0) the feed gain in the direction of ρ0, and ρ1 and ρ2 the radiuses of curvature of
the reflector at ρ0. The vertex is the only point of stationary phase on a paraboloidal
reflector: ρ1 = ρ2 = −2f and ρ0 = f . Equation (8-30) reduces to


 = −j
Gf (0)

2kf
e−j2kf (8-31)

Example Suppose that we have a reflector with f/D = 0.40. Compute reflector mis-
match for a source with its 10-dB beamwidth equal to the reflector subtended angle.

Half subtended angle [Eq. (8-2)] ψ0 = 2 tan(1/1.6) = 64◦. By using the feed
approximation cos2N (θ /2), we have

N = log 0.1

2 log cos(64◦/2)
= 6.98

The feed gain at the boresight is N + 1 [Eq. (1-20c)]:

[Eq. (8-31)] |
| = 8λ

4πf
= 1.59

λ

D

Increasing the reflector diameter in wavelengths decreases the reaction of the reflec-
tor on the feed. For example, given a 3-m reflector at 4 GHz, we calculate reflector
reflection coefficient as 0.04, or VSWR = 1.08.

We can express the reflector reflection of a paraboloidal reflector as

|
| = V
λ

D
(8-32)

and calculate Scale 8-8 of V versus f /D for feeds with 10-dB beamwidths equal to the
reflector subtended angle. Higher reflector f /D values produce larger feed reflections,
since the feed gain increases faster than the reduced area of the reflector seen from
the feed.

Narrowband corrections to these reflections can be designed by using a vertex plate
(Silver [2]) or by designing sets of concentric ring ridges in the reflector (Wood [4]).
The rings can match the feed at more than one frequency. By any of these methods,
the free-space mismatch of the feed could be corrected for, but, of course, the feed
itself can be mismatched to compensate for the reflector reaction.

Feed Reflection Coefficient Factor, V

Parabola f/D

SCALE 8-8 Feed reflection scale factor V given f/D.
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Front/Back Increase K Factor, dB

Parabola f/D

SCALE 8-9 Paraboloidal reflector front-to-back ratio increase K given f/D.

8-10 FRONT-TO-BACK RATIO

Figure 2-9 illustrates the pattern response of a paraboloidal reflector and shows that
the pattern behind the reflector peaks along the axis. The diffractions from all points
along the rim add in-phase along the axis and produce a pattern peak. We can reduce
this rim diffraction by using a rolled, serrated, or castellated edge to reduce diffraction.
An absorber-lined cylindrical shroud extending out to enclose the feed will greatly
reduce back radiation, including spillover, and allows the close spacing of terrestrial
microwave antennas with reduced crosstalk.

For a normal truncated circular reflector rim, the following equation estimates the
front-to-back ratio given the reflector gain G, the feed taper T , and feed gain Gf [28]:

F/B = G + T + K − Gf dB (8-33)

The constant K , given by Scale 8-9, is related to f /D:

K = 10 log

[
1 + 1

(4f/D)2

]
(8-34)

Example Estimate F/B for a reflector with f/D = 0.34 and 40 dB of gain.
We read the feed subtended angle from Scale 8-1 to be 143◦. A 10-dB edge taper

feed has a gain of about 8.1, found from Scale 1-2. Using Eq. (8-33), we estimate
F/B = 40 + 10 + 1.9 − 8.1 = 43.8 dB.

8-11 OFFSET-FED REFLECTOR

Moving the feed out of the aperture eliminates some of the problems with axisymmet-
rical reflectors. Blockage losses and diffraction-caused sidelobes and cross-polarization
disappear. We can increase the size of the feed structure and include more if not all of
the receiver with the feed. For example, the reflector may be deployed from a satellite,
with the feed mounted on the main satellite body.

Figure 8-7 shows the offset-fed reflector geometry. We form the reflector out of a
piece of a larger paraboloid. Every piece of the paraboloidal reflector converts spherical
waves from the focus into a plane wave moving parallel with its axis. We point the
feed toward the center of the reflector to reduce the spillover, but we still locate the
feed phase center at the focus of the reflector. The aperture plane projects to a circle,
although the rim shape is an ellipse. ψ0 is the angle from the axis of the parabola to



400 REFLECTOR ANTENNAS

ru

rL

D

D ′

yc

yf
ye

yo
yu

ye
H

ƒ

FIGURE 8-7 Parameters of an offset-fed parabolic reflector.

the center of the cone of the reflector, and the reflector subtends an angle 2ψe about
this centerline. Given the aperture plane diameter D and the height H of the center,
we find the lower rim offset D′ = H − D/2. From these parameters we determine the
angle of the center of the rim cone from the z-axis:

ψ0 = tan−1 16fH

16f 2 + D2 − 4H 2
= tan−1 2f (D + 2D′)

4f 2 − D′(D + D′)
(8-35)

The half cone angle defines the rim:

ψe = tan−1 8fD

16f 2 + 4H 2 − D2
= tan−1 2f D

4f 2 + D′(D + D′)
(8-36)

We direct the feed an angle ψf from the z-axis to the center of the projected diameter
different from the angle ψ0 of the rim cone axis:

ψf = 2 tan−1 H

2f
= 2 tan−1 2D′ + D

4f
(8-37)

The rim lies in a plane at an angle ψc with respect to the z-axis:

ψc = tan−1 2f

H
= tan−1 4f

2D′ + D
(8-38)
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The rim is an ellipse in this plane with major and minor axes given by

ae = D

2 sin ψc

and be = D

2
(8-39)

The offset angle modifies the f /D of the reflector:

f

D
= cos ψe + cos ψ0

4 sin ψe

(8-40)

We calculate the rim offset from the cone angles:

D′ = 2f tan
ψ0 − ψe

2
(8-41)

Manufacturing an offset reflector requires specification of the reflector when laid on
its rim in the x –y plane so that the mold can be machined. We center the major axis
of the reflector elliptical rim L = 2ae along the x-axis and the minor axis D along the
y-axis. In this position the reflector depth d(x, y) is found from the expression [29]

d(x, y) = 2f L3

D(L2 − D2)



√

1 + xD2
√

L2 − D2

f L3
+ D2(L2 − D2)

4f 2L4

(
D2

4
− y2

)

− 1 − xD2
√

L2 − D2

2f L3

]
(8-42)

The deepest point of the reflector dmax occurs along the x-axis at xb:

xb = −D2
√

L2 − D2

16f L
where dmax = D3

16f L
(8-43)

After measuring D, L, and dmax, we determine the offset focal length from the equation

f = D3

16Ldmax
(8-44)

We calculate the center height of the offset from

H = 2f

√
L2

D2
− 1 (8-45)

We calculate the reflector half cone angle ψe and the cone axis angle from the z-axis
and ψ0 from the focal length f , ellipse major diameter L, and minor diameter D:

[
ψe

ψ0

]
= tan−1



√

L2

D2
− 1 + D

4f


 ∓ tan−1



√

L2

D2
− 1 − D

4f


 (8-46)
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To align the reflector, we use the angle of the reflector rim major axis ψc = sin−1(D/L)

with respect to the z-axis and the radial distances from the lower and upper edges of
the reflector in the offset plane, since the center offset H is not a distinguishable point:

[
ρU

ρL

]
= fL2

D2
+ D2

16f
± D

(
L2

D2
− 1

)
(8-47)

We analyze the offset reflector with the same tools as those used with the axisymmet-
ric reflector: aperture field, physical optics, and GTD. The asymmetry of the reflector
to feed geometry introduces anomalies. Huygens sources no longer eliminate cross-
polarization, because the source must be tilted. Symmetry prevents cross-polarization
in the plane containing the x-axis (Figure 8-8), but cross-polarization for linear polar-
ization increases in the plane containing the y-axis (symmetry plane) as f /D decreases

Diameter

2ye

2ye

y0

y0

Focal length

x

x

y

y

Focus

Diameter

Focus

(a)

(b)

Focal length

FIGURE 8-8 Offset-fed paraboloidal reflector geometry: (a) perspective; (b) orthographic
representation.
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FIGURE 8-9 Pattern of an offset-fed reflector with linearly polarized feed.
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FIGURE 8-10 Pattern of an offset-fed reflector with circularly polarized feed.

(Figure 8-9). The Condon lobes move off the diagonal planes and into the plane con-
taining the y-axis. The asymmetry along the x-axis tapers the amplitude distribution
from a symmetrical feed, since the spherical wave travels farther to the outer edge
of the reflector than to the lower edge. The offset-fed reflector geometry squints cir-
cularly polarized pattern peaks in the symmetrical (y-axis) plane without generating
cross-polarization (Figure 8-10). An approximate formula for the squint is [9]

ψs = sin−1 λ sin ψ0

4πf
(8-48)
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where ψs is the squint angle. Opposite senses of circular polarization squint in opposite
directions and cause a problem with dual circularly polarized feed systems. In all
cases increasing the f /D or the effective f /D through a subreflector reduces these
problems. The subreflector should be kept out of the aperture of the main reflector. We
can feed-scan the offset-fed reflector by moving the feed laterally along a line that lies
perpendicular to the boresight of the feed (the line defined by ψ0). We must modify
the beam deviation factor (BDF):

BDFoffset fed = BDFcenter fed
(f/D)offset

(f/D)center fed
(8-49)

Example Given an offset-fed reflector with ψ0 = 45◦ and ψe = 40◦, compute the
beam deviation factor.

From Eq. (8-49), (
f

D

)
center fed

= cos 40◦ + 1

4 sin 40◦ = 0.687

(
f

D

)
offset fed

= cos 40◦ + cos 45◦

4 sin 40◦ = 0.573

From Table 8-1 we interpolate BDFcenter fed = 0.928, and we substitute the values into
Eq. (8-49) to calculate BDFoffset fed = 0.774. We must laterally offset the feed farther
than with a center-fed reflector to achieve the same feed scanning.

Periscope Configuration The periscope consists of an offset paraboloidal reflector
with ψ0 = 90◦ with a long focal length fed by a paraboloidal reflector located at
the focus. This eliminates the need to run a transmission line up a tower. Periscope
antennas can be made using a flat-plate reflector, but the long focal length means that
the parabolic splash plate antenna has only a small deviation from flat. The flat plate
is limited to a gain of only 6 dB more than the feed reflector for optimum conditions
with a large plate. The gain of the offset paraboloidal reflector is determined by the
diameter of the splash plate, not the feed reflector. Because the splash plate is in the
near field of the feeding reflector, gain is reduced by phase error, whereas spillover
and amplitude taper losses also contribute to gain loss.

Design starts with determining the splash reflector center height H required to clear
obstacles along the transmission path. We calculate the splash reflector aperture diam-
eter from the required gain and beamwidth. The periscope configuration contributes to
gain loss, but with proper selection of the feed paraboloidal reflector these losses are
minor and can be compensated for by using a larger splash reflector. Having the splash
reflector directly overhead corresponds to a parent reflector design with f/Dp = 0.25
and f = H /2. An analysis using a radial parabolic aperture distribution in the feed
reflector determined that the optimum feed reflector diameter is found from the ratio
of height to projected splash reflector aperture diameter Ds [30]:

Df = 2λH

Ds

= αλH

Ds

or α = DsDf

λH
= DsDf F

Hc
(8-50)

Whereas α = 2 is the optimum dimensions at a particular frequency, we account for
shift from the optimum with this factor. The parameter α is the frequency response
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factor for frequency F and speed of light c. The illumination efficiency is the product
of the feed reflector illumination efficiency and the periscope efficiency factor ηp:

ηp = 4
[
1 − (1 − K)J0(m) − K(2/m)J1(m)

]
m2(1 − K/2)2

(8-51)

J0 and J1 are Bessel functions, m = απ/2, and K = 1 − 10−[ET(dB)/20] for the feed
reflector edge illumination taper ET(dB). Table 8-3 lists the added illumination loss
of a periscope, given geometry using α in Eq. (8-50) for a 12-dB edge taper in a
feeding reflector.

Example A periscope antenna system placed a 3-m projected aperture splash reflector
30 m above the feed reflector to operate at 12 GHz (λ = 0.05 m). Using Eq. (8-50), we
calculate the feed reflector diameter to be 0.5 m for α = 2. If we assume that the feed
reflector has an efficiency of 60% (−2.22 dB), the efficiency of the splash reflector will
be −2.6 dB:

gain (dB) = 20 log
πDs

λ
− 2.6 = 20 log

3π

0.05
− 2.6 = 42.9

The focal length f of the splash reflector is H/2 = 15 m. Since the angle of the splash
reflector rim is 45◦, L = Ds/ sin(45◦

) = 4.24 m. We determine the maximum depth of
the reflector by using Eq. (8-43) to be 2.65 cm located 2.65 cm off center. The splash
reflector increased the gain relative to the feed reflector by 7.4 dB.

8-12 REFLECTIONS FROM CONIC SECTIONS

We use reflectors made from conic sections other than the parabola as subreflectors.
The ellipse and hyperbola rotated about their axes to form solid figures that reflect
incident spherical waves into spherical waves with different caustics (focal points).
Reflectors formed by moving the figure along a line change the caustics of cylindrical
waves. We consider only spherical waves, but we need only convert to cylindrical
waves for cylindrical reflectors.

All conic-section reflectors convert spherical waves from one focus into spherical
waves directed toward the other focus. The ellipse has its two focuses located within the

TABLE 8-3 Added Illumination Loss of a
Periscope, Given Geometry Using α in Eq. (8-50) for
12-dB Edge Taper in a Feeding Reflector (dB)

α ηp α ηp

1.0 3.17 2.2 0.45
1.2 2.06 2.4 0.68
1.4 1.28 2.6 1.04
1.6 0.77 2.8 1.52
1.8 0.48 3.0 2.11
2.0 0.38 3.2 2.79

3.4 3.53
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figure. As we let one focus approach infinity, the ellipse transforms into a parabola. If
the focus is pushed through infinity to the negative axis, the figure becomes a hyperbola
located between the two focuses. Figure 8-11 shows the ray tracing for axisymmetrical
conic section reflectors. A spherical source at one focus is reflected to the second focus
by the reflector, although it is virtual (not actually reached) in some cases.

We describe all conic sections with the same polar equation:

ρ = eP

1 − e cos θ
(8-52)

where P is the distance between the origin, the focus, to a line called the directrix
(Figure 8-12). The eccentricity e is the ratio of the distance from the origin to a point
on the curve to the distance from the same point to the directrix: r1 = er2. In an
ellipse, e < 1; in a parabola, e = 1; and in a hyperbola, e > 1. The distance between
the focuses is

2c = 2Pe2

1 − e2
(8-53)

F1 F2
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Focus

Focus Focus
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FIGURE 8-11 Reflections from conic-section reflectors.
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FIGURE 8-12 Conic-section geometry.

A hyperbola with its axis containing the two focuses along the z-axis, located at ±c,
intersects the z-axis at ±a and satisfies the equation

z2

a2
− r2

b2
= 1 where b2 = c2 − a2 and e = c

a
> 1 (8-54)

When we take the portion of the hyperbola along the +z-axis that intersects the axis
at +a, we define the angles from the two focuses from the line between them because
we place the feed at the left focus and locate a parabola focus at the right hyperbola
focus. The left angle θ is the feed angle, and the right angle ψ is the parabola angle
in a dual-reflector antenna. Given a point on the hyperbola, the distance from the left
focus is ρ1 and the distance from the right focus is ρ2:

ρ1 = a(e2 − 1)

e cos θ − 1
= b2

e cos θ − 1
and ρ2 = a(e2 − 1)

e cos ψ + 1
= b2

e cos ψ + 1
(8-55)

We determine the radial position off the axis from either polar equation:

r = ρ1 sin θ = ρ2 sin ψ (8-56)

The two angles are related by the eccentricity e:

(e + 1) tan
θ

2
= (e − 1) tan

ψ

2
(8-57)

At a given point on the hyperbola, the angle of the normal u relative to the radial line
ρ1 is half the sum of the two angles, u = (θ + ψ)/2. We need the radius of curvatures
in the principal planes to apply Eq. (2-77) for reflection from a curved surface: R1 in
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the r –z plane and R2 in the φ–z plane:

R1 = b2

a cos2 u
and R2 = b2

a cos u
(8-58)

When we offset-feed a hyperboloid, a cone determines the rim and it lies in a planar
ellipse. Similar to the offset paraboloid, we center the cone at an angle θ0 from the
axis and define the cone by the half feed edge angle θe. We compute the distances
from the focus to the upper and lower rim along the major axis of the rim ellipse:

ρL = b2

e cos(θ0 − θe) − 1
and ρU = b2

e cos(θ0 + θe) − 1

We determine the major axis diameter (2ae) of the elliptical rim from the triangle with
sides ρL and ρU and angle 2θe between them:

2ae =
√

ρ2
L + ρ2

U − 2ρLρU cos 2θe (8-59)

The minor axis diameter (2be) is given by the equation

2be =
√

(2ae)2 − (ρL − ρU)2 (8-60)

An ellipsoid can also be used as a subreflector in a dual-reflector antenna. Its equations
are similar to the hyperboloid:

z2

a2
+ r2

b2
= 1 and b2 = a2 − c2 with e = c

a
< 1 (8-61)

We locate the ellipse with its major axis along the z-axis and use the portion that
intersects the +z-axis in a dual-reflector antenna. We place a feed at the left focus and
the focal point of a paraboloid at the right ellipse focus. The radial distances to the
two focuses are given by the equations

ρ1 = a(e2 − 1)

1 − e cos θ
= b2

1 − e cos θ
and ρ2 = a(e2 − 1)

1 + e cos ψ
= b2

1 + e cos ψ
(8-62)

The ellipse uses Eqs. (8-56) and (8-57) without change, but the angle of the normal
u relative to the vector ρ1 is the average difference between the two angles, u =
(θ − ψ)/2. Using the new angle u, Eq. (8-58) gives the principal radiuses of curvature
at the point on an ellipsoid.

When we offset an ellipsoid by determining the rim as the intersection of an offset
cone with it, we use the left equation of Eq. (8-62) for the upper and lower radiuses. The
rim is a planar ellipse whose major and minor diameters are found using Eqs. (8-59)
and (8-60), a consequence of Eq. (8-52) that defines both an ellipse and a hyperbola.

8-13 DUAL-REFLECTOR ANTENNAS

We derive dual-reflector antennas, Cassegrain and Gregorian, from their optical tele-
scope counterparts. Each increases the effective focal length. In the Cassegrain dual-
reflector antenna a hyperbolic subreflector is used (Figure 8-13), and in the Gregorian
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FIGURE 8-14 Gregorian reflector antenna.

dual-reflector antenna an elliptical subreflector is used (Figure 8-14). We locate one
focus of the subreflector at the focus of the main paraboloidal reflector and place the
second focus of the subreflector at the feed antenna phase center. The subreflector
changes the curvature of waves coming from one focus into waves with their caustic
at the second subreflector focus.

The number of Cassegrain designs exceeds the number of Gregorian dual reflectors.
The Gregorian design requires a larger subreflector support because it extends farther
from the main reflector vertex. The subreflector edge curvature increases the diffraction
and reduces the control of the field incident on the main reflector, but by shaping the
subreflector of the Cassegrain, we can increase overall efficiency. The inversion of the
fields in the Gregorian reflector complicates such procedures.
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In Figures 8-13 and 8-14 the subtended angle of the main reflector is 2ψ0, but the
effective subtended angle at the feed is 2θ0. We can calculate subreflector eccentricity
from those angles.

Cassegrain Gregorian

e = sin 1
2 (ψ0 + θ0)

sin 1
2 (ψ0 − θ0)

e = sin 1
2 (ψ0 − θ0)

sin 1
2 (ψ0 + θ0)

(8-63)

We can analyze the dual-reflector system by using an equivalent parabola (Figures 8-
13 and 8-14) from the subreflector subtended angle 2θ0. We define the magnification
factor as the ratio of the effective focal length to the actual focal length of the main
reflector: M = fe/f . The subreflector eccentricity can be calculated from M:

Cassegrain Gregorian

e = M + 1

M − 1
e = M − 1

M + 1
(8-64)

Equation (8-53) gives the distance between the focuses of the subreflectors:

Cassegrain Gregorian

2c = 2Pe2

e2 − 1
2c = 2Pe2

1 − e2
(8-65)

We gain the design parameter P and with it some freedom in the placement of the
feed. We easily solve for the length P in terms of the distance between focuses 2c:

Cassegrain Gregorian

P = 2c(e2 − 1)

2e2
P = 2c(1 − e2)

2e2
(8-66)

The subreflector diameter varies with P :

Ds = 2eP sin(π − ψ0)

1 − e cos(π − ψ0)
(8-67)

We easily manipulate the geometry to find the distance from the main reflector vertex to
the feed focus Lm and from the feed focus to the subreflector Ls for both the Cassegrain
and Gregorian reflectors. Lm = f − 2c and Ls = a + c = c (1 + 1/e). Additional sets
of equations are available to obtain the geometry of the dual reflector for various sets
of specified input parameters [31].

8-13.1 Feed Blockage

The increased effective focal length requires feeds with narrow beamwidths, and we can
no longer consider the feed as a point source. It projects a shadow into the center of the
reflector (Figure 8-15) and causes a central blockage. The subreflector also blocks the
center. As we reduce the subreflector diameter to reduce blockage, the feed antenna
moves closer to the subreflector and its projected shadow increases. The optimum
occurs when the projected feed blockage diameter equals the subreflector diameter.
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FIGURE 8-15 Cassegrain central blockage.

The feed size depends on the frequency of operation and the effective f/D value,
whereas the subreflector diameter depends only on geometry. We cannot determine the
optimum independent of frequency.

Example Design a 10-m-diameter main reflector Cassegrain antenna with f/D = 0.3
and an effective f/D = 1.5 to operate at 3.9 GHz. Minimize the aperture blockage.

M = 1.5

0.3
= 5 [Eq. (8-64)] e = 5 + 1

5 − 1
= 1.5

From Eq. (8-2),

θ0 = 2 tan−1 1

4(1.5)
= 18.9◦

We feed the reflector with a circular corrugated horn with a 10-dB beamwidth equal to
the subtended angle of the subreflector. We use the methods of Section 7-3 to design the
horn. When we include the thickness of the corrugations, we calculate a horn diameter
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of 0.415 m. We determine the blockage angle α (Figure 8-15): α = tan−1(0.415/4c).
From Eq. (8-56), 2c = 3.6P . We use Eq. (8-67) with the parabola P0 and α to compute
the projected feed blockage:

P0 = 2
f

D
D = 6 m

0.415

4c
= 0.0577

P

Dfb = 2P0 sin(π − α)

1 − cos(π − α)
= 12 sin tan−1(0.0577/P0)

1 + cos tan−1(0.0577/P0)

The subreflector blockage is given by Eq. (8-67) also:

ψ0 = 2 tan−1 1

4(0.3)

Ds = 2(1.5)P0 sin(π − ψ0)

1 − 1.5 cos(π − ψ0)
= 2.322P0

We equate these blockages and solve the transcendental equation for P numerically:

P0 = 0.385 m

Ds = 0.894 m subreflector diameter

2c = 1.386 m distance between subreflector foci

We read the blockage loss from Table 4-40 using the Gaussian distribution, 0.14 dB.
A Gregorian subreflector designed by parallel steps has a diameter about 6 cm larger
and has about 0.02 dB more blockage loss.

Since the phase centers of most horns lie inside the bell along the axis, we move
the feed horn toward the subreflector and increase the shadow blockage of the feed
on the main reflector. We find the parameters of the reflector system to equalize feed
shadowing to subreflector blockage by accounting for the phase-center distance Dpc

and the diameter of the feed horn Df by solving a quadratic equation. Given the main
reflector diameter D, focal length f , and subreflector half subtended angle θ0, we solve
the quadratic equation for roots X1 [32]:

[8f D − σ tan θ0(16f 2 − D2)]X2
1 − 16Dpc tan θ0f DX1 − 16Df f 2D tan θ0 = 0

The parameter σ equals −1 for a Cassegrain dual reflector and +1 for a Gregorian
system. We use X1 to solve for c, the focal length of the conic-section subreflector:

c = X1
8f D − σ tan θ0(16f 2 − D2)

32f D tan θ0

We compute e from the magnification factor from the effective f/D [Eq. (8-64)] or
from the feed half-subtended angle θ0 and the main half-subtended angle ψ0 [Eq. (8-
63)]. The rest of the parameters of the dual-reflector antenna follow from these param-
eters. The dual-reflector antenna geometry can be found from various other specified
parameters [32].
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8-13.2 Diffraction Loss [3, 6, 9, 33]

We cannot decrease the subreflector size to reduce the central blockage without penalty.
We based the subreflector design on geometric optics (GO), which assumes large
reflectors in terms of wavelengths. We size the subreflector to have all the spillover
and none from the main reflector based on GO. The finite subreflector size produces
diffractions that cause main-reflector spillover, cross-polarized subreflector reflections,
phase error losses, and additional amplitude taper losses. We lump these excess losses
into a diffraction loss term.

Rusch [3,33] finds these losses by using vector diffraction theory of PO where he
calculates the currents on the subreflector. Similar results can be calculated by using
GTD methods [6]. The results of GTD calculations for a circularly polarized feed are
listed in Table 8-4. They are similar to the results given for a TE11-mode circular
horn feed [9]. The loss depends on the effective focal length and the diameter of the
subreflector. Increasing the feed taper lowers the diffraction loss but it has a broad flat
optimum at about a 12-dB edge taper. Equalizing the feed and subreflector blockage
may not lead to the optimum (highest-gain) design. We must trade off diffraction loss
and blockage loss.

Example Optimize the 10-m-diameter Cassegrain dual reflector for the sum of diffrac-
tion and blockage losses at 3.9 GHz.

TABLE 8-4 Diffraction Loss of a Cassegrain Antenna with a 10- and a 15-dB Feed
Edge Amplitude Taper (dB)

Subreflector
Effective f/D

Diameter (λ) 0.75 1.00 1.5 2.0 2.5 3.0

For 10 dB

6 0.67 0.81 1.02 1.43 1.85 2.28
8 0.55 0.68 0.78 1.09 1.41 1.75

10 0.48 0.58 0.64 0.89 1.14 1.40
12 0.43 0.51 0.55 0.76 0.97 1.17
14 0.39 0.46 0.48 0.67 0.84 1.01
16 0.36 0.42 0.43 0.60 0.75 0.88
20 0.31 0.37 0.36 0.50 0.62 0.72
30 0.24 0.27 0.25 0.37 0.45 0.49
40 0.20 0.24 0.20 0.30 0.36 0.39
60 0.16 0.20 0.12 0.22 0.27 0.28

100 0.11 0.15 0.09 0.17 0.20 0.22

For 15 dB

6 0.53 0.66 0.91 1.29 1.72 2.17
8 0.42 0.54 0.68 0.96 1.29 1.64

10 0.36 0.45 0.55 0.77 1.02 1.30
12 0.32 0.39 0.46 0.65 0.85 1.07
16 0.26 0.31 0.36 0.49 0.63 0.78
20 0.22 0.27 0.29 0.40 0.51 0.62
50 0.12 0.15 0.13 0.19 0.22 0.24

100 0.07 0.10 0.11 0.12 0.14 0.14
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TABLE 8-5 Subreflector Diameter Trade-off

Diameter
(λ)

Blockage
(dB)

Diffraction Loss
(dB)

Sum
(dB)

11.6 0.14 0.57 0.71
14.0 0.20 0.48 0.68
16.0 0.26 0.43 0.69
18.0 0.33 0.40 0.73

The subreflector diameter is 0.894 m, or 11.62λ. We can increase the subreflector
diameter without affecting the results of the preceding example, and the feed blockage
will be less than the subreflector blockage. We generate Table 8-5 from Tables 4-40
and 8-4. The optimum occurs at about 15λ diameter, or 1.154 m. The table shows a
broad optimum, with variations of ±λ having no practical effect. We move the feed
back to illumine the larger subreflector:

2c = 3.6P = 3.6Ds

2.322
= 1.789 m

Kildal [34] has derived a simple formula for the optimum subreflector size to min-
imize the combination of blockage and diffraction losses:

d

D
=

[
cos4(θ0/2)

(4π)2 sin ψ0
E

λ

D

]1/5

where d is the subreflector diameter, D the main-reflector diameter, and E the power
illumination at the edge of the subreflector (0.1 for 10 dB). The approximate product
of the efficiencies (blockage and diffraction) at the optimum d/D is

η ≈
{

1 − Cb

[
1 + 4

√
1 − d

D

](
d

D

)2
}2

where Cb = − ln
√

E/(1 − √
E). This analysis gives a good first estimate of the proper

subreflector size and associated loss. Beyond this rule, extending the subreflector diam-
eter by 1λ to 2λ beyond the GO design reduces the diffraction loss of a Cassegrain
significantly even though the blockage loss increases. The reduction in diffraction is
much greater than the increased blockage loss. This approach does not work with a
Gregorian reflector, because it already has a lower diffraction loss, due to the convex
subreflector.

8-13.3 Cassegrain Tolerances [9, 35]

To calculate the feed movement effects, reduce them by the magnification factor M and
use the f/D value of the main reflector. The result is the reduction of the tight location
tolerances normally required of the deep (small f/D) main reflector. For feed scanning
we must multiply the offset required for the main reflector by the magnification factor to
compute the necessary lateral offset. Translation of the hyperboloid is nearly equivalent
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TABLE 8-6 Scale Factor for RMS Surface
Deviations of a Dual Reflector

Eccentricity,
Main Reflector, f/D

e 0.25 0.30 0.35 0.40 0.45 0.50

0.5 1.259 1.183 1.136 1.105 1.083 1.068
0.6 1.203 1.143 1.107 1.082 1.066 1.053
0.7 1.148 1.105 1.078 1.060 1.048 1.039
0.8 1.096 1.068 1.051 1.039 1.031 1.026
0.9 1.046 1.033 1.024 1.019 1.015 1.012
1.0 1.000 1.000 1.000 1.000 1.000 1.000
1.2 0.919 0.941 0.956 0.965 0.972 0.977
1.5 0.821 0.868 0.900 0.921 0.937 0.948
2.0 0.707 0.780 0.830 0.865 0.891 0.910
2.5 0.632 0.718 0.780 0.824 0.857 0.882
3.0 0.580 0.674 0.743 0.794 0.832 0.860

Source: [36].

TABLE 8-7 Scale Factor for Random Normal
Surface Deviations �n of a Dual Reflector

Eccentricity,
Main Reflector f/D

e 0.25 0.30 0.35 0.40 0.45 0.50

0.5 0.872 0.898 0.918 0.933 0.944 0.953
0.6 0.834 0.868 0.894 0.914 0.929 0.940
0.7 0.796 0.839 0.871 0.895 0.913 0.928
0.8 0.759 0.811 0.849 0.877 0.899 0.915
0.9 0.725 0.784 0.828 0.860 0.885 0.904
1.0 0.693 0.759 0.808 0.844 0.872 0.893
1.2 0.637 0.715 0.772 0.815 0.847 0.872
1.5 0.569 0.660 0.727 0.778 0.816 0.846
2.0 0.490 0.592 0.671 0.730 0.777 0.812
3.0 0.402 0.512 0.600 0.670 0.725 0.768

to a movement of the virtual feed but it is reduced by the factor (M − 1)/M . Rotating
the subreflector laterally offsets the virtual feed by the factor 2cβ/(M + 1), where 2c

is the distance from the feed to the virtual feed and β is the rotation (radians). Since
all factors are small, we can add them.

The surface tolerance of the subreflector adds another phase error loss term in the
same form as the main reflector. The tolerance loss factor is less for a hyperbola than
for a parabola because the angles of incidence are higher [36]. The ellipsoid of the
Gregorian reflector has higher losses. We express the loss at each reflector as

PEL = e−A(4π	ε/λ)2
(8-68)

where 	ε is the RMS deviation to the perfect reflector surface and A is a constant
depending on the eccentricity of the reflector and the main reflector f/D. This factor
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is listed in Table 8-6. The main reflector has e = 1 (parabola). An equation matching
Eq. (8-24) is

PEL(dB) = −685.8A

(
	ε

λ

)2

(8-69)

The factor 	ε is the change in path length along a ray due to the surface devia-
tion [Eq. (8-23)]. It is easier to specify the surface deviation in the normal direction
for a subreflector. Table 8-7 gives the scale factor in terms of the normal directed
surface deviation.

8-14 FEED AND SUBREFLECTOR SUPPORT STRUT RADIATION

Feed or subreflector support struts block the aperture of a centrally fed reflector and
reduce gain. Because the passing waves induce currents on the struts that radiate, the
effect of struts can be larger than their area. Thin struts, like thin dipoles, have a
significant effective area as an antenna. The radiation from struts generates sidelobes
and cross-polarization that degrade the reflector pattern. We approach strut analysis
either by increasing their effective area due to the induced currents or by using physical
optics to add the induced currents to the pattern, or use a ray optics method, such as
GTD, to find the total pattern.

Strut losses and stray radiation should be small in a properly designed reflector,
but mechanical considerations may lead to less than ideal electrical configurations.
If possible, attach the struts to the outer rim of the reflector. When mounted part-
way out of the radius, the struts can support the feed or subreflector with thinner
elements, but they block the feed (or subreflector) radiation and cast a shadow on
the main reflector. Of course, when struts pass through the main reflector, they can
be mounted to a smaller support frame located behind the reflector and the final
design will be a compromise. Symmetrically oriented struts reduce boresight cross-
polarization. For linear polarization, use four struts aligned parallel and perpendicular
to the polarization vector to reduce cross-polarization at all angles. Thorough anal-
ysis considers the currents induced on the struts due to the feed radiation. These
strut currents radiate and illuminate the main or subreflector along with the feed
because the primary strut effect is blocking the nearly plane wave radiated by the
main reflector.

Kay [37] introduced the induced field ratio (IFR) to analyze space metal frame
radomes. The IFR hypothesis assumes that the currents induced on the strut are the
same as those on an infinite strut illuminated by a plane wave. This reduces the problem
to two dimensions. Currents induced on a thin strut increase the effective blockage
area by the IFR factor. We sum these blockage areas projected on the aperture plane
without regard to phase. IFR is the forward-scattered field divided by the radiation
from a plane wave incident on the same area (i.e., an aperture). This reduces the
complicated radiation from the strut to a simple blocked area. IFR depends on the
incident polarization, and since it is a two-dimensional problem, we have only TM
(E-field parallel to strut axis) or TE (H -field parallel to axis) waves.

The TM wave induces currents directed along the axis that we compute either by
using a canonical problem with a closed-form solution or by using the method of
moments with an incident plane. Given the surface current density Js(φ)′, a function
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of the angle from the incident plane wave φ′ on a strut cross section ρ(φ′), the TM
wave IFEE can be found from an integral around the strut perimeter:

IFRE = − η

2wE0

∫
S1

Js(φ
′)e−jkρ(φ′)ρ(φ′) dφ′ (8-70)

The strut has a projected width w normal to the incident plane wave with electric field
E0 and η is the impedance of free space.

The TE wave induces currents that flow around the perimeter. We describe the
current by the z-directed magnetic field on the strut. Given a unit vector af in the
forward direction and the surface normal n(φ′), IFRH is found from an integral around
the strut:

IFRH = 1

2wH0

∫
S1

[af · n(φ′)]Hz(φ
′)e−jkρ(φ′)ρ(φ′) dφ′ (8-71)

We calculate effective strut blockage area by multiplying the projected area of the strut
in the aperture by IFR and use Eq. (4-111) for the loss. For a linearly polarized wave
at an angle γi to the projected strut, we use an elliptical addition of the area:

area =
N∑

i=1

wi(IFREi cos2 γi + IFRHi sin2 γi) (8-72)

We use the mean IFRM = (IFRE + IFRH )/2 for circular polarization. The difference
IFRD = (IFRE − IFRH )/2 is a useful quantity for estimating the sidelobes and cross-
polarization.

Given a reflector of radius r0 and symmetrically placed N struts which reduces
cross-polarization, we define the strut factor Aco as IFR times the ratio of the projected
area of one strut to the reflector area:

Aco = |IFRi |Npw′r0

πr2
0

(8-73)

with w′ = w sin θ0, the width projected along the plane wave,

Np =
{

1 for N odd
2 for N even

and

|IFRi | =
{ |IFRM | for circular polarization

|IFRM − IFRD cos 2γi | for linear polarization

Blockage co-polarization sidelobes due to the struts radiate a broad pattern that reaches
an asymptotic level [38]:

sidelobe(dB) =
{

20 log(Aco) for uniform aperture
20 log(Aco) − 2 for −20-dB taper aperture

(8-74)
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The maximum cross-polarization within the 3-dB beamwidth can be found from the
difference IFRD. Define the cross-polarization strut factor:

Axp = |IFRD|Npw′r0

πr2
0

For three struts the cross-polarization(dB) = 20 log(Axp) + 2.5, and for four
struts cross-polarization(dB) = 20 log(Axp) − 8.5 for a uniform distribution and
20 log(Axp) − 7 with a 20-dB aperture taper [38].

Closed-form equations for IFR exist for circular struts [39] that depend on the
angle between the strut axis and the incident plane wave θ0, the strut radius a, and the
propagation constant k:

IFRE = − 1

ka sin θ0

∞∑
n=0

εn

Jn(ka sin θ0)

H
(2)
n (ka sin θ0)

IFRH = − 1

ka sin θ0

∞∑
n=0

εn

Jn
′(ka sin θ0)

H
(2)′
n (ka sin θ0)

(8-75)

εn =
{

1 for n = 0
2 for n > 0

where Jn is the Bessel function and H(2)
n is the outward-traveling Hankel function, with

J ′
n the derivative of Jn, and so on. Table 8-8 lists these factors for both polarizations

versus strut radius.
Using only physical optics we can determine accurately the blockage effects of struts

that are at least 3λ in diameter. PO excites currents only on the visible half of the struts.
For smaller-diameter struts, currents creep to the far side and alter the results. No matter
how thin the struts, currents will be excited on them and affect the pattern. The physical
optics analysis of a dual reflector includes currents excited on the struts a number of
times. Assume that the antenna is transmitting. The feed illuminates the subreflector
and the struts. The current excited on the struts also radiates a field that illuminates
the subreflector. If the strut blocks the path between the feed and the subreflector, PO
analysis uses strut current to calculate its blockage. At this point we use the currents

TABLE 8-8 IFRE and IFRH for a Circular Strut

a sin θ0 Re(IFRE ) Im(IFRE ) Re(IFRH ) Im(IFRH )

0.005 −5.148 14.088 −0.0001 −0.0198
0.010 −3.645 6.786 −0.0005 −0.050
0.020 −2.712 3.964 −0.004 −0.103
0.050 −1.982 2.003 −0.054 −0.272
0.10 −1.641 1.225 −0.292 −0.448
0.20 −1.414 0.758 −0.552 −0.374
0.50 −1.215 0.381 −0.781 −0.258
1.00 −1.145 0.255 −0.858 −0.188
2.00 −1.092 0.160 −0.914 −0.126
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on the subreflector to compute additional currents excited on the struts. These add to
the first set of strut currents. Radiation from the subreflector, all currents on the struts,
and stray feed illumination add to illuminate the main reflector. The radiation from
the main reflector current excites additional current on the subreflector and a third set
of currents on the struts. We apply the far-field Green’s function on the sum of all
currents to calculate the pattern.

PO currents are modified on thin struts to account for creeping-wave currents. We
multiply the PO strut currents by the induced current ratio (ICR) to obtain equivalent
currents suitable for predictions. The factor ICR includes a strut current distribution
and a complex value:

Js = 2n × Hinc · ICR(a, θ0, φ
′) (8-76)

ICR depends on the strut radius a, the incidence angle θ0 with respect to the strut
axis, and the angle around the strut φ′ from the direction of the plane wave and the
incident wave polarization. We find the incident magnetic field Hinc at the point where
the plane wave touches the strut and use the current excited at this point to calculate
the current in a ring around the strut. Remember that the primary effect of the strut is
to block the radiation from the main reflector that approximates a plane wave in the
near field where the struts are located.

We solve for ICR by considering two-dimensional scattering of the strut cross section
by a plane wave. By applying moment methods to a two-dimensional scattering prob-
lem, we can solve for the current distribution on any strut cross section, but here we
consider only circular struts that have a closed-form solution [40, pp. 209–219]. To
simplify the problem, consider a strut lying along the z-axis. For actual analysis you
will need to rotate the strut into place and rotate the incident wave into the strut coordi-
nate system to use ICR to calculate the current distribution. In two-dimensional space
the incident wave is either TM or TE with respect to the z-axis. The TM wave has its
electric field in the plane containing the strut axis. A TE wave has its magnetic field
in this plane. The TM case produces the following equation from the scattering of a
plane wave:

ICRE ẑ = ICRTM(a, θ0, φ
′)ẑ = ẑe−jka cos φ′

πka sin θ0

∞∑
m=0

jmεm cos mφ′

H
(2)
m (ka sin θ0)

(8-77)

The phase factor e−jka cos φ′
shifts the reference plane from the strut center to the

attachment point. Equation (8-77) expands the current in a cos mφ′ Fourier series
around the strut. ICRE has a complex value because H(2)

m has a complex value. As
the strut radius a increases, ICR approaches 1 at the location φ′ = 0. For practical
purposes ICR is 1 for a/λ > 1.5.

Equation (8-77) gives the current distribution on the circular strut relative to the
current excited at the initial contact point of the incident plane wave. Table 8-9 lists
ICRE evaluated when φ′ = 0. The constant term grows rapidly as a → 0, with its
imaginary part growing faster than the real part because it approximates the vector
potential of a filamentary current element with its −j factor between the current and
the field [Eq. (2-1)]. Small struts have nearly constant current around their periphery.
Equation (8-77) requires more and more terms as the strut diameter increases, and
finally, a simple PO solution produces the same results. Table 8-9 lists the ICR factors
versus the strut radius.
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TABLE 8-9 ICRE and ICRH PO Current
Multipliers When φ′ = 0 for a Circular Strut

a sin θ0 Re(ICRE ) Im(ICRE ) Re(ICRH ) Im(ICRH )

0.002 3.660 −7.932 0.500 0.003
0.004 2.735 −4.530 0.500 0.013
0.01 2.018 −2.228 0.499 0.033
0.02 1.687 −1.353 0.500 0.071
0.05 1.376 −0.751 0.546 0.195
0.10 1.200 −0.479 0.748 0.275
0.50 1.030 −0.140 0.948 0.109
1.00 1.010 −0.076 0.982 0.068
1.50 1.005 −0.052 0.991 0.049

A TE incident wave produces similar results for scattering from a circular cylinder
but has co- and cross-polarization terms:

ICRH = ICRTE(a, θ0, φ
′)φ̂ = j φ̂e−jka cos φ′

πka sin θ0

∞∑
m=0

jmεm cos mφ′

H
(2)′
m (ka sin θ0)

(8-78)

Equation (8-78) has the same form as Eq. (8-77) and is expanded in the even function
cos mφ′ as Eq. (8-77) with coefficients using the derivative of the Hankel function.

When the incident wave approaches the strut at an angle θ0 other than 90◦, the strut
scatters cross-polarization for a TE incident wave:

JCRH = JCRTEẑ = j cos θ0ẑe−jka cos φ′

(ka sin θ0)2

∞∑
m=−∞

mjmejmφ′

H
(2)′
m (ka sin θ0)

(8-79)

JFRH is an odd function around the perimeter of the strut with a zeroth term of zero.
We can expand Eq. (8-79) in terms of sin mφ′:

JCRH = −2j cos θ0ẑe−jka cos φ′

(ka sin θ0)2
(I1

′ sin φ′ + j2I2
′ sin 2φ′ − 3I3

′ sin 3φ′ − · · ·)

Im
′ = 1

H
(2)′
m (ka sin θ0)

(8-80)

Consider a plane wave incident on a straight strut at an angle θ0 to its axis. As the
wave sweeps across the strut it excites current whose phase velocity is c/cos θ0 with
respect to the strut axis. This is the same situation as a waveguide with two waves
traveling back and forth between the sidewalls that produces a central phase velocity
greater than c (Section 5-24). A thin strut with its constant current distribution around
the circumference radiates a cone-shaped pattern peaked at an angle determined by
the current phase velocity. The current is a fast or leaky wave radiator that radiates
in a cone at an angle θ0 from the axis, while the length of the strut in wavelengths
determines the narrowness of the radiation beamwidth. As the diameter of the strut
increases, the peripheral current distribution alters the radiation level around the cone,
but the peak radiation occurs along the cone determined by the incident angle.
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We use incident plane waves to derive strut blockage and scattering and to modify
the formulation for spherical wave incidence. First divide the struts into coin sections.
For a wave incident from a given point, we trace a ray from the point to the strut axis
through a given coin section. We determine the incident magnetic field and calculate
the surface current density at the point of intersection of this ray and the strut. The
intersection point is φ′ = 0. We apply ICRE , ICRH , and JCRH to calculate the currents
around the coin cross section. This near-field case does not radiate a strut cone pattern
because it is not a plane wave incident on the strut. As the strut diameter grows, this
method leads directly to a PO formulation for strut scattering.

8-15 GAIN/NOISE TEMPERATURE OF A DUAL REFLECTOR

Collins [41] has developed a procedure for calculating the noise temperature of
Cassegrain antennas pointed near the horizon. First, the diffraction pattern of the feed
and subreflector combination is calculated. Some of the diffraction is added to the
main-reflector spillover. At low elevation angles the antenna points about one-half of
the spillover on the ground. It is a major noise temperature contribution, 1

2 (1 − SPL)TG,
where TG is the ground temperature and SPL is the spillover efficiency (ratio). The
scattered portion of the blockage produces wide-angle sidelobes, half of which see the
ground. The gain is reduced by the spillover loss, and a uniform distribution for the
blockage is assumed (ATL = 1):

1

2

Sb

Sa

(SPL)TG

where Sb is the blocked area and Sa is the total potential aperture. The main beam points
toward the sky and collects noise, SPLηbηmTS , where ηb is the blockage efficiency,
ηm the ratio of the power in the main beam and the first few sidelobes (ηm ≈ 0.99),
and Ts the sky temperature. We include a group of minor contributors:

1

2
(1 − SPL)Ts

1

2

Sb

Sa

(SPL)Ts

1

2
SPLηb(1 − ηm)(TG + Ts)

Equation (1-56) can be used when the temperature distribution is known, but the proce-
dure of Collins gives good, although slightly conservative results. Refer to Section 1-15
to calculate the gain noise temperature of the receiving system.

8-16 DISPLACED-AXIS DUAL REFLECTOR

A displaced-axis dual reflector uses a paraboloidal main reflector with a ring focus that
transforms the vertex into a ring. GO rays reflected from the main paraboloid miss the
subreflector and reduce the blockage loss to a nonexcitation area instead of scattered
blockage. This reflector achieves high aperture efficiency by using a subreflector that
directs the higher feed radiation at the boresight to the outer rim of the parabola, where
the differential area is the largest.

For the moment, consider Figure 8-14 of the Gregorian dual reflector in two dimen-
sions. The parabola and ellipse retain their reflecting properties because we can extend
them out of the page into cylindrical reflectors and use a linear array as a feed. Men-
tally, remove the lower half of the parabola and the upper half of the ellipse. Rays
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from the left ellipse focus (feed) reflect from the remaining half of the lower ellipse
to the upper half of the parabola, which transforms them into plane waves. If we fix
the right ellipse focus at the focus of the parabola, we can rotate the ellipse axis about
the right focus without changing the ray tracing from a feed at the left focus. We use
a slightly different portion of the ellipse determined by the rays traced to the edges of
the remaining half parabola.

Place a horizontal axis at the lower edge of the ellipse and rotate the ellipse axis
until the feed focus is on this axis. Rotate the two-dimensional figure about this hori-
zontal axis to form a three-dimensional reflector, and it becomes a displaced-axis dual
reflector. Both the focus and vertex of the main reflector have become rings. The sub-
reflector has a matching ring focus at the same diameter as that of the main vertex
and a point focus at the feed (Figure 8-16). Now rays from the upper portion of the
subreflector reflect to the upper portion of the parabola. Rays from the center of the
subreflector terminate on the outer edge of the main reflector, while outer subreflector
edge rays reflect to the ring vertex of the main reflector [42].

The reflector geometry has been found in closed form [43]. Given the main reflector
diameter D, focal length f , diameter of the subreflector Ds , and feed half-subtended
angle θ0, the distance along the reflector axis from the vertex to the feed Lm is

Lm = f D

D − Ds

− Ds

4

cos θ0 + 1

sin θ0
(8-81)

We tilt the axis of the ellipse φ to collapse the ring focus to a point at the feed:

tan φ = 2

(cos θ0 + 1)/ sin θ0 − 4f/(D − Ds)
(8-82)

Ring
Vertex

Subreflector
Feed

Ring
Focus

Parabola

Ellipse
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f

q
2c

FIGURE 8-16 Displaced-axis reflector antenna.



DISPLACED-AXIS DUAL REFLECTOR 423

The parameters of the ellipse are given by the equations

c = Ds

4 sin φ
and a = Ds

8

(
cos θ0 + 1

sin θ0
+ 4f

D − Ds

)
(8-83)

The half-subtended angle of the main reflector ψ0 is found from the normal parabola
with the subreflector removed and the ring focus collapsed to a point [Eq. (8-2)]:

ψ0 = 2 tan−1 D − Ds

4f

We compute the distance between the feed and the subreflector along the axis Ls from
the geometry [45]:

Ls = 2c cos φ + Ds

2 tan ψ0

We determine aperture power distribution A(r ′) by tracing rays from the feed to the
aperture radius r ′ of the main reflector and by equating power in differential areas:

P(θ) sin θdθ = A(r ′) dr ′ (8-84)

Figure 8-17 gives the aperture distribution for a displaced-axis reflector designed for a
main reflector f/D = 0.27 and an effective feff/D = 1.2 from the feed (θ0 = 23.54◦)
for various feed edge tapers. The plot shows that increasing the feed edge taper
increases the aperture power at larger radiuses but reduces the center amplitude. The
center 20% of the diameter of the aperture is not excited, but this corresponds to only
4% lost area, or −0.18 dB. When calculating the amplitude taper loss [Eq. (4-8)], we
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FIGURE 8-17 Aperture distribution in a displaced-axis reflector given feed edge taper for a
particular antenna. (From [43], Fig. 3,  1997 IEEE.)
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TABLE 8-10 Illumination Losses of a Displaced-Axis Dual Reflector, f /D = 0.27,
feff/D = 1.2 for Ds = 0.2D and 0.1D Versus a Feed Edge Taper

Ds/D (%)

20 10

Edge Taper
(dB)

SPL
(dB)

ATL
(dB)

Total
(dB) Sidelobe

SPL
(dB)

ATL
(dB)

Total
(dB) Sidelobe

10 0.434 0.476 0.910 15.2 0.434 0.411 0.845 18.3
11 0.341 0.455 0.796 14.9 0.341 0.377 0.718 17.8
12 0.268 0.442 0.710 14.5 0.268 0.350 0.619 17.3
13 0.212 0.434 0.646 14.2 0.212 0.330 0.542 16.8
14 0.167 0.432 0.600 14.0 0.167 0.316 0.483 16.4
15 0.132 0.436 0.568 13.7 0.132 0.308 0.440 16.0
16 0.105 0.444 0.548 13.5 0.105 0.304 0.409 15.6
17 0.083 0.456 0.539 13.3 0.083 0.306 0.388 15.3
18 0.066 0.472 0.537 13.1 0.066 0.311 0.377 14.9
19 0.052 0.491 0.543 12.9 0.052 0.320 0.372 14.6
20 0.041 0.513 0.555 12.7 0.041 0.333 0.374 14.3

use the full radius a = D/2, which accounts for the lost aperture center area. Table 8-10
lists the illumination losses of this reflector. The antenna has 88.2% aperture efficiency,
including blockage loss for Ds/D = 0.2 and 91.8% for Ds/D = 0.1. These numbers
do not include diffraction loss due to the subreflector and main reflector size in wave-
lengths or strut blockage. Similar to a Cassegrain reflector, increasing the subreflector
diameter beyond the GO design by 1 to 2λ decreases the diffraction loss.

Figure 8-17 shows the complete taper of the aperture to zero voltage at the edge.
We can increase the aperture efficiency slightly by designing the antenna with an
effective main reflector diameter slightly larger than the real diameter and produce
a finite aperture edge taper at the cost of increased spillover past the main reflector.
Table 8-11 lists the illumination losses for designs the same as Table 8-10 except that
the effective main reflector is 2% greater.

Four versions of displaced-axis reflectors have been derived from Gregorian and
Cassegrain antennas [44]. One other case, the double-offset Cassegrain, crosses the
feed illumination so that boresight feed amplitude reflects to the outer rim of the
main reflector. This antenna, similar to the case covered above, has a high aperture
efficiency, whereas the other two cases have modest aperture efficiencies. Equations to
specify all four antennas are available [45]. The normal displaced-axis dual reflector
has less sensitivity to feed axial defocusing than does a normal Cassegrain or Gregorian
antenna, but it is more sensitive to lateral offset of the feed [46].

8-17 OFFSET-FED DUAL REFLECTOR

When we offset-feed a dual reflector, we can eliminate subreflector central blockage
of the Cassegrain or Gregorian reflectors. This design adds parameters to give more
convenient packaging that fits in the available space, such as on a spacecraft. More
important, by rotating the subreflector axis relative to the main reflector axis, we can
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TABLE 8-11 Illumination Losses of a Displaced-Axis Dual Reflector, f /D = 0.27,
feff/D = 1.2 for Ds = 0.2D , and 0.1D Versus a Feed Edge Taper (Effective Main
Diameter = 102% Actual)

Ds /D (%)

20 10

Edge Taper
(dB)

SPL
(dB)

ATL
(dB)

Total
(dB)

Aperture
Taper (dB)

SPL
(dB)

ATL
(dB)

Total
(dB)

Aperture
Taper (dB)

10 0.455 0.371 0.816 10.6 0.443 0.304 0.746 13.5
11 0.352 0.352 0.705 10.4 0.350 0.271 0.621 12.5
12 0.280 0.340 0.621 10.1 0.278 0.246 0.524 11.5
13 0.225 0.335 0.559 9.9 0.222 0.227 0.449 10.6
14 0.181 0.334 0.515 9.6 0.178 0.215 0.393 10.4
15 0.147 0.339 0.486 9.5 0.144 0.208 0.352 10.2
16 0.120 0.349 0.469 9.3 0.117 0.206 0.323 10.0
17 0.099 0.363 0.462 9.1 0.096 0.209 0.305 9.8
18 0.083 0.380 0.463 9.0 0.079 0.216 0.295 9.7
19 0.070 0.401 0.471 8.8 0.066 0.227 0.293 9.5
20 0.060 0.425 0.485 8.7 0.056 0.241 0.297 9.4
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FIGURE 8-18 Dual offset-fed Cassegrain reflector, including Mizugutch feed axis tilt: (a)
feed and subreflector geometry; (b) dual reflector.

greatly reduce cross-polarization or beam squint of dual circularly polarized feeds in
the offset reflector.

Figure 8-18 illustrates the geometry of an offset-fed Cassegrain reflector, and
Figure 8-19 shows the offset-fed Gregorian geometry. Refer to Figure 8-7 for the
parameters of the offset main reflector. We point the feed at the subreflector center
to reduce spillover and to equalize the amplitude distribution in the aperture of the
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FIGURE 8-19 Dual offset-fed Gregorian reflector, including Mizugutch feed axis tilt: (a) feed
and subreflector geometry; (b) dual reflector.

main reflector. Similar to a displaced-axis dual reflector, we tilt the axis between the
focuses of the subreflector relative to the main reflector axis β (α in Ticra [48, App. B]).
The small amount of tilt to the subreflector axis converts the equivalent parabola of
the dual reflector to an axisymmetric geometry [47].

It takes five parameters to specify the antenna if the Mizugutch angle requirement
is applied to the feed tilt angle α (ψ0 Ticra) relative to the subreflector axis determined
from the magnification M given the subreflector eccentricity e [Eq. (8-64)]:

M tan
β

2
= tan

α

2
or

(
M tan

α

2
= tan

ψ0

2

)†

for M = e + 1

e − 1
(8-85)

The equation for M in Eq. (8-85) is used for both Cassegrain and Gregorian reflectors.
We start the design with the diameter of the main reflector D because it determines
the gain and beamwidth. Ticra [48, App. B] uses main reflector focal length f , the
half distance between focuses of subreflector c, subreflector eccentricity e, and axis
tilt β. Granet [49,50] supplies equations to calculate the reflector dimensions for 17
different sets of five input parameters. These sets of equations allow the direct appli-
cation of various mechanical constraints to the design or electrical constraints, such
as subreflector size to limit diffraction loss. All of Granet’s sets apply the Mizugutch
relationship, because this small change should be applied to all designs.

By tracing rays through the reflectors, the center offset H is found:

H = −2f
tan(β/2) − M tan(α/2)

1 + M tan(β/2) tan(α/2)
(8-86)

Given H , D, and f , we compute main reflector parameters from Eqs. (8-35) to (8-47).
We compute the half subtended angle of feed θe by tracing the ray to the upper rim of
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the main reflector with feed angles ψU and α:

ψU = −2 tan−1 2H + D

4f
and θe =

∣∣∣∣2 tan−1

(
1

M
tan

ψU − β

2

)
− α

∣∣∣∣ (8-87)

The feed subtended angle of the subreflector is 2θe. We calculate the rim ellipse of
the subreflector determined by the cone axis with angle α and cone angle θe using
Eq. (8-59) and (8-60).

8-18 HORN REFLECTOR AND DRAGONIAN DUAL REFLECTOR

The horn reflector shown in Figure 8-20 consists of a pyramidal or conical input section
excited with a rectangular or circular waveguide mode, respectively, that feeds an offset
paraboloidal reflector. The beam exits horizontally. The horn reflector geometry is an
offset reflector with offset angle ψ0 = 90◦ and center offset H = 2f the same as the
periscope configuration. Figure 8-21 gives the pattern of a 3-m-diameter reflector oper-
ating at 6 GHz (diameter = 60λ) with f = 3.215 m (ψe = 15◦). The antenna radiates
cross-polarization −23 dB relative to the beam peak in the horizontal plane. It cannot
be used for two channels with different polarizations, because similar to all offset-fed
reflectors, circularly polarized beams squint right and left in this horizontal plane. The
antenna radiates a significant sidelobe 90◦ from the boresight in the horizontal plane
that can be controlled using serrated-edge blinders [51].

A Dragonian dual reflector uses a hyperbola subreflector that curves toward the
main reflector in a Cassegrain system. This produces a dual reflector with magnification

d

b

bc

FIGURE 8-20 Horn reflector with serrated side blinders. (From [51], Fig. 3,  1973 IEEE.)
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FIGURE 8-21 Pattern of a 3-m horn reflector at 6 GHz.

M < 1 and we need a feed antenna with a wider beamwidth than would be required for
efficient feed of the main reflector. We use long focal lengths for the main reflector,
which flattens its curve, so that the feed beamwidth can remain small. Jones and
Kelleher [52] applied this Cassegrain arrangement to a horn reflector and located the
feed horn in the middle of the paraboloidal main reflector. Dragone [53] derived the
generalized Mizugutch criterion for multiple reflectors and showed that it could be
applied to this Cassegrain system to eliminate cross-polarization. Figure 8-22 shows a
Dragonian dual reflector fed by a corrugated horn feed located beyond the rim of the
paraboloidal reflector to replace the 3-m horn reflector. Pattern analysis produces the
same curves as in Figure 8-21 except that cross-polarization in the horizontal plane is
eliminated.

The design given in Figure 8-22 has f = 9.8 m, D = 3 m, θe = 20◦, and tilts the
subreflector axis by −73◦ to place the main reflector and subreflector in different
quadrants. The Mizugutch criterion between the subreflector axis tilt and the feed tilt
locates the feed axis at −97.5◦ relative to the main reflector axis and −24.5◦ relative
to the subreflector axis. The parameters of the reflector were adjusted so that the plane
wave radiated from the main reflector misses both the feed corrugated horn and the
subreflector. All dimensions can be found using available equation sets [54] that require
various sets of five inputs to totally specify the dual reflector. By using these equations,
we discover that the hyperboloidal subreflector rim is an ellipse with 2.05- and 2.60-m
diameters. To use the hyperbola close to the feed, specify a negative eccentricity and
the equations curve the hyperbola toward the main reflector. Similarly, the equation
for magnification produces a value of less than 1 for a negative eccentricity. Given the
e = −1.832 for the reflector of Figure 8-22,

M = e + 1

e − 1
= −1.832 + 1

−1.832 − 1
= 0.2938
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FIGURE 8-22 Dragonian dual-reflector geometry.

We compute feed tilt relative to the subreflector axis to satisfy the Mizugutch criterion:

α = 2 tan−1

(
M tan

β

2

)
= 2 tan−1

(
0.2938 tan

−73

2

)
= −24.5◦

8-19 SPHERICAL REFLECTOR

When we feed-scan a paraboloidal reflector, the pattern sidelobes develop coma and
the beam shape generally degrades. Feed scanning is limited. In a spherical reflector a
feed moved in an arc from the center of the sphere and sees the same reflector geometry
if we discount the edge effects. Greater scanning is possible, but the spherical reflector
fails to focus an incident plane wave to a point and requires more elaborate feeds.

We can design many types of feeds for the spherical reflector. The reflector can be
fed from a point source for large f /D by assuming that it is a distorted parabola [55,56].
It can be fed with a line source to follow the axis fields. Corrector subreflectors can be
designed to correct the spherical aberrations [58]. Like the parabolic reflector, we can
design arrays [24] to compensate for spherical aberrations and give multiple beams.

Figure 8-23 shows the geometry and ray tracing of a spherical reflector illuminated
by a plane wave. All rays intersect a radial line of the sphere (the axis) in the direction
of the incident wave because the reflector has circular symmetry about all axes. The
diagram traces rays hitting the outer portion of the reflector as passing through the
axis closer to the vertex than do the rays reflected from areas closer to the axis. The
reflector has a line focus. A distorted paraboloidal reflector with a line focus exhibits
spherical aberration because the focal length depends on the radial distance from the
axis of the reflection point. The spherical reflector has a cusplike caustic where GO
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FIGURE 8-23 Ray tracing in a spherical reflector.

predicts infinite fields. The second side of Figure 8-23 traces a single ray. We can
easily solve the isosceles triangle for the results:

z = R/2√
1 − H 2/R2

(8-88)

H 2 = R2

(
1 − R2

4z2

)
(8-89)

where z is the location of the focus for a given ray. As H approaches zero, with rays
near the axis, the reflected ray passes through the paraxial focus (z = R/2).

We use Eq. (8-89) to find the power distribution on the axis by using the conservation
of power. The power in a differential area of the plane wave reflects into a differential
length on the axis: dA = 2πH dH . We differentiate Eq. (8-89) implicitly:

2H dH = R2

2z3
dz

The power distribution along the axis is

Pz = P0R
3

8z3
(8-90)

where P0 is the power at the paraxial focus. The peak power occurs at the paraxial
focus and drops by one-eighth (−9 dB) at the vertex. We determine the required length
of the line source feed from the rotation angle ψ of the illuminated portion of the
reflector:

feed length = R(1/ cos ψ − 1)

2
(8-91)
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Example If the half-rotation angle of the illuminated region is 30◦, the feed length
is 0.0774R from Eq. (8-91). The amplitude decreases by

[Eq. (8-90)]
Pz

P0
= R3

8(R/2 + 0.0774R)3
= 0.65 (−1.9 dB)

The rays intersecting the axis are not at constant phase. The path length from the
aperture plane through the reflector origin is

path length = R2

2z
+ z (8-92)

We can approximate Eq. (8-92) by a linear function if the feed length is short.

Example The feed length is 0.0774R long; calculate the phase change required along
the feed.

The feed starts at the paraxial focus (z = R/2):

path length = R2

R
+ R

2
= 1.5R

At z = R/2 + 0.0774R, the path length = 1.443R. The phase change is
(2π/λ)R(0.0566). If we plot the phase change over the region of the feed, we can
approximate the phase change by a linear function very accurately.

The spherical reflector can be fed from a point source when the f /D is large [55].
The center of the reflector approximates a parabola. The optimum focal point is

f = 1

4

[
R +

√
R2 − (D/2)2

]
(8-93)

The maximum phase path length error is [56]

	L

λ
= 1

2048

D

λ

1

(f/D)3
(8-94)

The approximate gain loss is

	G

G
= 3.5092

(
	L

λ

)2

or

PEL(dB) = 10 log

[
1 − 3.5092

(
	L

λ

)2
]

(8-95)

A path length deviation of 0.25λ reduces the gain by 1.08 dB.

Example Determine the f /D value of a spherical reflector to limit 	L to 1/16λ for
a reflector diameter of 50λ.
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By rearranging Eq. (8-94), we find that

f

D
= 16(50)

2048
= 0.73

8-20 SHAPED REFLECTORS

Shaped reflectors spread cylindrical or spherical waves into a desired pattern that
depends on geometric optics. Shaped reflectors do not radiate patterns exactly as pre-
scribed by GO. In all cases we must apply techniques such as aperture diffraction,
induced currents, or geometric theory of diffraction (GTD) to compute the actual pat-
tern. We consider only the first-order GO for design, although analysis requires more
elaborate techniques.

We use two principles to design shaped reflectors. The first is GO reflection expressed
as a differential equation. The second is the conservation of power in ray tubes, which can
be expressed either in terms of differential areas or integrals over sections of the feed and
reflection patterns. We define two angles for the GO reflection equation. The feed points
toward the reflector, and we measure its pattern angle ψ from an axis pointed toward the
reflector. The reflector reradiates the incident feed pattern in a far-field pattern whose
angle θ is measured from the axis pointing away from the reflector. The differential
equation of reflection is [2]

tan
θ + ψ

2
= dρ

ρdψ
(8-96)

where ρ is the distance of the reflector from the feed. The edges of the reflector are
defined by angles ψ1 and ψ2 measured from the feed axis and reflect in directions θ1

and θ2. We integrate this differential equation for a solution:

ln
ρ(ψ)

ρ0(ψ1)
=

∫ ψ

ψ1

tan
θ(ψ) + ψ

2
dψ (8-97)

where ψ1 is some initial angle of the feed and ρ(ψ1) is the initial radius vector locating
the reflector at ψ1.

GO, the zero-wavelength approximation, is consistent at any size. All parabolic
reflectors collimate spherical waves radiated from the focus regardless of size. Only
by considering diffraction or currents induced on the reflector can we compute gain
and beamwidth of the antenna.

Example From Eq. (8-97), determine the reflector surface to give θ(ψ) = 0.

ln
ρ(ψ)

ρ0(ψ1)
=

∫ ψ

ψ1

tan
ψ

2
dψ = −2

(
ln cos

ψ

2
− ln cos

ψ1

2

)

By the properties of the ln function, this becomes

ln
ρ(ψ)

ρ0(ψ1)
= ln

cos2(ψ1/2)

cos2(ψ/2)
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By taking the exponential of each side, we get the polar equation of the reflector:

ρ(ψ) = ρ0(ψ1)
cos2(ψ1/2)

cos2(ψ/2)

We let ψ1 = 0 and set ρ(ψ) = f , and we obtain the equation for the parabola
[Eq. (8-1)].

The differential equation of reflection tells us only the shape of the reflector locally
to produce a reflection in a direction θ for an incident angle ψ . We must still find
the power density in various directions. The ratio of differential areas gives us these
power densities. Given the pattern of the feed Gf (ψ, φ) and the pattern of the reflection
P(θ, φ),

KP(θ, φ) dA(θ, φ) = Gf (ψ, φ) dAf (ψ, φ) (8-98)

where dA(θ, φ) is the differential area of the reflection pattern, dAf (ψ, φ) the differ-
ential area of the feed pattern, and K a constant found by equating the total incident
and reflected powers. Equation (8-98) is based on the assumption that reflections are
1 : 1 with the feed pattern.

8-20.1 Cylindrical Reflector Synthesis

We feed cylindrical reflectors with line sources. The reflector determines the beam
shape in one plane and the line-source distribution in the other. The problem reduces
to designing a single two-dimensional curve moved along an axis to define the reflector.
The power radiated by the feed is given by Gf (ψ) dψ . The reflector directs this power
at an angle θ whose power density is P(θ) dθ . These are proportional [Eq. (8-98)]:

KP(θ) dθ = Gf (ψ) dψ (8-99)

At the limits of the reflector, feed angles ψ1 and ψ2 reflect to angles θ1 and θ2. We
calculate the constant K by equating the power in each pattern:

K =

∫ ψ2

ψ1

Gf (ψ) dψ

∫ θ2

θ1

P(θ) dθ

(8-100)

We integrate Eq. (8-99) to derive a formal solution usually arrived at numerically. By
combining Eqs. (8-99) and (8-100), we eliminate K :

∫ θ

θ1

P(θ) dθ

∫ θ2

θ1

P(θ) dθ

=

∫ ψ

ψ1

Gf (ψ) dψ

∫ ψ2

ψ1

Gf (ψ) dψ

(8-101)

We use Eq. (8-101) with a known feed pattern Gf (ψ) and a desired pattern function
P(θ) to establish the relation θ(ψ). We insert θ(ψ) into the differential equation for
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the reflection [Eq. (8-97)] and determine radial distance as a function of ψ :

ρ(ψ) = ρ0(ψ1) exp

[∫ ψ

ψ1

tan
θ(ψ) + ψ

2
dψ

]
(8-102)

With Eq. (8-102) we calculate the reflector coordinates to within a scale factor ρ0(ψ1).

8-20.2 Circularly Symmetrical Reflector Synthesis

The synthesis of circularly symmetrical reflectors is readily reduced to a two-
dimensional problem. We must assume that the feed pattern is also axisymmetrical. We
describe the feed pattern by Gf (ψ) and the reflector pattern by P(θ). The differential
areas are sin ψ dψ and sin θ dθ . Equation (8-98) becomes

KP(θ) sin θ dθ = Gf (ψ) sin ψ dψ (8-103)

We integrate Eq. (8-103) to find the function θ(ψ):

∫ θ

θ1

P(θ) sin θ dθ

∫ θ2

θ1

P(θ) sin θ dθ

=

∫ ψ

ψ1

Gf (ψ) sin ψ dψ

∫ ψ2

ψ1

Gf (ψ) sin ψ dψ

(8-104)

We use Eq. (8-102) from the reflection differential equation with θ(ψ) to determine the
polar equation of the reflector. The design of a shaped reflector can best be explained
with an example. The cylindrical reflector synthesis follows parallel steps.

Example Design a reflector to transform the feed pattern of Figure 8-24a into the
pattern of Figure 8-24b.

The required pattern drops by about 9 dB from 50◦ to 0◦. We will use the feed
pattern from 4◦ to 54◦ and design a reflector with a ring caustic. The feed pattern at 4◦

is reflected to 50◦, and the feed pattern at 54◦ is reflected to 0◦. The geometric optics
rays cross somewhere in front of the reflector. We have the following limits:

Feed: ψ1 = 4◦, ψ2 = 54◦

Reflection: θ1 = 50◦, θ2 = 0

We insert the patterns of Figure 8-24 into both sides of Eq. (8-104) and evaluate the
ratio of the integrals. Table 8-12 gives the results of these integrals for θ and ψ as
normalized in Eq. (8-104). Given ψ , we find θ by equating integrals in the table. For
example, follow the line from ψ = 28◦ (feed) to its integral value, match the values
of the integrals, and determine the reflection angle θ = 42◦. We trace a number of
these through interpolation to generate Table 8-13 of reflection angles θ(ψ) for given
feed angles.

We use Table 8-13 of θ(ψ) in the integral of Eq. (8-102) to calculate the normalized
polar equation of the reflector listed in Table 8-14. Figure 8-25 shows the reflector
shape as well as the geometry of axisymmetric-shaped reflectors. There is a hole in
the center because the procedure fails to specify that region. Note in Table 8-12 how
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(a)

(b)

FIGURE 8-24 Axisymmetrical reflector pattern transformation: (a) feed pattern; (b) reflec-
tor pattern.



436 REFLECTOR ANTENNAS

TABLE 8-13 Shaped Reflector Synthesis Reflection
Angles for Given Feed Angles, θ(ψ)

Feed
Angle,
ψ (deg)

Reflection
Angle,
θ (deg)

Feed
Angle,
ψ (deg)

Reflection
Angle,
θ (deg)

4 50.0 30 40.2
6 50.0 32 38.2
8 49.9 34 36.0

10 49.8 36 33.6
12 49.6 38 31.1
14 49.3 40 28.4
16 48.8 42 25.6
18 48.2 44 22.6
20 47.4 46 19.5
22 46.4 48 16.2
24 45.2 50 12.6
26 43.7 52 8.4
28 42.1 54 0.0

TABLE 8-14 Shaped Reflector Synthesis Normalized Polar Equation of a
Reflector, ρ(ψ)

Feed Angle,
ψ (deg)

Normalized
Radius, ρ

Feed Angle,
ψ (deg)

Normalized
Radius, ρ

Feed Angle,
ψ (deg)

Normalized
Radius, ρ

4 1.000 22 1.208 40 1.503
6 1.018 24 1.238 42 1.539
8 1.038 26 1.268 44 1.575

10 1.058 28 1.299 46 1.611
12 1.080 30 1.332 48 1.648
14 1.103 32 1.365 50 1.684
16 1.128 34 1.398 52 1.719
18 1.153 36 1.433 54 1.753
20 1.180 38 1.468

much of the inner portion of the reflector must reflect rays near 50◦ to achieve the high
gain required. We could repeat the example and design without a ring caustic where
rays from the feed near 54◦ reflect to 50◦ and would produce a flatter reflector.

Because diffraction effects spread the pattern, we could approximate the pattern of
Figure 8-24b by designing a reflector to point the beam in a cone about the axis. If we
take Eq. (8-97) and let θ(ψ) = θ0, a constant, we get the surface

ρ(ψ) = ρ0
cos2[(ψ0 + θ0)/2]

cos2[(ψ + θ0)/2]
(8-105)

Example Estimate the directivity of a 40λ-diameter reflector shaped by Eq. (8-105)
to scan in a cone to θ0 = 50◦.
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FIGURE 8-25 Circularly symmetrical reflector designed with a caustic reflector.

Only half of the diameter is used for each side. The effective scanned aperture
width becomes (40λ/2) cos 50◦ = 12.8λ. If we assume a uniform-amplitude aperture
distribution, we obtain an upper bound. From Eq. (4-83), HPBW = 59◦

/12.8 = 4.6◦.
We use Eq. (1-24) to estimate the directivity:

directivity = 2

cos(50◦ − 2.3◦) − cos(50◦ + 2.3◦)
= 32.5 (15 dB)

The boresight gain of the aperture with a uniform distribution is 42 dB. Spreading the
reflection into a cone greatly reduces gain. The shaped reflector above will have even
less directivity because it has a greater edge taper.

8-20.3 Doubly Curved Reflector for Shaped Beams

It is a common radar requirement to have a narrow beam in one plane and a shaped
beam in the other. Such beams can be obtained from shaped cylindrical reflectors, but
it is simpler to replace the line source with a single feed. We only specify the pattern
in the principal planes denoted: θV , the shaped pattern coordinate, and θH , the pencil
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beam [2,59]. Similarly, we specify the feed antenna pattern in terms of ψV and ψH .
For a given feed angle ψV , the reflected wave angle is θV . The only θH value allowed
is zero. The reflector collimates the wave in the horizontal plane. This collimation
requires a symmetrical reflector made from parabolic curves in the horizontal plane.
We design the vertical curve only through the center of the reflector.

For a given feed angle ψV (Figure 8-26a), all incoming rays at an angle θV must be
reflected into the feed. The incoming rays form the x –z′ plane in Figure 8-26, and the
reflector collimates these to the feed by a parabola in the plane. We call this parabola
a rib of the reflector. Figure 8-26b shows the plane and two rays reflecting into the
feed from a wave arriving at an angle θV in the x –z′ plane. For the beam to focus,
the optical path lengths must be equal:

BP + PO = AN + NO (8-106)

Equation (8-106) establishes the curve of the rib in the x –z′ plane as a parabola with
focal length

f = ρc(ψV ) cos2 θV (ψV ) + ψV

2
(8-107)

with the focus located on the z′-axis. Using the parabolic ribs reduces the problem to
the design of the central curve ρc(ψV ).

y

y

z

z

z

x

Boresight

Incoming Wave, x − z′ PlaneRib

P

N

Focus

O

(a)

(b)

qV

yV

qV

yV

r(yV)

qV

Central
Curve

Central
Curve

z′

FIGURE 8-26 Doubly curved shaped reflector.
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The reflected and feed power densities modify Eq. (8-98) to

KP(θV )dθV ρc(ψV ) dψH = Gf (ψV ) dψV dψH (8-108)

We integrate Eq. (8-108) and normalize to the total power:

∫ θV

θ1

P(θV ) dθV∫ θ2

θ1

P(θV ) dθV

=

∫ ψV

ψ1

[Gf (ψV )/ρc(ψV )] dψV∫ ψ2

ψ1

[Gf (ψV )/ρc(ψV )] dψV

(8-109)

Equation (8-109) is similar to Eqs. (8-101) and (8-104) except that the feed pattern
integral value depends on the radial distance to the central rib. We must know ρc(ψV )

before we can determine θV (ψV ), which will be required to compute ρc(ψV ) from the
reflection differential equation [Eq. (8-102)]. The solution can be found only by an
iterative process.

We must assume a ρc(ψV ), solve for θV (ψV ), and use the result to compute a new
ρc(ψV ). After a few iterations, the values of ρc(ψV ) converge. We use the normalized
ρc with the foregoing ratio of integrals. We start with a parabola:

ρc(ψV )

ρc(ψ1)
= cos2(ψ1/2)

cos2(ψV /2)

The surface generated by following the method may not be defined uniquely. We pick
a constant width for the reflector in the horizontal plane. We define the surface with
a continuous series of parabolas each in a x –z′ plane determined by the reflection
angle θV , which changes direction along the central rib. We must plot the curve of the
vertical coordinate of the edge versus ψV to see if it is monotonic. If there are loops
in the curve, the surface defined is not unique.

Given the width x, we calculate the vertical coordinate of the edge by the following
development. The location of the rib on the central curve is given by ρc(ψV ) sin ψV .
The rib is a parabola in the x –z′ plane with its focus given by Eq. (8-107). The z′-
coordinate at the edge is z′ = x2/4f (ψV ). We determine the vertical dimension by
projecting this point onto the y-axis: y = ρc(ψV ) sin ψV . Elliott [60, p. 500] points out
that by following this method, one does not get the proper slope for reflection at all
points, but we will get the desired pattern when we design for only small deviations
from a pencil beam. The surface can be designed with or without a caustic depending
on the reflection angles at the edges. Reflectors designed with caustic edge reflections
have a better chance of being unique [60]. Carberry [61] presents a method of analysis
that involves physical optics. When we apply these methods, we must subdivide the
reflector into many patches because the phases of the currents change rapidly with
position on the reflector, and the analysis must be repeated with finer and finer patches
until the result converges.

8-20.4 Dual Shaped Reflectors

We can design a dual-reflector antenna to produce an arbitrary phase and amplitude in
the aperture plane by shaping both reflectors. By using both the conservation of power
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and the differential equations of reflection on the two surfaces, Galindo [62] derived a
pair of differential equations in terms of the aperture radius. Runge–Kutta or any other
suitable numerical method can be used to solve the simultaneous differential equations
instead of an integration of the power equation. Williams [63] finds a solution to
Cassegrain antennas within the restriction of equal amplitude and phase in the aperture
plane by integration of the power equation. Collins [64] considers using a parabolic
reflector for the main reflector, since the difference between the shaped main reflector
and a parabola is small. He accepts a quadratic phase error in the aperture. Existing
large reflectors can be retrofitted with a shaped subreflector to improve performance.
For the method to work, an axisymmetric feed such as a corrugated horn is required.

Galindo-Israel and Mittra [65] use a pair of reflectors offset from each other to
transform a spherical wave from a feed antenna into a second spherical wave with
a modified pattern amplitude. This combination of a feed with two reflectors can
illuminate either prime focus paraboloidal reflectors or Cassegrain systems without
modification of the existing reflector surfaces. For example, a sec4(θ/2) pattern can be
realized from an ordinary pattern source to increase the aperture efficiency of the overall
reflector system. The reflectors maintain equal GO path lengths for all rays, but they
only approximate the desired pattern amplitude from the virtual focus. The procedure
can be used to determine the contours of the reflectors along radial lines through
numerical solution of differential equations. The equations develop from simplifying
assumptions that depend on the extra degree of freedom introduced by the second
reflector. In most cases, solution of the equations produces usable designs, although
the method is not exact.

Lee et al. [66] developed a method to shape offset-fed dual reflectors that reduces
to the solution of a differential equation similar to that of the single-reflector design
given above. The reflection properties of the subreflector determine the main reflector
amplitude distribution to first order. This method does not produce exact results but is
close enough for engineering purposes. We start with a desired aperture power distri-
bution P (r, φc) and a known feed power pattern Gf (θ ′, φc) given in the radial direction
φc. Most cases use distributions independent of φc, but the design is performed along
these planes. For a circularly symmetric design we only need to solve the differential
equation along one plane, but the general case requires solutions along enough planes
to allow splines along the coordinate φc to find every point on both reflectors.

A differential expression relates the feed power to the aperture power:

Gf (θ ′, φc) sin θ ′ dθ ′ = P(r, φc)r dr

This leads to a ratio of integrals:

∫ θ

−θe

Gf (θ ′) sin θ ′ dθ ′

∫ θe

−θe

Gf (θ ′) sin θ ′ dθ ′
=

∫ R

R1
P(r ′)r ′ dr ′∫ R2

R1
P(r ′)r ′ dr ′ (8-110)

Equation (8-110) covers the general case where the offset subreflector directs power
from a lower angle −θe to an offset radius R1 that changes for each plane φc. For
a circularly symmetric design, −θe = 0 and R1 = 0. Although many designs attempt
to generate a uniform aperture distribution for the main reflector, we can substitute
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any distribution, such as a circular Taylor distribution to control the sidelobes into
Eq. (8-110). Given the aperture distribution and the feed pattern, we calculate a table
similar to Table 8-12 for each plane φc that gives the feed angle as a function of
aperture radius. We interpolate on this table to determine every value.

We start at the center of the subreflector described in spherical coordinates (ρ0, 0, 0)
relative to the axis of the subreflector centered at the feed focus. The subreflector axis
may be tilted relative to the main reflector axis. The rectangular coordinates of the sub-
reflector are (ρ sin θ cos φc, ρ sin θ sin φc, ρ cos θ ). The incident wave reflects to a point
on the main reflector: (H ± R cos φc,±R sin φc, z) using + Cassegrain,−Gregorian.
We calculate the unit vector between the subreflector point and the main reflector. The
normal vector on the subreflector is expressed as a differential:

n = 1

	

(
aρ − 1

ρ

∂ρ

∂θ
aθ − 1

ρ sin θ

∂ρ

∂φc

aφc

)
(8-111)

where

	 =
√

1 +
(

1

ρ

∂ρ

∂θ

)2

+
(

1

ρ sin θ

∂ρ

∂φc

)2

We apply both equations of Snell’s law [Eq. (2-67)] to the subreflector reflection and
gather terms to form a pair of differential equations:

∂ρ

∂θ
= QV

Q2 + U 2
and

∂ρ

∂φc

= UV sin θ

Q2 + U 2
(8-112)

The terms of Eq. (8-112) are given by the expressions

Q = a cos θ cos φc + b sin θ sin φc − c sin θ

ρ

U = b cos φc − a sin φc

ρ

V = L + a sin θ cos φc + b sin θ sin φc + c sin θ

a = H ± R cos φc − ρ sin θ cos φc

b = ±R sin φc − ρ sin θ sin φc

c = z − ρ cos θ

(8-113)

where the vector (a, b, c) is from the subreflector to the main reflector and L =√
a2 + b2 + c2.
We choose z = 0 as the aperture and equate path lengths along every ray. This gives

an equation for the z-position of the main reflector:

OL = ρ0 + L0 − z0 = ρ + L − z

We solve for z:

z = a2 + b2

2(ρ cos θ − ρ + OL)
+ 1

2
(ρ cos θ − ρ + OL) (8-114)
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To solve for the reflector surfaces, we choose a starting point, usually the center of
the reflector as the first ray from the feed to the subreflector, and calculate the initial
distance L0 between the subreflector and the main reflector to find the path length.
We select a polar plane φc and solve the left differential equation [Eq. (8-112)] for
both surfaces using a Runge–Kutta numerical solution. We repeat this in a sufficient
number of planes φc to specify the surface totally. If the antenna is circularly symmet-
ric, we solve the equation only once. For an offset dual reflector we can improve the
cross-polarization by computing an equivalent subreflector using least squares and use
its eccentricity to calculate the Mizugutch subreflector axis rotation.

8-21 OPTIMIZATION SYNTHESIS OF SHAPED AND
MULTIPLE-BEAM REFLECTORS

Silver [2] discusses using a linear array feed to shape the beam of a paraboloidal
reflector. The method is quite empirical and involves the addition of a number of
offset beams. A similar technique is used in three-dimensional radar, but the feeds
are kept separate so that multiple beams can scan a larger area in a given time. An
array feed provides the best solution to beam shaping in many cases. The number of
elements in the array limits the number of variables to a finite set to which optimization
techniques can be applied.

A second method uses optimization to shape the reflector and possible subreflectors.
This requires distortion functions on the reflectors. We start with conic-section reflectors
and add distortions. These distortions can be global Zernike functions defined over the
total surface, or they could be localized functions such as B-splines [67]. A B-spline
uses a grid of points on the reflector, but the spline coefficients apply only over a
limited area. In both cases we obtain a set of coefficients used in the optimization
algorithms. We have the choice of combining these coefficients, or we can iterate
between different sets of coefficients. Optimization is an art.

Because the reflector is an aperture antenna, we pick a set of directions in (u, v) =
(sin θ cos φ, sin θ sin φ) space to evaluate the pattern. The number of points should
exceed the number of coefficients and be spaced close enough to fully describe the
main-beam pattern:

	u and 	v ∼ 0.5λ

D
to

0.25λ

D
(8-115)

We calculate the pattern power Pm(u, v) at these points and compare them to the desired
pattern P d

m(u,v) using a suitable cost function. We weight each pattern direction ωm

and use a summation cost [68] with a gradient minimization technique:

F(x) =
M∑

m=1

|ωm(Pm(um, vm)) − P d
m(um, vm)|2 (8-116)

A second choice is a min–max optimization [69]. This algorithm minimizes the max-
imum error:

max[ωm(Pm(um, vm)) − P d
m(um, vm)] (8-117)
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If we optimize the reflector shape, we express the distortion as B-splines specified at
evenly spaced points across the aperture with the number determined by the maximum
pattern angle θmax and the reflector diameter D [69]:

Nx = Ny = πD sin θmax

λ
+ 2 (8-118)

Given a Zernike polynomial expansion with maximum azimuthal mode expansion Mmax

and maximum polar mode index Nmax, we have similar mode number requirements:

Mmax = Nmax = πD sin θmax

λ
+ 2 (8-119)

Shaping starts with a paraboloid main reflector whose beamwidth may be so narrow
that a portion of the specified u–v space area may lie in the sidelobe region. In this case
the optimization may become trapped because it cannot satisfy this area when changes
effecting the main beam region positively affect the sidelobe region negatively. We
must distort the main reflector before starting the optimization [69]. First surround the
u–v space area of specified points with an ellipse centered at (u0, v0) with major radius
ω1 and minor radius ω2 tilted an angle α. Given a paraboloid with diameter D, focal
length f , and center offset (x0, y0), we define rotated coordinates on the aperture.

x ′ = (x − x0) cos α + (y − y0) sin α

y ′ = −(x − x0) sin α + (y − y0) cos α

Using these coordinates, we alter the z-axis position of the reflector:

	z = −
(

1

2
+ x2 + y2

8f 2

)[
ω1x

′2 + ω2y
′2

D
+ u0(x − x0) + v0(y − y0)

]
(8-120)

We have a choice with ω1 and ω2 because they can be both either positive or negative.
Positive values flatten the reflector while negative values cause a caustic reflection to
broaden the beam.
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9
LENS ANTENNAS

In lenses, as in parabolic reflectors, we utilize free space as a feed network to excite
a large aperture. Because we locate the feed behind the aperture, the configuration
eliminates aperture blockage and allows direct connection of the feed to the transmitter
or receiver. When frequencies are above microwaves, this feeding method removes
lossy transmission lines that increase system noise.

Lenses have only half the tolerance requirements of reflectors because the wave
passes by the anomaly only once. In a reflector the wave path deviates by twice the
distance as the wave travels to and from the reflector. At low microwave frequencies
the lens is prohibitively heavy, but zoning and the use of artificial dielectrics reduce this
problem. Both zoning and artificial dielectrics present mechanical stability problems
and narrow the bandwidth.

We organize the design of lenses by the available degrees of freedom. A single lens
with a uniform dielectric has two surfaces and is equivalent to a dual reflector because
each surface is a degree of freedom. We start our discussion with single-surface lenses
where we eliminate one degree of freedom by making the second surface match either the
incoming or outgoing wave. Shaping both surfaces lets us correct one lens anomaly. We
can remove either coma to improve the feed scanning or design to convert a given feed
pattern to a desired aperture distribution. Bootlace lenses have three possible degrees of
freedom. They consist of back-to-back arrays with cables connecting the sides. Normally,
we use the degrees of freedom of the bootlace lens to increase the number of focal points.
We give up degrees of freedom in many designs to simplify the mechanical layout.
Finally, we discuss the use of a variable index of refraction in the Luneburg lens.

We base the design of lenses on geometric optics. Like parabolic reflectors, lenses
have no inherent frequency bandwidth limitation. We are limited by the feeds and
mechanical problems of large sizes. Because we borrow from optics, lenses have great
high-frequency potential.

Modern Antenna Design, Second Edition, By Thomas A. Milligan
Copyright  2005 John Wiley & Sons, Inc.
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9-1 SINGLE REFRACTING SURFACE LENSES

Single-surface lenses convert the wave type, such as spherical to planar, at one surface
through refraction. The constant-phase surface (eikonal) of the wave type determines
the shape of the second surface of the lens. The common lens converts an incident
spherical or cylindrical wave to a plane wave. Conversion to a cylindrical wave requires
a line source feed and cylindrical surfaces on the lens. Spherical waves use point feeds
and axisymmetrical surfaces. Like the reflector, which also converts spherical waves
from the feed to plane waves by geometric optics (GO), diffraction from an aperture
determines the far-field pattern.

Consider the second or nonrefracting surface. If the surface toward the feed converts
the wave type, the wave exits the second surface as a plane wave and it is a plane.
Similarly, when the surface away from the feed converts the exiting wave to a plane
wave, the inner surface toward the feed follows the incident wave eikonal, a cylindrical
or spherical surface. Figure 9-1 shows the two types of single refracting surface lenses.
We can determine the refracting surface shape by either of two different approaches.
Snell’s law can be applied to the refracting surface, and the surface slope can be
determined for each feed angle. Equivalently, we can apply Fermat’s principle to
equalize the optical path length from the feed through the lens to an aperture plane.
The designs are easily found [1,2]. For Figure 9-1a,

ρ(ψ) = (n − 1)f

n cos ψ − 1
(9-1)

where n is the index of refraction, given by

n = √
εrµr (9-2)

and εr and µr are the relative permittivity and permeability of the lens medium. When
n > 1, Eq. (9-1) describes a hyperbola with the feed at one focus. The distance from
the feed to the hyperbola along the axis is f . The asymptotes of the hyperbola limit
the collimated portion of the feed radiation:

ψa = cos−1 1

n
(9-3)

We must limit the lens edge to angles less than ψa because the asymptotes imply
an infinite aperture size. Similar to the paraboloidal reflector, we have feed spillover,
considered to be lost in sidelobes. But, for example, placing the lens at the aperture of
a horn eliminates spillover. We calculate the lens diameter from

D = 2ρ sin ψe = 2(n − 1)f sin ψe

n cos ψe − 1
(9-4)

where ψe is the edge angle, subject to the restriction of Eq. (9-3). The surfaces of the
lens in Figure 9-lb have the polar equations

ρ1 = constant ρ2(ψ) = (n − 1)f

n − cos ψ
(9-5)
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FIGURE 9-1 Single-surface lenses.

The inner surface must either be a circular cylinder (cylindrical lens) or be spherical
(axisymmetrical lens). The outer surface ρ2(ψ) is elliptical for n > 1. The junction of
the circle and ellipse determines the feed angle limitation:

cos ψe = n − (n − 1)f

ρ1
(9-6)

We can, of course, truncate the lens before the two curves meet. Equation (9-6) gives
the limitation on ρ1 at the lens edge as well:

ρ1 ≤ (n − 1)f

n − cos ψe

(9-7)

Example Compute f and ρ1 at the edge for an elliptical lens (Figure 9-lb) with
D = 10λ, n = 1.6 (polystyrene), and ψe = 50◦.

Solve Eq. (9-5) for f /D:

f

D
= n − cos ψe

2 sin ψe(n − 1)
f = 10.41λ (9-8)

ρ1 ≤ D

2 sin ψe

(9-9)
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If ρ1 remained constant to the center of the lens, it would be 3.88λ thick. In narrowband
applications we can remove the multiple wavelength thicknesses by zoning and reduce
weight and dielectric material loss.

Lenses change the amplitude distribution of the feed in the aperture plane. We
relate the feed pattern to the aperture distribution through the conservation of power
in differential areas. For an axisymmetrical lens:

F(ψ, φ) sin ψ dψ dφ = A(r, φ)r dr dφ

feed power aperture power
(9-10)

where ψ is the feed angle and r , ρ sin ψ , is the aperture radial distance; F(ψ, φ) is
the feed power pattern and A(r, φ) is the aperture power distribution:

A(r, φ)

F (ψ, φ)
= sin ψ

r

dψ

dr
(9-11)

For a cylindrical lens, we also equate differential area multiplied by the feed or aper-
ture power:

F(ψ, y) dψ dy = A(r, y) dr dy

A(r, y)

F (ψ, φ)
= dψ

dr
(9-12)

We substitute Eqs. (9-11) and (9-12) into Eq. (9-1) for the hyperbolical lens to calculate
the aperture distribution relative to the feed power pattern.

Axisymmetrical Cylindrical
A(r, φ)

F (ψ, φ)
= (n cos ψ − 1)3

f 2(n − 1)2(n − cos ψ)

A(r, y)

F (ψ, y)
= (n cos ψ − 1)2

f (n − 1)(n − cos ψ)

(9-13a, b)

The field distribution is the square root of Eq. (9-13).
We substitute Eqs. (9-11) and (9-12) into Eq. (9-5) for the elliptical lens:

Axisymmetrical Cylindrical
A(r, φ)

F (ψ, φ)
= (n − cos ψ)3

f 2(n − 1)(n cos ψ − 1)

A(r, y)

F (ψ, φ)
= (n − cos ψ)2

f (n − 1)(n cos ψ − 1)
(9-14a, b)

The hyperbolical and elliptical lenses concentrate the aperture power in different ways.
The hyperbolical lens reduces the feed power directed toward the edges and produces an
additional aperture taper. On the other hand, an elliptical single-surface lens increases
the power toward the edges as compared with the center.

Example For axisymmetrical lenses with ψe = 50◦ and n = 1.6, compute the edge
taper due to the lenses.
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We divide Eq. (9-13b) with ψe = ψ by the same equation with ψ = 0 to determine
the ratio of power at the edge to that at the center of the aperture (assuming an isotropic
feed). We do the same calculation with Eq. (9-14a):

Ae

Ac

=




(n cos ψe − 1)3

(n − 1)2(n − cos ψe)
hyperbolical lens

(n − cos ψe)
3

(n − 1)2(n cos ψe − 1)
elliptical lens

(9-15)

(9-16)

By substituting ψe and n, we compute the edge taper.

hyperbolical lens: 0.038 (−14.2 dB) elliptical lens : 7.14 (8.5 dB)

The increased taper of the hyperbolical lens reduces sidelobes, and the elliptical lens
increases aperture efficiency by compensating for some of the feed antenna pattern
taper to make the aperture distribution more uniform.

9-2 ZONED LENSES

Lenses designed by the methods of Section 9-1 have bandwidth limitations determined
only by the invariability of the dielectric constant. Zoning removes multiples-of-
wavelength path lengths in the lens to reduce weight, to reduce the lens-induced
amplitude taper, or to thin the lens. The act of changing dimensions by wavelengths
implies narrowing the frequency bandwidth.

We step the lens in either the nonrefracting or refracting surface. Stepping the
nonrefracting surface (Figure 9-2a, b) has the least effect. The edges of the steps,
parallel with the waves, will diffract waves and cause some change in the aperture
fields, but GO predicts no effect. Stepping the refracting surface introduces losses
either as misdirected feed power (Figure 9-2c, d) or as unexcited aperture (Figure 9-
2e, f). But stepping the refracting surface reduces the lens-induced aperture taper by
changing the focal lengths in various zones. Figure 9-2 shows the limits in the two
types of refracting surface steps, since we could compromise between the directions
and have both feed spillover and unexcited aperture.

We can easily calculate the step dimensions in Figure 9.2a and b. We equate the
path lengths inside and outside the dielectric along the step with a difference of � or
some integer multiple of λ:

n� = � + λ

inside outside

The step � becomes

� = λ

n − 1
(9-17)

In Figure 9-2c– f we determine the change in focal lengths instead of the step dimen-
sions. Zoning affects the optical path lengths in the center of the lens. We calculate
the edge focal length from the unzoned case. The focal length increases by Eq. (9-17)
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FIGURE 9-2 Zoning of single-surface lenses.

for each inner step of hyperbolical lenses and decreases by the same amount for each
inner step of elliptical lenses. We derive the lens-induced taper relative to the center
by using ratios of Eq. (9-13) or (9-14). For axisymmetrical lenses,

A(r, φ)

Ac

=




f 2
c (n cos ψ − 1)3

f 2(n − 1)2(n − cos ψ)
hyperbolical

f 2
c (n − cos ψ)3

f 2(n − 1)2(n cos ψ − 1)
elliptical

(9-18)

(9-19)

where fc is the focal length in the center, f the focal length in the feed direction ψ ,
and Ac the central amplitude.

Example Design an axisymmetrical hyperbolical lens (n = 1.6) by using the three
types of zoning shown in Figure 9-2, using an aperture diameter of 30λ and a maximum
feed angle of 35◦ with a 70◦ 10-dB beamwidth feed.
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The minimum allowable thickness is 0.5λ with a 0.3λ edge thickness. By working
through the geometry, we obtain dimensions for the following cases:

Figure 9-2a, nonrefracting surface zoning, we compute steps = λ/(n − 1) = 1.67λ.

Step 1 2 3 4

Aperture Radius (λ) 12.418 10.009 7.403 4.256

We estimate the feed spillover loss from Eq. (8-12) for the 10-dB feed edge taper,
0.41 dB. Equation (9-15) gives the edge taper (9.72 dB), since the refracting surface is
not zoned. Combined with the feed edge taper of 10 dB, we have a 19.72-dB amplitude
taper in the aperture plane. We use Eq. (4-8) to calculate the amplitude taper loss
(1.8 dB) for this axisymmetric distribution.

Figure 9-2c, zoning in the refracting surface of the hyperbolical lens (parallel with
outgoing waves), we compute the dimensions starting with the edge focal length
found from a rearrangement of Eq. (9-4) (Table 9-1). The changing focal lengths in
the zones alter the aperture amplitude distribution. The edge taper becomes [Eq. (9-
18)] 6.24 dB and reduces the amplitude taper loss [Eq. (4-8)] to 1.19 dB. The portion
of the feed directed to the dead zones refracts out of the aperture and forms side-
lobes that reduce the aperture efficiency. We consider this as a second spillover
loss (0.81 dB).

Figure 9-2e, zoning in the refracting surface of the hyperbolical lens (parallel with
the feed wave rays), again we start with the edge focal length and increase it by
λ/(n − 1) at each step and determine the feed angles where the change in the focal
length will give the minimum allowable thickness. The dimensions given in Table 9-2
were obtained. Since the focal lengths are the same as for Fig. 9-2c, the lens-induced
edge taper is 6.24 dB. The dead zones in the aperture distribution increase the amplitude
taper loss to 3.10 dB. These ring dead zones can be considered as radiating and adding
to the fully excited aperture pattern. They radiate patterns with closely spaced lobes
that raise the near sidelobes of the total antenna. The three designs are compared in
Table 9-3.

Example Similar to the example above, we can design zoned elliptical axisymmetrical
lenses that have the same problems of feed angle or aperture dead zones.

The edge taper of the elliptical lens counteracts some of the feed taper and reduces
amplitude taper loss. The losses calculated for those designs are given in Table 9-4.

TABLE 9-1 Zoned Hyperbolical Lens, Figure 9-2c

Zone

Focal
Length

(λ)

Aperture
Radius of
Step (λ)

Thickness
(λ)

Feed Dead
Zone Angles

(deg)

1 20.21 0 1.52
2 18.54 5.12 2.09 13.57–14.02
3 16.87 8.42 1.98 21.64–23.10
4 15.21 10.84 1.90 27.06–28.68
5 13.54 12.89 1.83 31.28–32.95
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TABLE 9-2 Zoned Hyperbolical Lens, Figure 9-2e

Zone

Focal
Length

(λ)

Feed
Angle
(deg)

Thickness
(λ)

Aperture
Dead Zones

(λ)

1 20.21 0 1.51 0
2 18.54 13.57 2.25 4.70–5.12
3 16.87 21.64 2.41 7.66–8.42
4 15.21 27.06 2.60 9.77–10.84
5 13.54 31.28 2.83 11.48–12.89

TABLE 9-3 Aperture Illumination Losses of Three
Hyperbolical Lenses, Figure 9-2

Design
(Figure 9-2)

SPL
(dB)

ATL
(dB)

Sum
(dB)

(a) 0.41 1.80 2.21
(c) 1.22 1.19 2.41
(e) 0.41 3.10 3.51

TABLE 9-4 Aperture Illumination Losses of Three
Elliptical Lenses, Figure 9-2

Design
(Figure 9-2)

SPL
(dB)

ATL
(dB)

Sum
(dB)

(b) 0.41 0.06 0.47
(d) 1.43 0.14 1.57
(f) 0.41 1.43 1.84

Zoning reduces the frequency bandwidth. At the center frequency the optical path
length difference between the central ray and edge ray is K − 1 for K zones. A
common maximum allowed deviation of feed to aperture path is 0.125λ, which leads
to a bandwidth of

B � 25%

K − 1
(9-20)

For the five zone lenses of the examples above, Eq. (9-20) gives a 6% bandwidth. We
determine the loss at band edge by tracing rays from the feeds-to-aperture plane and
calculating the phase error loss using Eq. (4-9). The loss at band edge is about 0.3 dB
for all the designs. Bandwidth is greatly underestimated by Eq. (9-20) if a greater phase
error loss is allowed. The 1-dB phase error loss bandwidth is 45%/(K − 1).

9-3 GENERAL TWO-SURFACE LENSES

Optical lens designs use either flat or spherical surfaces, an approximation useful for
long focal lengths. We design lenses exactly. In Section 9-1 we discussed lenses where
the rays refracted at only one surface. The shape curve of these two lenses could be
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derived easily. In this section we pick the curve for one lens surface and use a numerical
search for the second surface that generates a table of (r , z) values. We generate a
cubic spline from the table and use it to calculate the surface normal vector and the
radius of curvature useful in manufacture. The initial numerical search generates ray
paths through the lens that produce a table of feed angle versus aperture radius. We
apply Eq. (9-11) to compute the aperture distribution after we generate the cubic spline
whose evaluation includes the derivative.

If we specify the surface on the feed side, we start at the feed and trace rays to
the inner surface. We know the inner surface normal vector because it is a specified
surface. We compute the direction of the ray inside the lens given the incident medium
index of refraction ni , no inside the lens, the surface unit normal n directed into the
lens, and the incident ray unit vector Si . First determine if the ray will exit the incident
ray medium, because if ni > no, it can act as a prism and have total reflection:

Ra = n2
o − n2

i [1 − (Si · n)2]

If Ra < 1, the ray is totally reflected. For Ra > 1, we determine the direction of the
output ray unit vector So from the following operations [3, p. 355]:

γ = √
Ra − ni (n · Si ) find the vector t = niSi + γ n So = t

|t| (9-21)

For our case the normal vector, incident, and refracted rays are in two-dimensional
space (z, r), because the lens has axisymmetry. To start, specify the z-axis distance
from the feed to the outer rim of the lens, the initial radius, and the rim thickness
along the initial internal ray direction. The feed-side position of the lens is (z1, r1).
Apply Eq. (9-21) and find the outer lens point given the rim thickness tr , by tracing
along the vector t to point (z2, r2). Since the lens collimates the beam, we trace the
ray to a plane z = z3 whose normal is the z-axis. Figure 9-3 illustrates the rim and
internal ray paths for a lens with a spherical inner surface. We calculate the electrical
path length from the feed located at z = zf to the output plane by including the index

Focus

Spherical
Surface

(z1, r1) (z2, r2)

FIGURE 9-3 Ray tracing in a single-surface lens with a specified spherical inner surface.
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of refraction n of the lens for the ray path length (PL) through the lens, and the input
and output ray lengths:

PL =
√

r2
1 + (z1 − zf )2 + n

√
(r2 − r1)2 + (z2 − z1)2 + (z3 − z2) (9-22)

The design consists of stepping in r1, tracing the ray to the inner lens surface, computing
the direction of the ray internal by Eq. (9-21), and determining thickness tr when
Eq. (9-22) minus the initial path length is zero. By Fermat’s principle of equal path
length, the outer surface refraction direction adds to the inner surface refraction to
produce parallel output rays. This procedure generates a table of (z2, r2) pairs that we
convert to a cubic spline. By using the cubic spline, we produce an evenly spaced
table of (z2, r2) for machining, and if necessary, a table of radius of curvature from the
second derivative to assist machining operations. The next step is to calculate a cubic
spline between the aperture radius r2 and the feed angle ψ because its output includes
dψ /dr2. By rearranging Eq. (9-11), we compute the aperture power distribution given
the feed power pattern:

A(r2, φ) = F(ψ, φ) sin ψ

r2

dψ

dr2
(9-23)

The design steps for a lens with the outer surface specified are similar except that we
trace rays from the output plane backward to the feed point. Again, we start at the lens
rim, use Eq. (9-21) to calculate the internal ray direction by using the −z-directed ray
and the known surface normal to travel along this ray by the rim thickness to the inner
surface. Equation (9-22) gives the electrical path length for this lens, as well. We repeat
the root-finding procedure used above to determine a series of points (z1, r1) along the
surface by equating all electrical path lengths. We generate the same series of cubic
splines to obtain machining dimensions and differential dψ /dr2 used in Eq. (9-23) for
the aperture power distribution. Figure 9-4 shows the aperture distributions for various
lenses with focus points located 1.5 times the radius below the lens. The curves include
lenses of Section 9-1.

The focal spot is not a singularity as drawn on the figures using geometric optics,
but spreads due to the finite wavelength. We use Gaussian beams to evaluate the size
of focal spots. For a lens with a collimated output, we assume a Gaussian beam on the
output with minimum waist diameter 2W0 = D, the lens diameter, radiating into free
space, and a matching Gaussian beam on the feed side which tapers to the focal plane.
The lens transforms one Gaussian beam into another. The focal length f = zf and we
determine the diameter of the focal spot 2W ′

0 and the half depth of focus b from the
lens F -number F# = f /D [4, pp. 91–95]:

2W ′
0 = 4λ

π
F# = 4λ

π

f

D
b = 8λ

π
F 2

# (9-24)

A small modification to Eq. (9-22) allows the design of lenses with a second focus at
a finite position z = z3 on the axis:

PL =
√

r2
1 + (z1 − zf )2 + n

√
(r2 − r1)2 + (z2 − z1)2 +

√
r2

2 + (z3 − z2)2 (9-25)



GENERAL TWO-SURFACE LENSES 457

Normalized Radius

A
pe

rt
ur

e 
D

is
tr

ib
ut

io
n,

 d
B

FIGURE 9-4 Aperture distribution for various single-surface lenses with f/D = 1.5.

Focus Focus

FIGURE 9-5 Ray tracing in lens designed for two finite focuses.

We follow the same steps as in the design above except that we need to generate a
table of feed angles given the output ray angle with respect to the z-axis. Figure 9-5
illustrates a typical design and shows the ray tracing.

The lens designs noted above narrow the beamwidth. We design lenses to spread
the beam by using a virtual focus located behind the output surface of the lens, as
shown in Figure 9-6. Because the rays trace backward to the virtual focus, we change
the sign of the last term in Eq. (9-25):

PL =
√

r2
1 + (z1 − zf )2 + n

√
(r2 − r1)2 + (z2 − z1)2 −

√
r2

2 + (z3 − z2)2 (9-26)

The iterative design procedure should be modified to start in the center of the lens
because the concave lens has a significant outer thickness. We compute focal length f

of the lens by the distance of the two focuses from the lens:

1

f
= 1

zf

+ 1

z3
(9-27)
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(a)

Focus

Virtual
Focus

(b)

Focus
Virtual
Focus

FIGURE 9-6 Lenses designed with virtual focuses to widen beam: (a) spherical outer surfaces;
(b) spherical inner surfaces.

To calculate the pattern we trace rays through the lens either to a planar surface output
side of the lens or the actual surface. By using a cubic spline between the feed angle
and the aperture position we calculate the amplitude due to spreading [Eq. (9-23)].
We replace the fields with currents and use physical optics to calculate the pattern. A
second simpler approach uses a Gaussian beam approximation for lenses that accounts
for electrical size. Both the input and output Gaussian beam have the same waist at
the lens plane. Each Gaussian beam decreases in a hyperbola to the minimum waist at
the location of the phase center or focus. The output does not pass through a narrow
caustic, as shown in Figure 9-5, but reaches a finite-diameter waist related to the feed
beamwidth and the lens diameter.

At this point we design the lenses scaled to wavelengths. Given the feed beamwidth,
we calculate the half depth of focus b by using Eq. (7-35). The lens magnifies the
output beam waist compared to the input beam waist by M . First, we calculate an
input magnification factor Mr :

Mr =
∣∣∣∣ f

zf − f

∣∣∣∣ (9-28)

With b given in wavelengths, we compute the ratio of b to the shift of the feed relative
to the focus:

r = b

zf − f
(9-29)

We combine Eqs. (9-28) and (9-29) to calculate the lens magnification M:

M = Mr√
1 + r2

(9-30)
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The output Gaussian beam propagates from the second focus with new parameters: b′,
the half depth of focus, waist W ′

0, and divergence angle θ ′
0 [4]:

b′ = M2b W ′
0 = MW0 θ ′

0 = θ0

M
(9-31)

Example The lens in Figure 9-5 was designed for a diameter of 20λ, zf = 15λ,
and z3 = 25λ. We calculate the focal length from Eq. (9-27) as f = 9.375λ. A feed
with a 68◦ 10-dB beamwidth is approximated by a Gaussian beam with b = 0.99λ

(Scale 7-8) and 2W0 = 1.12λ (Scale 7-9). We use b to find the magnification M by
using Eqs. (9-28) to (9-30), M = 1.64. The Gaussian beam at the second focus has a
minimum waist 2W ′

0 = 1.64(1.12) = 1.84λ. Using Scales 7-7 to 7-9, we read the Gaus-
sian beam output values: 10-dB beamwidth = 42◦

(gain = 18.4 dB). Scale 7-7 gives the
gain of the feed as 14.3 dB. The half depth of focus increased from 0.99λ to 3.39λ.

Example When we repeat the lens calculations for the lens of Figure 9-6a for a
diameter = 20λ, zf = 15λ, and z3 = −5λ, we calculate f = −7.5. Starting with a
feed 10-dB beamwidth = 80◦, we use Scale 7-8 to find b = 0.7λ and waist diameter
2W0 = 0.94λ. The negative focal length produces a magnification below 1: M = 0.333.
This decreases b to 0.0775λ and 2W ′

0 = 0.314. The output Gaussian beam gain drops
to 6.6 dB from a feed gain of 12.9 dB.

9-4 SINGLE-SURFACE OR CONTACT LENSES

We can alter the pattern of antennas with planar surfaces such as spirals and microstrip
patches by placing a lens directly on the planar surface. The lens can be spaced a
small distance away to avoid potential damage and have little pattern impact. The lens
modifies the original pattern of the antenna by using the refraction at the single output
surface. Because the lens contacts the antenna, the pattern inside the lens is the same as
radiated into free space except for the dielectric loading on the antenna. This loading
shifts the operating frequency and in the case of a spiral improves its efficiency and
widens its beamwidth (see Section 11-5.1).

We design these antennas by first generating a mapping between the feed angle ψ

and the output angle θ . This could be as simple as θ(ψ) = constant or a function to
generate a shaped beam, in the same manner as a shaped reflector (see Section 8-20).
The relationship θ (ψ) enables calculation of the surface normal at every point along
the outer surface. The surface normal is found from the gradient of the radial vector,
and equating the two values produces a differential equation between the radius r and
the feed angle ψ . Given the feed angle and the output angle at a point on the lens, we
calculate the surface normal from n = nSi − So, where n is the index of refraction, Si

the incident unit vector, and So the exiting ray unit vector. We normalize n to a vector
v. The gradient of r(ψ) gives a second expression for the normal vector:

∇r(ψ) = ar + aψ

1

r(ψ)

∂r(ψ)

∂ψ
(9-32)

The coefficient of aψ in Eq. (9-32) is the tangent of the angle α between the normal
vector and the radial vector (incident ray). The tangent can be found from the unit
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vector v and the incident ray unit vector Si :

tan α = (Si × v)

Si · v
= 1

r(ψ)

∂r(ψ)

∂ψ
(9-33)

The cross product between the incident ray and the unit vector v only has a z-axis
component, because the incident ray and the surface normal lie in the x –y plane.
We design the lens surface by solving the differential equation (9-33). A numerical
technique such as the Runge–Kutta method easily solves the equation when we start
at one feed angle and an arbitrary lens radius and step through feed angles. The
method determines only the shape of the lens to an arbitrary size that we scale to the
diameter desired.

Figure 11-9a illustrates a lens designed to redirect all feed rays to θ = 0. Figure 9-7
illustrates the shape of a contact designed to redirect all rays between feed angles 0
through 60◦ to output rays at 30◦. For a 3λ lens diameter and a feed 12-dB beamwidth of
120◦, the lens spreads the beam to form a flat-topped output beam shown in Figure 9-8.
Contact lenses can greatly modify radiation from a feed with electrically small lenses.

Feed

Incident
Rays

Exit
Rays

FIGURE 9-7 Contact lens designed to direct the beam in a cone at 30◦.

FIGURE 9-8 Pattern of contact 3λ-diameter lens for a feed with a 12-dB beamwidth of 120◦.
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9-5 METAL PLATE LENSES

The phase velocity of a wave in waveguide exceeds that of a wave in free space and
produces a medium with an effective refractive index of less than 1. We can make
a microwave lens by spacing parallel metal plates and feeding the lens with a wave
polarized in the direction of the plates. For plates spaced a distance a, the index of
refraction is

n =
√

1 −
(

λ

2a

)2

(9-34)

where λ is the wavelength in the medium between the plates. The index of refraction
is frequency dependent. The lens can be made polarization independent by forming
an egg crate of orthogonal plates. We divide an arbitrary polarization into orthogonal
polarizations normal to each set of plates.

If we substitute n from Eq. (9-34) into Eq. (9-1), we obtain the equation of a front
single-surface lens:

ρ(ψ) = (1 − n)f

1 − n cos ψ
(9-35)

Equation (9-35) is an ellipse with f as the distance from the far focus of the ellipse to
the center of the lens front surface. This surface refracts waves parallel with the axis
and determines the second surface: a plane. The parallel plates constrain the waves
parallel with the axis and prevent the design of an outer single-surface lens.

The cutoff wavelength 2a and the possibility of higher-order modes restrain the
range of n. The second-order-mode cutoff occurs when λ = a, and it limits n to 0.866
[Eq. (9-34)]. At cutoff, λ = 2a and n equals zero. Reasonable values lie between 0.3
and 0.7.

The variation of n versus frequency limits bandwidth. When the phase variation in
the aperture is limited to λ/8, the bandwidth is approximately [1]:

bandwidth(%) = 25n

1 − n

λ

(1 − n)t
(9-36)

where n is the center-frequency index of refraction and t is the maximum thickness.
An acceptable bandwidth is underestimated by Eq. (9-36) through restriction of the
band edge phase error.

The elliptical surface increases the aperture distribution toward the edges. When
we substitute Eq. (9-35) into Eqs. (9-11) and (9-12), we obtain the aperture amplitude
distribution relative to the feed pattern:

A(r, φ)

F (ψ, φ)
= (1 − n cos ψ)3

f 2(1 − n)2(cos ψ − n)
axisymmetrical

A(r, y)

F (ψ, y)
= (1 − n cos ψ)2

f (1 − n)(cos ψ − n)
cylindrical

(9-37a, b)

Example Design an axisymmetric parallel-plate lens with a diameter of 30λ, maxi-
mum feed angle of 35◦, n = 0.625, and minimum thickness of λ.

ρ(35◦
) = 30λ

2 sin 35◦ = 26.15λ
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Rearrange Eq. (9-35) to calculate the focal length at the edge:

f = (1 − n cos 35◦
)ρ(35◦

)

1 − n
= 34.03λ

Equation (9-34) gives us the plate separation with a slight rearrangement:

a = 1

2
√

1 − n2
= 0.64λ

The amplitude variation from the center to the edge caused by the ellipse is given by
Eq. (9-37a):

A(ψe)

A(0)
= (1 − n cos ψe)

3

(1 − n)2(cos ψe − n)
= 4.26 (6.3 dB)

A feed with its 10-dB beamwidth equal to the subtended angle of the lens at the feed
produces −3.7 dB edge taper in the aperture. The edge thickness is given by

t = f + 1 − ρ(35◦
) cos(35◦

) = 13.61λ

Equation (9-36) predicts a bandwidth of 1.9%. A detailed analysis using ray tracing
through the lens and varying n with changes in frequency predicts a 0.2-dB loss at this
band edge. The 1-dB bandwidth is about 4.5%.

Zoning a parallel-plate lens increases its bandwidth by limiting the maximum thick-
ness, since the variation of the optical path length due to the varying n exceeds that
due to the zoning. Figure 9-9 gives the central curve of the three possible types of
zoning. The lens in Figure 9-9a only suffers loss due to diffractions from edges. The
other two zoned lenses (Figure 9-9b, c) have dead zones in the aperture. These dead
zones produce additional amplitude taper loss and high close-in sidelobes.

The feed-side zoning has different focal lengths in each zone. The outer zone remains
the same as the unzoned lens. The focal lengths of the inner zones are reduced by
λ/(1 − n) at each step and the stepping reduces the amplitude taper of the lens by
varying f :

A(ψ)

A(0)
= f 2

c (1 − n cos ψ)3

f 2(1 − n)2(cos ψ − n)
(9-38)

Feed
Elliptical

(a) (b) (c)

y

r(y)

FIGURE 9-9 Central section of zoned parallel metal plate lenses.
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where fc is the central focal length and f is the focal length of the ellipse at ψ . The
zoned lens bandwidth is approximately [1]

BW = 25%

K − 1 + [(1 + n)(1 − n)t/n]
(9-39)

where K is the number of zones and t is the maximum thickness. Equation (9-39) also
is an underestimation of an acceptable loss-level bandwidth.

Example The lens of the example above was zoned as in Figure 9-9a and c with
five zones. The maximum thickness is 3.4λ. Equation (9-39) predicts a bandwidth of
3.4%. By tracing rays through the lens and applying Eq. (4-9) to calculate phase error
loss, we predict a 10% bandwidth for a 1-dB loss.

Zoning the nonrefracting surface has no effect on the aperture distribution except for
edge diffractions that modify the fields slightly. Zoning the refracting surfaces causes
aperture dead zones and reduces the lens-induced amplitude taper. The focal length
of the ellipse at the edge remains at 34.03λ. The focal length of the center ellipse is
reduced by 4λ/(1 − n) from the edge ellipse to 23.36λ. The edge taper [Eq. (9.38)]
becomes 2.01 (3 dB). The aperture dead zones increase the loss by 2 dB.

The bandwidth of a parallel-plate lens can be increased by a method of compound-
ing lenses into a doublet [5]. We can make a lens by using a uniform waveguide
length between the input and output surfaces and placing a phase shifter in each line to
compensate for the optical path-length differences and produce an eikonal at the aper-
ture plane. If we combine a refracting surface waveguide plate lens with a differential
phase shift lens, we can match the aperture phase at two frequencies. This matching
broadbands the antenna like an optical achromatic doublet.

9-6 SURFACE MISMATCH AND DIELECTRIC LOSSES

The reflection coefficient of a wave normally incident on a dielectric is

� = 1 − n

1 + n
(9-40)

valid for both dielectric and metal lenses. The actual reflection coefficient of any ray
depends on the angle of incidence and the polarization. Both surfaces of the lens have
reflections, and these interact to produce the actual reflection. With plane surfaces, such
as those assumed for radomes, we can analyze the combination of reflections using
transmission-line mismatch equivalence. Since the reflections from second surfaces
may not return to the same point as the incident waves and may have their caustic
distances changed by the curved surfaces, transmission-line models of the two surfaces
have limited use for lenses. Equation (9-40) gives us a reasonable approximation to
expected mismatch, since one surface of the single refracting surface lens will be
normal to the wave incident from the feed and reflect into the feed. The second surface
fails to focus power back to the feed and has a minor effect.

Example A lens with n = 1.6 or n = 0.625 has a reflection coefficient magnitude of
0.23 [Eq. (9-40)] at one surface that focuses into the feed. This gives a feed mismatch if

VSWR = 1 + 0.23

1 − 0.23
= 1.6
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the same as n (n > 1) or 1/n (n < 1). The mismatch loss becomes 1 − |�|2 =
0.95 (0.2 dB).

The wave may be matched to the surface by a quarter-wavelength transformer with
an index of refraction n1/2, but adding matching transformers narrows the bandwidth.
The surface, which reflects power back to the feed, should be matched first, since the
second surface has a minor effect on feed mismatch. Also, the primary reflecting surface
has normally incident waves and does not suffer from the need to vary the thickness to
match waves off normal incidence. Transformers to match waves off normal incidence
are polarization-sensitive.

Simple methods can be used to reduce lens-caused feed mismatch [2]. The lens can
be tilted to cause the reflection to miss the feed. Offsetting half the lens by λ/4 causes
cancellation of the reflection from the two halves. Tilting does not reduce the mismatch
loss but does produce backlobe power in the pattern. Similarly, the reflected power
from the hyperbolical surface forms backlobes. These reflections reduce the antenna
efficiency below that predicted by aperture theory alone.

Cohn and Morita [2,6] developed methods of matching the surface of the lenses
by removing some of the dielectric for a quarter wavelength. The surfaces are either
corrugated, have arrays of holes, or have arrays of rods. With this method, the lens can
be made from a single dielectric slab. The design depends on the angle of incidence
and the polarization of the waves. The lens dissipates power by the attenuation constant
of the material:

α = 27.3n tan δ

λ
dB/length (9-41)

where tan δ is the loss tangent of the dielectric. Waveguide losses reduce the power
transmitted through metal plate lenses. Zoning eliminates material and its associated
loss to improve efficiency, but for most materials, this effect is small.

Artificial dielectrics [2] reduce excessive weight and material losses of lenses. We
make them by embedding metal particles or plated microspheres in foam with a dielec-
tric constant near 1. The metal parts may be strips or disks made from metal foil.
Similarly, solid metal parts can be hollow. Since the effective dielectric constant
depends on the size of the metal particles in wavelengths, lenses made from artifi-
cial dielectrics will be narrowband if the particles are large, but the use of plated
microspheres dispersed in the foam reduces this problem.

9-7 FEED SCANNING OF A HYPERBOLOIDAL LENS [7]

The hyperboloidal lens has no cross-polarization when fed from an electric dipole
source. Kreutel [7] analyzed the effects of off-axis dipole sources on the pattern of the
hyperboloidal lens. The coma increases more rapidly for the lens than for a paraboloidal
reflector for the same scanning. Like the paraboloidal reflector, the hyperboloidal lens
beam scans less than the deviation angle of the feed relative to the vertex and axis and
has a beam deviation factor (Table 9-5). The scanning loss (Table 9-6) decreases with
increasing n. The peak coma lobe (Table 9-7) limits the possible scan before unusable
patterns are obtained. The paraboloidal reflector can be scanned further (Table 8-2) for
the same coma.
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TABLE 9-5 Beam Deviation Factor for a Feed-Scanned Hyperboloidal Lens

f/D n = √
2 n = 2 f/D n = √

2 n = 2 f/D n = √
2 n = 2

0.8 0.75 0.84 1.4 0.86 0.91 2.0 0.93 0.95
1.0 0.80 0.87 1.6 0.89 0.92 2.5 0.95 0.96
1.2 0.83 0.89 1.8 0.92 0.94 3.0 0.97 0.98

TABLE 9-6 Scanning Loss for a Hyperboloidal
Lens (dB)

Beamwidth
n = √

2 n = 2

of Scan f/D = 1 f/D = 2 f/D = 1 f/D = 2

0.5 0.03 0.00 0.01 0.00
1.0 0.06 0.01 0.04 0.01
1.5 0.12 0.03 0.07 0.02
2.0 0.23 0.05 0.12 0.04
2.5 0.36 0.09 0.20 0.06
3.0 0.51 0.13 0.28 0.08
3.5 0.69 0.19 0.37 0.11
4.0 0.90 0.24 0.49 0.14
4.5 1.09 0.31 0.60 0.18
5.0 0.38 0.75 0.22
5.5 0.44 0.25

TABLE 9-7 Coma Sidelobe Level for a Scanned
Hyperboloidal Lens (dB)

Beamwidth
n = √

2 n = 2

of Scan f/D = 1 f/D = 2 f/D = 1

0 20.9 18.5 19.5
1 17.6 17.5 17.6
2 15.2 16.5 15.7
3 13.1 15.5 14.2
4 11.3 14.8 12.9
5 9.8 14.0 11.5
6 8.8 13.3 10.4

9-8 DUAL-SURFACE LENSES

The second surface of the lens offers an additional degree of freedom that can be used
to control the pattern characteristics. Ruze [8] developed methods to reduce coma
for feed-scanned cylindrically shaped metal plate lenses, which constrain the wave
parallel with the axis. Both surfaces are used to satisfy focusing requirements. We will
develop a method for axisymmetrical dielectric lenses to eliminate coma for small feed



466 LENS ANTENNAS

displacements. In a second design we can also use the second surface shape to control
the amplitude distribution in the aperture plane.

9-8.1 Coma-Free Axisymmetric Dielectric Lens [9]

The design of the coma-free axisymmetric antenna reduces to the numerical solution
of a differential equation with side conditions to produce a collimated beam and satisfy
the Abbe sine condition [10, p. 157]. Successful designs require a number of iterations,
since the ultimate lens shape depends heavily on the initial conditions. Solution of the
differential equation will sometimes diverge into unrealizable designs or fail to continue
to satisfy the side conditions.

A lens satisfying the Abbe sine condition is free of coma aberrations for small
deviations of the feed from the axis. The deviations produce higher-order aberrations
that eventually distort the beam with continued scanning, but coma is removed. For a
lens focused at infinity, the Abbe sine condition requires that the surface which refracts
the waves parallel with the axis must be spherical with its center on the effective focus
of the lens. The dielectric lens refracts waves parallel with the axis on the outer surface
(away from the feed). Given the aperture radial component r ,

r = fe sin ψ (9-42)

where fe is the effective focus and ψ is the feed angle. A waveguide plate lens satisfies
the Abbe sine condition by having a spherical inner surface [6], since the waves are
parallel with the axis in the lens because the waveguide plates constrain the wave to
be parallel with the axis.

The second surface must produce the conditions for a uniform phase in the aperture
plane. The waveguide plate lens only has to equalize path lengths. In a dielectric lens,
the inner surface must refract the waves in the proper direction to satisfy the Abbe sine
condition, and it must be so placed as to equalize the path lengths from the feed to the
aperture plane. The locations of both surfaces along the axis are varied to equalize the
path lengths.

Figure 9-10 shows the coordinates of the coma-free dielectric lens. The polar
equation ρ (ψ) describes the inner surface and ψ ′ is the angle of the refracted wave
with the axis. The distance from the feed to the center of the lens inner surface is f ,
and T is the thickness. The coordinates (r, z) describe the outer lens surface, where z

is the axis dimension and r is the aperture radial component. Snell’s law reduces to a
differential equation at the inner surface:

dρ

dψ
= n sin(ψ − ψ ′)ρ

n cos(ψ − ψ ′) − 1
(9-43)

where

tan ψ ′ = r − ρ sin ψ

z − ρ cos ψ
(9-44)

By use of Eq. (9-42), this reduces to

tan ψ ′ = (fe − ρ) sin ψ

z − ρ cos ψ
(9-45)
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FIGURE 9-10 Coma-corrected dual-surface axisymmetric lens; n = 1.6, D = 35, f = 45,
T = 6.5, fe = 49.

The requirement for equal optical path lengths to the aperture determines a quadratic
equation in z:

Az2 + Bz + C = 0 (9-46)

where

A = n2 − 1

B = 2(ρ − K) − 2n2ρ cos ψ

C = n2ρ2 cos2 ψ + n2(fe − ρ)2 sin2 ψ − (ρ − K)2

K = T (n − 1)

z = −B + √
B2 − 4AC

2A

Design consists of the numerical solution of the differential equation (9-43) subject
to the conditions of Eqs. (9-45) and (9-46). Realizable solutions depend on the initial
conditions. Most failures to produce a usable design occur in Eq. (9-46), which satisfies
the requirement of equal aperture phase.

Example Figure 9-10 shows a scale drawing of a realizable design for n = 1.6, focal
distance f = 45, diameter D = 35, center thickness T = 6.5, and effective focal length
fe = 49. Table 9-8 lists a few points of the solution obtained by a Runge–Kutta numer-
ical method for the differential equation (9-43).

The example above contains only relative dimensions. The solution is size and
frequency independent, since it is obtained by geometric optics. We can zone the lens
for a given frequency by cutting along ray paths. Each step is λ/(n − 1). Table 9-8, as
in the example above, determines the ray paths through the lens. Zoning will produce
either feed or aperture dead zones. The reduction of weight must be balanced with
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TABLE 9-8 Design of Figure 9-11 for a Coma-Free Lens

Feed Angle,
ψ (deg)

Inner Surface,
ρ(ψ)

Horizontal
Distance, z

Radius,
r

Thickness Along
Ray, T

0 45.00 51.50 0 6.50
5 45.18 51.19 4.27 6.20

10 45.70 50.27 8.51 5.29
15 46.59 48.71 12.68 3.77
20 47.63 46.28 16.76 1.59
20.92 47.61 45.40 17.50 1.06

the loss in efficiency to achieve some compromise. Because we used the degrees of
freedom of the second surface to satisfy the Abbe sine condition, we lose control
of the aperture distribution through the lens surfaces. Most practical designs produce
an amplitude taper near that of the feed antenna. We must achieve low sidelobes, if
required, through a tapered illumination from the feed. The feed pattern plays no part in
the design and gives us degrees of freedom for amplitude taper. An antenna designed
and built with a diameter of 32 wavelengths [9] showed no coma in a scanning of ±2
beamwidths. Like the paraboloidal reflectors, increasing the focal length for a given
diameter allows greater scanning without significant coma.

9-8.2 Specified Aperture Distribution Axisymmetric Dielectric Lens [11]

We use the desired aperture amplitude distribution to specify the relation between the
aperture radius r , and the feed angle ψ . Earlier, the Abbe sine condition established
this relation. Given a feed power pattern F(ψ) and a required aperture distribution
A(r), we relate the two through differential areas:

F(ψ) sin ψ dψ = A(r)r dr

where an axisymmetrical pattern is assumed. We derive the relation between ψ and r

through normalized integrals as in Section 8-20:

∫ ψ

0
F(ψ) sin ψ dψ∫ ψm

0
F(ψ) sin ψ dψ

=

∫ r

0
A(r)r dr∫ rm

0
A(r)r dr

(9-47)

In any particular design we generate a table, such as Table 8-12, of the feed angle
versus its normalized feed pattern integral and the aperture radius versus its normalized
aperture distribution integral. For a given feed angle ψ we equate the normalized
integrals to compute the corresponding aperture radius. We generate a table of aperture
radius versus feed angle, such as Table 8-13, using interpolation techniques. The design
is very dependent on feed pattern, because changing the feed pattern alters the table.
Low sidelobe aperture distributions require close tolerances and a good specification
of the feed pattern.

Once we have the relation between ψ and r , the design follows steps similar to
those taken in designing the lens for the Abbe sine condition. We solve the differential
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equation (9-43) numerically. We specify the aperture radius by the table generated for
the transformation of the feed pattern into the aperture distribution. The requirement for
equal path length through the lens determines the axis location z of the outer surface.

Ax2 + Bx + C = 0 x = z − f

A = n2 − 1

B = 2[n2(f − ρ cos ψ)] + ρ − K − f

C = [n(ρ cos ψ − f )]2 + (r − ρ sin ψ)2 − (f + K − ρ)2

K = T (n − 1) z = f + −B + √
B2 − 4AC

4A

(9-48)

where T is the central thickness and f is the axis focal length.
A successful design requires a number of iterations, starting with different initial

conditions. The differential equation solution will diverge to shapes unable to satisfy
the equal-path-length side requirement with poor initial conditions. Each design has a
narrow range of satisfactory initial conditions. In most cases, increasing the thickness
increases the chance for a successful design.

Example A lens was designed to transform the feed pattern of a conical corrugated
horn into a circular Taylor distribution with 40-dB sidelobes (n = 8). The initial condi-
tions were n = 1.6, diameter D = 32, focal distance f = 35, central thickness T = 9,
and maximum feed angle ψm = 20◦. A table of the feed angle and its normalized
power pattern integral, along with the aperture radius and its normalized power distri-
bution integral, was generated. A table of feed angle and the corresponding aperture
radius follows from equating normalized integrals. This table is independent of the
lens thickness but not the feed pattern.

A Runge–Kutta numerical method is used to solve the differential equation (9-43)
subject to the conditions imposed by the aperture radius table and Eq. (9-48) for equal
optical path lengths. Figure 9-11 shows a design for a 36◦ 10-dB beamwidth feed
horn (12-dB feed edge taper). The horn dimensions are aperture radius = 1.90λ and
slant radius = 9λ for a maximum quadratic phase deviation S = 0.2. A few points
of the design are listed in Table 9-9. Other antennas designed with small changes in
the feed pattern beamwidth show significant changes in the lens shape near the edges
for a constant center thickness. Axisymmetric dielectric lenses can be designed to be
independent of frequency because only relative sizes are specified. The lenses tend to
be thick to allow room to satisfy the requirement for an equal optical path length.

Zoning lens reduces weight while decreasing bandwidth. Low-sidelobe designs are
inherently narrowband, since small changes in the beamwidth of the feed alter the
aperture distribution and sidelobe levels. Zoning may not reduce the bandwidth signif-
icantly. An antenna designed and tested using the technique above revealed a number
of requirements on the design [12]. The sidelobe levels exceeded the design specifi-
cation for three main reasons. First, the feed pattern was specified as sin(πU )/πU ,
an oversimplification of the actual feed pattern. Realistic feed patterns must be used
because small changes in the feed pattern require new designs. Second, the surfaces
must be matched with quarter-wavelength sections to prevent reflections, unaccounted
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FIGURE 9-11 Dual-surface axisymmetric lens for circular Taylor aperture distribution (40-dB,
n̂ = 8). Lens: n = 1.6, D = 32, f = 35, T = 9, ψm = 20◦. Feed: conical corrugated horn, 36◦

10-dB beamwidth. S = 0.2.

TABLE 9-9 Design of Figure 9-12 for a Specified Aperture Distribution Axisymmetric
Dielectric Lens

Feed Angle,
ψ (deg)

Inner Surface,
ρ(ψ)

Horizontal
Distance, z

Radius,
r

Thickness Along
Ray, T

0 35.00 44.00 0 9.00
5 35.31 43.95 3.27 8.78

10 36.14 43.67 6.59 8.08
15 37.69 43.25 10.11 6.86
20 38.71 40.58 16.00 5.03

for in the design, that change the aperture distribution. Third, diffractions from the
edges affect the distribution. Increasing the aperture diameter or using a low edge
illumination feed reduces these effects.

As designed, the lens exhibits severe coma when scanned by feed lateral offset.
Since most lenses are quite thick, zoning can be used to approximate the Abbe sine
condition on the inner surface. The lens refracts most of the rays parallel with the
axis by the inner surface. If the zones approximate a spherical surface on the average,
coma is reduced for the scanned beams. These coma-corrected lenses are useful for
multibeam applications when each beam is fed from an offset feed.

9-9 BOOTLACE LENS

The bootlace lens consists of a set of receiving antennas on a surface connected by
cables to a set of transmitting antennas on the second surface (Figure 9-12). The cables
constrain the path through the lens. We have three degrees of freedom with this lens:
(1) input surface, (2) output surface, and (3) cable length. We can change the lens
characteristics dynamically by placing phase shifters and/or attenuators in the lines
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FIGURE 9-12 Bootlace lens. (From [13], Fig. 3, 1965 IEEE.)

between the input and output radiators and scan one or more beams. The input and
output surfaces are arrays, and we can generate multiple beams by placing more than
one feed on a focal arc determined by the lens geometry.

The simplest bootlace lens consists of a spherical input surface connected to a plane
output surface by equal-length cables. This lens converts spherical waves radiated
by the feed into plane waves at the output surface. The lens uses true time delay,
which removes bandwidth limitations. Most bootlace lenses are line sources or two-
dimensional lenses fed by line sources. The general lens can have four focal points [13]
placed symmetrically about the axis of the symmetric structure. The focal arc is chosen
on a curve through the focal points to minimize defocusing when feeds are placed off
the focal points. A feed at each point along the focal arc produces an output beam in a
different direction. Because each feed uses the full aperture, it achieves the full array
gain less the loss of projection of the aperture length in the beam direction.

The number of focal points is reduced to three when the lens is further restrained.
The Ruze design for a metal plate lens [8] has three focal points, since the waveguides
between the surfaces travel in straight lines. There is one central axis focal point and
two symmetrically placed focal points. The Rotman [14] lens loses one possible focal
point because the output surface is limited to a straight line. A parallel-plate structure
in the Rotman lens leads from the possible feed locations to the feed-side surface,
which normally is excited by probes in the parallel-plate guide. The lens becomes a
feed network that produces multiple beams whose directions depend on the location of
the feed on the focal arc. Although perfect focusing is achieved at only three points,
the phase error loss associated with points between them is small. Because the Rotman
lens feed network is a true time-delay array feed network, we can achieve bandwidths
greater than an octave from it.

Rao [15] extends the design of bootlace lenses to three dimensions and shows that
the number of focal points cannot be extended beyond four. Because the lens is not
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axisymmetric, it has different scanning capabilities in orthogonal planes. Rao designs
lenses with two, three, and four focal points on a focal line. Decreasing the number of
focal points in one plane increases the scanning capability in the orthogonal plane for
a given phase error level.

9-10 LUNEBURG LENS [16, p. 545]

A Luneburg lens, a spherically symmetric lens with a variable index of refraction,
radiates a beam in any direction for a feed located opposite the beam. We place the
feed phase center either on the surface of the lens or a short distance away. We form
multiple beams by feeding the lens at a number of places. Our only restriction is the
blockage due to other feeds or support structures. We can rapidly scan a beam by
moving a lightweight feed around the sphere or by switching between multiple feeds.

When we place the feed on the outer surface of the sphere, the required index of
refraction is

n =
√

2 −
( r

a

)2
(9-49)

where a is the lens outer radius and r is the inner radius. The dielectric constant n2

must vary between 2 in the center and 1 on the outer surface. Few feeds have their
phase centers on a surface that can be mounted against a sphere. We can move the
feed away from the surface by changing the variation of the index of refraction from
that given by Eq. (9-49), but the required center index of refraction decreases as we
move the feed away from the lens surface. We calculate the variation of the index
of refraction from an integral equation, and the curves follow the general shape of
Eq. (9-49). For the feed-to-sphere radius of 1.1, the proper center dielectric constant
is 1.83 and it varies smoothly to 1 at the lens surface. Similarly, the center dielectric
constant starts at 1.68 for the feed-to-sphere radius of 1.2.

The lens changes the amplitude distribution in the aperture compared with the feed.
Given the ratio of feed radius to lens radius ri , the aperture plane power distribu-
tion becomes

A(r) = F(ψ)

r2
1 cos ψ

(9-50)

where ψ is the feed angle, F (ψ) the feed power pattern, and A(r) the aperture power
distribution. Equation (9-50) shows that the lens refracts power toward the edge of
the aperture. Lenses have been made by using a series of concentric spherical shells
each with a constant dielectric. A minimum of 10 shells is needed for an adequate
approximation of the required variation of the dielectric constant.
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10
TRAVELING-WAVE ANTENNAS

Traveling-wave antennas consist of transmission-line structures that radiate. We develop
a unified theory for end-fire line antennas because length and propagation constant
along the structure determine most of their properties. To first order, length determines
gain and bandwidth. The size and shape of the structure produce secondary effects
such as polarization nulls and narrower beamwidths. Most of these structures are slow
wave-transmission structures that bind waves to it and radiate at discontinuities. We
use surface-wave structures to radiate end-fire beams and leaky wave structures to
radiate beams at an angle to the axis of the line source. In both cases there are planar
configurations that have their uses, but in this chapter we concentrate on long, thin
geometries. We combine leaky wave line-source radiators, such as slotted rectangular
waveguides, into planar arrays, but the line source remains the building block.

We make traveling-wave antennas from structures that guide waves. Surface-wave
structures bind the power to the transmission line and radiate from discontinuities
such as bends or dimensional changes. In some cases we analyze the surface wave as
radiating throughout its extent on the transmission line. Both methods provide insight.
Leaky wave antennas carry waves internally, such as a waveguide, and radiate at
openings that allow power to escape. The radiation mechanism differs in the two
cases, but we use similar mathematics to describe both types. We may have trouble
distinguishing the radiation mode because the structures may be similar because with
small changes in structure, some antennas can radiate in either mode. We separate
traveling-wave antennas from other antennas by the presence of a wave traveling along
the structure, with most of its power propagating in a single direction.

We divide antennas by their structure: line and planar. We usually analyze planar
structures as being infinite in the direction normal to the wave propagation. Similarly,
we usually ignore the diameter of line sources in a first-order analysis. The diameter is
important for determining the mode structure, but to first order we calculate patterns
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based on a thin line source since length and propagation constant determine the pattern
and bandwidth. The width of a planar structure determines the pattern beamwidth
in that plane. Increasing the diameters of the rods of line sources will decrease the
pattern beamwidth and increase gain, but the effect is secondary. Only when we include
the diameter can we make the transition to aperture-type structures considered to be
radiating from the end.

In this chapter we must consider unusual transmission-line structures. Properly
designed dimensions provide the proper phase velocity to establish a single end-fire
beam for slow-wave antennas or to point the beam of a leaky wave antenna. We cal-
culate some of the dimensions by analysis (an ever-expanding list), but we can also
measure the velocities and leakage and proceed to design.

10-1 GENERAL TRAVELING WAVES

A wave traveling in a single direction has a field representation:

E = E0(z)e
−kP z (10-1)

where z is the direction of propagation, k the free-space propagation constant (wave
number) 2π/λ, and P the relative propagation constant. E0(z) describes the ampli-
tude variation:

P > 1 surface waves

P < 1 leaky waves (10-2)

For a planar structure in the y –z plane, we consider separable distributions:

E = E0(z)E1(y)e−jkP z

We compute the pattern from

f =
∫ L

0

∫ a

−a

E0(z)E1(y)e−jkP zejkzzejkyydz dy (10-3)

where kz = k cos θ . Similarly, for circular distributions we have

E = E0(z)E1(φ)e−jkP z

and

f =
∫ L

0
E0(z)e

−jkP zejkzzdz

∫ 2π

0
E1(φc)aejka sin θ cos(φ−φc)dφc (10-4)

where a is the radius. The second integral includes vector dot products to project
the ring aperture fields on to the far-field polarizations (see Section 7-2). We consider
only the term along the z-axis, and we can consider the effect of the other coordinate
separately. The pattern response is

f =
∫ L

0
E0(z)e

−jkz(P−cos θ)dz (10-5)
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We use the results of Chapter 4 with these separable distributions. Maximum gain
comes from a uniform distribution reduced by the amplitude taper efficiency for tapered
distributions. In Eq. (10-3) the y-axis distribution and size determine the gain factor
as a product for aperture area. Equation (10-4) has a separable φ distribution that
separates directivity into a product. We ignore these factors for now and concentrate
on the z-axis pattern and associated directivity. Linear-rod antennas have increased
directivity because of dipole φ distributions and their increased radius.

A traveling wave with a uniform distribution has pattern response

sin(ψ/2)

ψ/2
where ψ = kL(P − cos θ) (10-6)

for θ measured from the z-axis. The y or φ distribution determines the pattern in the
other coordinate. For P > 1, a slow wave, the beam peak approaches θ = 0 when
P → 1. The length bounds the range P for an end-fire pattern peak. Leaky waves,
P < 1, have a pattern peak when P = cos θ , or

θmax = cos−1 P (10-7)

The pattern peak approaches end fire (θ = 0) as P → 1. By increasing P beyond 1,
the directivity increases and reaches maximum value for a given P , depending on the
length [1]

P = 1 + 0.465

L
(10-8)

Equation (10-8) is the Hansen and Woodyard criterion for increased directivity of a
long end-fire structure commonly approximated by [2]

P = 1 + 1

2L
(10-9)

The phase increase of 180◦ [Eq. (10-9)] along the length gives the maximum directivity
for a long structure with a uniform distribution. The amplitude distribution for most
surface-wave devices (P > 1) peaks near the input and the taper reduces the gain by
the amplitude taper efficiency [Eq. (4-8)]. We reduce the relative propagation constant
from that given by Eq. (10-8) depending on the length [3]:

P = 1 + 1

RL
(10-10)

where R = 6 at L = λ, diminishing to 3 from L = 3λ to L = 8λ and tapering to 2
[Eq. (10-9)] at L = 20λ. Zucker [4] uses R = 6 for the amplitude, which peaks by
3 dB at the input for all lengths. Equations (10-8) and (10-10) give designs with only
small differences in gain.

The value of P controls one edge of the visible region. Setting P = 0 centers the
visible region about ψ = 0. End fire occurs at P = 1. As we increase P beyond 1, the
beam peak of the distribution in ψ space moves into invisible space and the sidelobe
level increases. A progression of the distribution sidelobes becomes beam peaks as P

increases. Since the amplitude difference between sidelobes decreases as the sidelobe
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number increases, the sidelobe level of the pattern increases as the pattern degrades
because P exceeds the value given by Eq. (10-9).

Figure 10-1 shows the effects on directivity of varying P on an axisymmetrical
traveling-wave antenna with a uniform amplitude distribution. For broadside radiation
(P = 0) and for P near end fire, the directivity is a constant value with scan:

directivity = 2L

λ
(10-11)

When the broadside conical beam is scanned until the cone joins into a single end-fire
beam, the directivity increases. For end fire, P = 1:

directivity = 4L

λ
end fire (10-12)

The directivity peaks for P given by Eq. (10-8):

directivity = SL

λ
(10-13)

18

16

14

12

10

8

6
0.8 0.9 1.0 1.1

Relative Propagation Constant, P

D
ire

ct
iv

ity
, d

B

1.2 1.3 1.4

10l

8l

6l

5l

4l

3l

2l

FIGURE 10-1 Directivity of an axisymmetrical uniform-distribution traveling wave.
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FIGURE 10-2 Directivity of an end-fire traveling-wave antenna.
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Figure 10-2 plots the maximum directivity of end-fire structures versus length. For the
case P = 1, Eq. (10-12) gives the directivity on the curve. The Hansen and Woodyard
criterion increases the directivity as shown in Figure 10-2 for an infinitesimal-diameter
structure. The distribution on the finite diameter of the helical wire antenna in the
axial mode increases the directivity over that for the Hansen and Woodyard increased
directivity criterion. The hybrid mode with its linear polarization has a dipole null
normal to the traveling-wave axis whose elemental pattern also increases directivity.
Figure 10-3 is a plot of the corresponding beamwidths of those structures. Figure 10-2
sets an upper bound to the possible directivity of a small-diameter end-fire traveling-
wave structure of given length.

10-1.1 Slow Wave

A slow wave exists on an open transmission-line structure that binds the wave by
slowing a passing wave and bending it in the direction of the structure. In the same
manner, a lens bends waves toward regions of higher index of refraction (increased
slowing). We designate x as the direction normal to a planar structure and the radial
coordinate ρ as the direction normal to the cylindrical slow-wave structure. The relation
between propagation constants in various directions is found in any electromagnetics
text [5]:

k2
z + k2

x = k2 or k2
z + k2

ρ = k2 (10-14)

Since x (or ρ) is unbounded, the waves must attenuate exponentially from the surface:

α = jkx or α = jkρ (10-15)
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FIGURE 10-3 Beamwidth of a traveling-wave end-fire antenna.

The z-directed propagation constant becomes

k2
z = k2 + α2 = P 2k2

where

P =
√

1 + α2

k2
=

√
1 +

(
λα

2π

)2

(10-16)

P , the relative propagation constant, becomes a measure of the wave binding to the
surface. We rearrange Eq. (10-16):

α = 2π

λ

√
P 2 − 1 (Np/λ) = 8.63

2π

λ

√
P 2 − 1 (dB/λ)

As P increases, the wave is more tightly bound to the surface. Figure 10-4 is a plot
of the distances normal to the surface of constant-field contours versus P . The fields
attenuate rapidly normal to the surface. For P → 1, the slow-wave structure only
diffracts passing plane waves without capturing the power. This is the sense of a
cutoff frequency for the structure.

Most surface-wave antennas consist of three regions. The feed region launches the
wave on the structure with P between 1.2 and 1.3 [4]. The structure tapers in a short
section until P suitable for the length is reached. We design for a given phase shift
along the entire length. For example, a long antenna would be designed so that the
wave on the structure has an excess phase shift of 180◦ [Eq. (10-9)] over the traveling
wave in free space. Near the end we sometimes taper the structure to reduce the end
reflection given approximately by [4] P 2 − 1 (power). This end taper can be quite
short and achieve good results.
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FIGURE 10-4 Constant field contours off the surface of a surface-wave structure.

10-1.2 Fast Waves (Leaky Wave Structure)

Only closed structures such as waveguides support fast waves. An open structure
requires a negative α [Eq. (10-16)] for fast waves, which implies an exponentially
increasing wave away from the structure. The structure soon radiates all its power and
no longer guides the wave. By limiting α, the leakage, we can extend the length of the
radiating structure. We include the attenuation due to leakage in the z-axis propagation
constant, in general, but we ignore it when α is small: θmax = cos−1(kz/k).

Example A rectangular waveguide has kx = 2π/2a for the TE10 mode, where a is
the guide width. We determine the z-directed propagation constant

kz =
√

k2 −
(π

a

)2

which gives us

P =
√

1 −
(

λ

2a

)2

= cos θmax

The waveguide propagation constant determines the direction of radiation from a trav-
eling wave leaking out of the guide at a slow rate. We compute the guide width to
give radiation in a given direction from

a = λ

2
√

1 − cos2 θmax
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FIGURE 10-5 Patterns of long-wire antennas (3λ long): (a) traveling wave; (b) standing wave.

10-2 LONG WIRE ANTENNAS

One of the simplest traveling-wave antennas consists of a terminated wire. A standing
wave can be divided into two waves traveling in opposite directions. By terminating the
wire, we eliminate or reduce the reflected wave and its radiation. The uniform current
traveling on a wire is given by I = I0e

−jkP z. We insert this current into Eq. (2-3) to
compute the magnetic vector potential and use Eq. (2-1) to calculate the electric field.
The resulting radiation intensity is

U = η|I0|2
(2π)2

sin2 θ

[
sin[kL(p − cos θ)/2]

P − cos θ

]2

(10-17)

Equation (10-17) separates into two pattern factors: sin2 θ , the pattern of an incremental
current element, and Eq. (10-6) for the uniform distribution. The null at θ = 0 due to
the current element pushes the beam peak off the axis of the traveling wave. Figure 10-5
shows the patterns of traveling-wave and standing-wave currents using a 40-dB scale
for L = 3λ. The patterns are axisymmetrical about the wire. Table 10-1 lists the beam
peak direction and the directivity of the pattern for various lengths. The beam peak
approaches the wire as the length increases. If we remove the termination, a wave
reflects from the end and forms a beam in the opposite direction (Figure 10-5b). The
small backlobes due to the forward-traveling wave have little effect on the main beam
from the backward-traveling wave.

10-2.1 Beverage Antenna [6]

A Beverage antenna consists of a wire strung horizontally a fraction of a wavelength
over ground (Figure 10-6). The antenna must be fed relative to ground, and its ground
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TABLE 10-1 Characteristics of a Traveling-Wave Current on a Straight Wire

Length
(λ)

Directivity
(dB)

Beam
Peak (deg)

Length
(λ)

Directivity
(dB)

Beam
Peak (deg)

0.5 3.55 64.3 5.5 11.32 20.2
1.0 5.77 47.2 6.0 11.61 19.4
1.5 7.06 38.9 6.5 11.88 18.7
2.0 8.00 33.7 7.0 12.13 17.9
2.5 8.71 30.1 7.5 12.37 17.4
3.0 9.30 27.5 8.0 12.59 16.8
3.5 9.81 25.2 8.5 12.80 16.3
4.0 10.25 23.8 9.0 13.00 15.8
4.5 10.64 22.3 9.5 13.18 15.4
5.0 11.00 21.3 10.0 13.35 15.0

FIGURE 10-6 Beverage antenna.

plane image of the horizontally polarized wire cancels much of the far-field pattern of
the antenna. Table 10-1 gives the length for a given takeoff angle for sky waves. The
antenna can have good directivity but poor efficiency, since a great deal of the power
is absorbed by the load.

We make a vertically polarized Beverage antenna by elevating the feed point on a
tower and tilting the wire to the load on the ground. The beam due to the wire and
its image add to form a horizontal beam when the wire tilt equals the beam direction
given by Table 10-1 for a given length. The vertically polarized antenna needs a more
conductive ground plane than the horizontally polarized antenna because soil reflects
horizontally polarized waves better than vertically polarized waves. We may vary the
tilt angle to produce a takeoff angle, but the beams of the wire and its image may no
longer add. It is difficult to feed the tilted antenna because it is fed relative to ground
at an elevated point.

10-2.2 V Antenna

We separate two Beverage antennas by an angle and feed from a balanced line to form
a V antenna. When the separation angle is twice that given by Table 10-1, the beam
peaks of the individual wires add. The balanced line input eases the feed problem of
the Beverage antenna, since the antenna no longer feeds against ground. We place the
input on a single insulating tower and stretch sloping wires to ground (Figure 10-7)
to produce a beam. The beam is horizontal when the tilt angle equals the beam peak
angle of Table 10-1. By varying the tilt angle, we change the elevation angle of the
beam. A balanced feed produces horizontal polarization on the V antenna and reduces
the requirement for a ground screen. The antenna impedance is about 800 �. The
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FIGURE 10-7 Sloping V antenna.

pattern contains high sidelobes with an overall low efficiency, but the bandwidth of
the terminated antenna approaches an octave.

We can also make an unterminated V antenna. One method is to connect λ/4 rods,
which extend in the same direction as the V elements, to the normally grounded end
of the loads on the V antenna [7]. The open-circuited quarter-wavelength lines reflect
a short circuit to the loads over a limited bandwidth. The terminating resistors reduce
the backlobe from that of the unterminated V antenna while eliminating the need for
grounding the loads. In a second design a moment method solution is used to determine
the angle between the elements to optimize the directivity of a beam halfway between
the directions of the expanding elements [8]. The angle between the elements is fitted
to a polynomial:

α = −149.3

(
L

λ

)3

+ 603.4

(
L

λ

)2

− 809.5
L

λ
+ 443.6 degrees for 0.5 ≤ L/λ ≤ 1.5

or

α = 13.36

(
L

λ

)2

− 78.27
L

λ
+ 169.77 for 1.5 ≤ L/λ ≤ 3.0 (10-18)

where L is the length of each arm. The maximum directivity at α given by Eq. (10-18)
is

directivity = 2.94
L

λ
+ 1.15 dB (10-19)

10-2.3 Rhombic Antenna [9]

The rhombic antenna consists of two V antennas. The second V antenna brings the
two sides back together and makes it possible to connect the balanced lines to a single
terminating resistor (Figure 10-8). Using a single terminating resistor eliminates the
grounding problem of V-antenna terminations when the antenna transmits, although the
load absorbs up to one-half of the transmitter power. Figure 10-8 shows the patterns of
the individual wire radiators on the elements and the combined pattern in the horizontal
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Individual Patterns

L

Composite Pattern

a

FIGURE 10-8 Rhombic antenna.

TABLE 10-2 V Angle α for Maximum Output of a
Rhombic Antenna Given the Elevation Angle

Elevation Angle (deg)
Arm Length,

L/λ 0 5 10 15 20 25 30

1.5 90 89 88 86 84 80 76
2.0 77 76 75 73 70 66 60
2.5 69 68 66 64 60 56 48
3.0 62 61 60 57 52 48 40
3.5 58 57 55 52 47 42 34
4.0 54 53 50 47 42 36 28
4.5 51 50 47 43 38 32 24
5.0 48 47 44 40 35 28 20
6.0 44 43 40 36 30 22 14
7.0 41 38 36 32 25 18 8
8.0 38 37 34 28 22 14

10.0 34 32 29 23 16
15.0 28 26 22 15
20.0 24 22 17

Source: [9].

plane for the antenna in free space that unfortunately has high sidelobes. The peak
pattern output occurs when the angle α is approximately twice the peak radiation
angle of the individual wires. Table 10-2 lists the angle α for the maximum output for
a given elevation angle when we mount the antenna parallel with ground. We raise the
antenna a height H over ground to control its beam elevation angle:

H = λn

4 sin 	
n = 1, 3, 5, . . . (10-20)

where 	 is the elevation angle measured from the horizon and n is an odd integer.
The elevated beam forms from a combination of the antenna and its ground image
radiations. Because the antenna radiates horizontal polarization, the requirement for a
ground-plane screen is minimal.
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The terminating resistor should be about 600 �, and the input impedance varies
from 600 to 900 � over an octave bandwidth, the actual value depending on frequency,
height, and load resistor. We can use multiple wires that spread apart at the corners
to reduce the impedance variation over the band and increase the power-handling
capability of smaller wires. We build an inverted V antenna by mounting half a rhombic
antenna over a ground plane. We use a single insulated tower; and by controlling the
wire tilt angle with respect to ground, we combine the beams for the wire and its
ground image into a horizontal beam. The inverted V places both the input and the
terminating load on the ground. Because the antenna is vertically polarized, we must
provide a good ground screen. In outdoor applications we ground and feed the antenna
through a transformer to give some lightning protection and to match the high input
impedance of the antenna.

10-3 YAGI–UDA ANTENNAS [10]

A Yagi–Uda antenna uses mutual coupling between standing-wave current elements
to produce a traveling-wave unidirectional pattern. It uses parasitic elements around
the feed element for reflectors and directors to produce an end-fire beam. Because the
antenna can be described as a slow wave structure [11], the directivity of a traveling-
wave antenna (Figure 10-2) is bounded when we include the directivity due to the
element pattern. Maximum directivity depends on length along the beam direction and
not on the number of elements.

Consider two broadside-coupled dipoles. We describe the circuit relation between
them by a mutual impedance matrix:

[
V1

V2

]
=

[
Z11 Z12

Z12 Z22

] [
I1

I2

]
(10-21)

where the diagonal elements of the matrix are equal from reciprocity. If we feed one
element and load the other, we can solve for the input impedance of the feed antenna:

Zin = V1

I1
= Z11 − Z2

12

Z22 + Z2
(10-22)

where Z2 is the load on the second antenna. We short the second antenna (Z2 = 0) to
maximize the induced standing-wave current and eliminate power dissipation:

Zin = Z11 − Z2
12

Z22
(10-23)

The mutual impedance between broadside-coupled dipoles (Z12) approaches the self-
impedance (Z11) as we move the dipoles close together and causes the input impedance
[Eq. (10-23)] to approach zero.

The second equation of Eq. (10-21) for a shorted antenna relates the currents in the
two dipoles:

0 = Z12I1 + Z22I2 or I2 = −Z12I1

Z22
(10-24)
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Since Z12 ≈ Z22, the current in the shorted dipole is opposite the current in the feed
element, and radiation from the induced current reduces the fields around the dipoles.
Given the current on the parasitic element, we solve for the far field by array techniques.
When the elements are spaced a distance d , with the parasitic element on the z-axis
and the feed element at the origin, the normalized pattern response is

E = 1 + Ire
j (kd cos θ+δ)

where Ire
jα = I2/I1 is the current of the parasitic element relative to the feed element.

If we take the power pattern difference between the pattern at θ = 0 and θ = 180◦,
we get

|	E|2 = −2Ir sin δ sin kd (10-25)

Case 1. δ = 180◦, 	E = 0, and we have equal pattern levels in both directions with
a null at θ = 90◦.

Case 2. 180◦
< δ < 360◦, 	E > 0. The parasitic element is a director, and the

pattern in its direction will be higher (θ = 0) than at δ = 180◦.
Case 3. 0◦

< δ < 180◦, 	E < 0. The parasitic element is a reflector because the
pattern away from it (θ = 180◦) is higher than at θ = 0◦. We look at the phase
of the relative currents to determine whether a parasitic element is a director or
a reflector.

The mutual impedance between dipoles has been reduced to equations for a variety
of configurations [12–16]. By use of these equations, Figure 10-9 was generated to
show the phasing between a half-wavelength dipole and a parasitic dipole as the length
and spacing are varied. A parasitic dipole of given length can be either a director or
a reflector for different element spacing. Generally, a director is somewhat shorter
and a reflector is somewhat longer than the feed element. If we reduce the length
of the feed element or increase the element’s diameter, the dividing line between a
director and a reflector shifts upward. Figure 10-9 also shows the decreased element
length at the transition point for additional spaced elements. Figure 10-10 illustrates a
three-element Yagi–Uda dipole antenna having one reflector and one director around
the feed element. The design is a compromise between various characteristics. With a
50-� source its response is as follows:

Gain = 7.6 dB Front/back ratio = 18.6 dB
Input impedance = 33 − j7.5 VSWR = 1.57 (50-� system)
E-plane beamwidth = 64◦

H -plane beamwidth = 105◦

With input matching we could increase the gain by 0.2 dB. A 3-dB gain bandwidth
is 15% and a 1-dB gain bandwidth is 10%. At the 3-dB band edges the F/B ratio drops
to 5.5 dB. As in many designs, the peak gain does not occur at the peak F/B value.
The gain rises by 0.2 dB to a 50-� source at a point 3% higher in frequency than the
point of maximum F/B. The maximum gain with input impedance matching (8.6 dB)
occurs at a point 7% above the center frequency. The dipole element pattern narrows
the E-plane beamwidth and produces a null at 90◦ from the boresight. The traveling
wave alone forms the H -plane beam. A design to optimize the gain would have a
phase progression along the elements to match Eq. (10-10) for short traveling-wave
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FIGURE 10-9 Phase of current on a parasitic dipole relative to current on a driven dipole.

FIGURE 10-10 Three-element Yagi–Uda dipole antenna.
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antennas. The array of dipoles samples an aperture 0.6λ long. Figure 10-3 gives an
H -plane beamwidth of about 80◦ for this optimum design. With only three elements
we find difficulty in matching the phase distribution required and will produce a design
with a low F/B value.

We analyze Yagi–Uda antennas by using the moment method [17]. First, calculate
the mutual impedance matrix:

[V ] = [Z][I ] (10-26)

The input voltage vector [V ] has only one nonzero term (the feed). By solving the
linear equations (10-26), we compute the currents at the base of each element. We
assume a sinusoidal current distribution on each element [Eq. (5-1)] and solve for the
pattern response from the array of dipoles. We calculate the input impedance of the
array by using the moment method; and by retaining the current levels on the dipoles
for a known input power, we can calculate gain directly.

The moment method allows reasonably quick calculation of the antenna character-
istics so that optimization techniques can be applied. Cheng and Chen [18,19] use a
perturbation technique that alternates between element spacings and lengths to find an
optimum design with rapid convergence. Running a single iteration of each produces
the design. No optimization technique can assure that a global optimum can be found.
Designs will converge to local maximums. By limiting the search variables, the method
of Cheng and Chen avoids some local optimums. Most optimizations work at a single
frequency and produce designs with high gains that fall off rapidly with increasing
frequency because the wave relative propagation constant increases with frequency.
The gain curves in Figure 10-1 decrease rapidly after the peak point as the sidelobes
increase. All traveling-wave end-fire antennas follow this pattern.

Kajfez [20] developed a method for optimizing over a band of frequencies. His
method is to reduce the peak gain while increasing the bandwidth and reducing some
of the tolerance requirements. We fix the band limits at frequencies f1 and f2 and
optimize a composite cost function containing both the average directivity and the
ripple or deviation from the average. Maximize

C = Davg − wd (10-27)

where Davg is the average directivity and d is the RMS deviation of the directivity
from Davg over the band weighted by w:

Davg = 1

f2 − f1

∫ f2

f1

D(f )df

d =
√

1

f2 − f1

∫ f2

f1

[D(f ) − Davg]2df (10-28)

D(f ) is the directivity function (a ratio, not dB). We vary w to stress either high
directivity or design flatness. If w is made two or more times greater than the directivity
expected, an optimization routine will design an antenna with a flat response. We
calculate the integrals by using Gauss–Legendre quadrature, which requires only a
few evaluations of the pattern response (five to eight).
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We usually use only one reflector element. More elements can be used, but they add
little. The gain of a two-element pair—a feed dipole and a reflector dipole—rises with
increasing separation in a broad peak starting about 0.15λ, peaking about 0.20λ, and
falling slowly with greater spacing. The reflector primarily affects F/B. As we move
it closer to the feed element, the impedance level of the antenna drops. The response
of the antenna is less sensitive to the diameter of the reflectors than to the director
diameters, and it requires smaller adjustments to the length to compensate the design
for the change.

We add length to the antenna to increase gain by adding director elements. Length
along the axis, not the number of elements, produces gain provided that element cur-
rents are phased correctly. Beyond 0.3λ to 0.4λ spacings, the coupling drops and
reduces control of the current phasing on the directors. Changing the diameters of
directors requires changing the element lengths to retune the antenna. In one method,
computer optimization routines are used to vary the dimensions to optimize some cost
function. The lengths of the feed and first director elements have the greatest effect on
gain. If we use a gradient-type search, we observe that most of the design concentrates
on varying those element lengths. In long antennas with many directors the elements
far from the feed change little from initial lengths by a gradient search. We can also
adjust the lengths to match the current phasing of the elements to a distribution such
as that given by Eq. (10-10). Manual tuning requires a retuning of the two elements
closest to the feed and the feed element after tuning each director.

When adjusting the lengths to maximize bandwidth [Eqs. (10-27) and (10-28)],
we should optimize gain to a given source impedance. We can optimize a single-
frequency antenna to any reasonable impedance level and design a matching network,
but broadband antennas may produce difficult matching network problems when we
try to achieve design gain. A moment method gives us the peak gain to a conjugate
matched source, but to compute gain to a given source impedance Zs , we multiply the
voltage gain by

2
√

Re(ZI )Re(Zs)

|ZI + Zs | (10-29)

where ZI is the antenna input impedance. Equation (10-29) allows optimizations to a
given source impedance.

Table 10-3 gives the dimensions of an antenna designed by using Eqs. (10-27)
and (10-28) for a maximum gain to a 50-� source [Eq. (10-29)]. The normalized
frequency limits are 0.95 to 1.05, with a weighting w of 15 on the RMS deviation d .

TABLE 10-3 Six-Element Yagi–Uda Dipole
Antenna with 0.01λ-Diameter Elements

Element
Type

Element
Length (λ)

Location
Along Boom (λ)

Reflector 0.484 0
Feed 0.480 0.250
Director 0.434 0.400

0.432 0.550
0.416 0.700
0.400 0.850
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TABLE 10-4 Normalized Frequency Response of the Yagi–Uda Dipole Antenna of
Table 10-3

Normalized
Frequency

Gain,
50-�

Source (dB)

Max
Gain
(dB)

F/B
(dB)

Input Impedance
(�)

VSWR,
50-�

Source

0.90 4.8 6.3 1.4 29.6 − j45.2 3.36
0.92 7.0 7.7 3.6 32.5 − j30.8 2.29
0.94 8.4 8.7 6.5 39.3 − j19.6 1.65
0.96 9.0 9.2 9.9 42.7 − j13.2 1.39
0.98 9.4 9.5 14.4 39.5 − j7.6 1.34
1.00 9.7 10.0 22.7 31.2 + j2.8 1.61
1.02 9.5 10.6 21.1 22.0 + j19.8 2.70
1.04 8.1 11.1 12.2 15.2 + j42.5 5.79
1.06 5.5 10.8 7.2 12.9 + j69.1 11.4
1.08 2.5 8.9 3.7 16.0 + j97.2 15.2

Table 10-4 lists the calculated response of the antenna. Like many designs, gain falls off
more rapidly on the high-frequency end. In this case maximum gain actually occurs at
maximum F/B. Pattern calculations of a uniform traveling-wave distribution, satisfying
the Hansen and Woodyard criterion, gives peak F/B when it is an odd integer multiple
of λ/4, of which Yagi–Uda antennas are one example.

Higher gains can be attained for six elements. Chen and Cheng [19] achieved
13.4 dB, but for a restricted bandwidth. We achieve bandwidth by limiting gain, and
with each added element we can improve flatness at a higher gain level. Kajfez shows
a nearly constant gain–bandwidth product for different designs. The gradient search
method used in the design in Table 10-3 is sensitive to initial conditions and often con-
verges to a local maximum and misses the global maximum, because it cannot escape
a local optimum. A better design may be achieved by using a new starting point.

Table 10-5 lists the design of a 16-element Yagi–Uda dipole antenna. In this case
the optimization routine manipulated elements 4 through 16 as a group to reduce the
number of different-sized elements to four. This technique reduces tooling cost and
causes little loss in possible performance. Since the size of the last few directors has
only a minor effect on the total gain, most of the iterations in an optimization routine
are spent changing the elements around the driven dipole and only slowly changing
those elements. We adjust the reflector, feed element, and first director to match into
the uniform surface wave structure of equally spaced elements.

TABLE 10-5 Sixteen-Element Yagi–Uda Dipole
Antenna with 0.006λ-Diameter Elements

Element
Element Length

(λ)
Element Spacing

(λ)

Reflector 0.4836 0.2628
Feed 0.4630 0.2188
Director 1 0.4448 0.2390
Directors 2 to 13 0.4228 0.2838
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The frequency response (Table 10-6) has a peak gain equal to the value given by
Figure 10-2 for the hybrid mode and at this overall length. Like many Yagi–Uda
dipole antennas, this antenna matches best to a low input impedance (30 �). The gain
rises slowly below the resonant frequency of the antenna and falls rapidly for higher
frequencies, as predicted by Figure 10-1, which shows gain versus relative propagation
constant along a uniform surface-wave structure.

The element diameter affects the optimum length of the Yagi–Uda dipole ele-
ments. A number of optimum Yagi–Uda dipole antennas of various overall lengths
were built with different-diameter elements and adjusted to regain optimum perfor-
mance [21]. Table 10-7 summarizes the length changes required of directors when
their diameters are changed. Similarly, Table 10-8 lists the changes required for reflec-
tors. Tables 10-7 and 10-8 require little or no change in the feeder element length to
regain the optimum design. We use the tables to modify element lengths when changing

TABLE 10-6 Normalized Frequency Response of a 16-Element Yagi–Uda Dipole
Antenna

Normalized
Frequency

Gain,
30-� Source

(dB)
F/B
(dB)

Input Impedance
(�)

VSWR,
30-� Source

0.95 12.1 12.2 26.7 − j36.1 3.34
0.96 13.4 12.2 28.4 − j26.4 2.40
0.97 14.4 12.2 31.6 − j17.7 1.77
0.98 15.0 13.3 34.3 − j12.1 1.49
0.99 15.5 17.3 32.2 − j7.3 1.28
1.00 15.9 35.1 27.0 + j3.4 1.17
1.01 15.2 15.6 27.3 + j20.8 2.05
1.02 14.0 10.6 40.4 + j33.0 2.61
1.03 13.7 11.8 36.0 + j23.5 2.06
1.04 8.2 16.4 22.8 + j51.5 5.77
1.05 5.4 4.7 54.1 + j68.2 5.03

TABLE 10-7 Length Changes of Directors in a Yagi–Uda Dipole Antenna for Various
Diameters

Dipole
Diameter (λ)

Dipole
Length Change (λ)

Dipole
Diameter (λ)

Dipole
Length Change (λ)

0.001 0.030 0.008 0.006
0.0012 0.029 0.009 0.002
0.0015 0.027 0.010 0.000
0.002 0.025 0.012 −0.004
0.0025 0.023 0.015 −0.010
0.003 0.021 0.020 −0.018
0.004 0.017 0.025 −0.024
0.005 0.014 0.030 −0.029
0.006 0.011 0.040 −0.038
0.007 0.008

Source: [21].
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TABLE 10-8 Length Changes of Reflectors in a Yagi–Uda Dipole Antenna for Various
Diameters

Dipole
Diameter (λ)

Dipole
Length Change (λ)

Dipole
Diameter (λ)

Dipole
Length Change (λ)

0.001 0.011 0.008 0.002
0.002 0.008 0.010 0.000
0.003 0.006 0.020 −0.003
0.004 0.005 0.030 −0.005
0.006 0.003 0.040 −0.006

Source: [21].

TABLE 10-9 Length Changes to Increase Elements of a Yagi–Uda Dipole Antenna to
Account for Boom Diameter

Boom
Diameter (λ)

Dipole
Length Change (λ)

Boom
Diameter (λ)

Dipole
Length Change (λ)

0.002 0.0010 0.022 0.0158
0.004 0.0022 0.024 0.0173
0.006 0.0034 0.026 0.0189
0.008 0.0048 0.028 0.0205
0.010 0.0064 0.030 0.0220
0.012 0.0084 0.032 0.0236
0.014 0.0095 0.034 0.0252
0.016 0.0111 0.036 0.0265
0.018 0.0127 0.038 0.0283
0.020 0.0142 0.040 0.0299

Source: [21].

diameters. Element length tolerance is 0.003λ. The boom supporting the elements also
affects element length for optimum designs. Table 10-9 lists element length increase
versus boom diameter.

Example Determine the length adjustment necessary when building the design of
Table 10-5 with 0.002λ elements.

From Table 10-7, the length adjustment for 0.006λ is 0.010λ and the adjustment
for 0.002λ-diameter elements is 0.025λ. We increase the lengths of the directors by
the difference, 0.015λ. Similarly, from Table 10-8 we increase the reflector length by
0.005λ. For a boom diameter of 0.02λ we also increase the lengths of all the elements
by 0.0142λ (Table 10-9).

10-3.1 Multiple-Feed Yagi–Uda Antennas

We further improve the response of Yagi–Uda antennas by directly feeding more than
one element. The convenience of Yagi–Uda antennas lies in the single feed point.
With many feed points a log-periodic dipole antenna (Section 11-12) produces a wider
band design. Figure 10-11 illustrates a four-element design with a crisscross feeder.
Table 10-10 lists the calculated response of the antenna. The gain response is flat with
good F/B and input VSWR over the band for this short antenna (0.3λ long), where
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FIGURE 10-11 Multiple-feed Yagi–Uda dipole antenna.

TABLE 10-10 Normalized Frequency Response of a Four-Element Yagi–Uda Dipole
Antenna with a Crisscross Feeder Between Two Elements (Figure 10-11)

Normalized
Frequency

Gain,
50-� Source

(dB)
F/B
(dB)

Input Impedance
(�)

VSWR,
50-� Source

0.90 7.0 12.1 30.1 + j14.0 1.82
0.92 7.1 17.5 42.6 + j4.0 1.20
0.94 7.0 21.9 44.0 − j3.0 1.15
0.96 6.9 25.9 43.9 − j5.8 1.20
0.98 7.0 31.3 44.4 − j7.3 1.22
1.00 7.0 53.0 45.2 − j9.4 1.25
1.02 7.1 30.7 44.8 − j13.5 1.35
1.04 7.2 23.6 40.0 − j18.8 1.60
1.06 7.0 19.0 29.0 − j20.5 2.12
1.08 6.5 15.3 16.5 − j14.2 3.29
1.10 5.0 11.9 8.0 − j2.3 6.30

the crisscross feeder adds an additional 180◦ phase shift along the length to produce a
backfire pattern from a fast wave.

The simple antenna of Figure 10-12 uses only two dipole elements with a crisscross
feed. Like many Yagi–Uda dipole antennas, this antenna, matches best to a low-
impedance (25-�) source. Although its gain and bandwidth (Table 10-11) are less than
those of the four-element multiple-feed antenna, its bandwidth is better than that of a
singly fed equivalent antenna. The length along the boom still determines the ultimate
gain of the antenna, but the backfire crisscross feed improves F/B.
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FIGURE 10-12 Dipole two-element backfire antenna.

TABLE 10-11 Normalized Frequency Response of a Two-Element Crisscross-Fed
Antenna

Normalized
Frequency

Gain (dB),
25-� Source

F/B
(dB)

Input
Impedance (�)

VSWR,
25-� Source

0.95 5.0 13.1 12.8 − j1.6 1.96
0.96 5.2 14.8 13.6 − j0.5 1.84
0.97 5.4 17.0 14.4 + j0.8 1.74
0.98 5.6 20.0 15.2 + j2.3 1.67
0.99 5.8 24.6 16.0 + j3.9 1.62
1.00 5.9 34.1 17.0 + j5.9 1.61
1.01 6.0 29.0 18.2 + j8.2 1.64
1.02 6.1 22.0 19.7 + j10.8 1.71
1.03 6.1 18.1 21.7 + j14.0 1.84
1.04 6.1 15.3 24.3 + j17.6 2.02
1.05 6.1 13.2 27.9 + j22.0 2.36

We can no longer just use Eq. (10-26), the matrix equation of mutual impedances,
to analyze a multiple-feed antenna. We invert the mutual impedance matrix and add
a 2 × 2 admittance matrix of the transmission-line feeders between the dipole center
point nodes:

[I ] = [Ya + Yf ][V ] (10-30)

where Ya is the dipole mutual admittance matrix and Yf is the feeder admittance matrix.
Since most of the elements are short-circuited, we reduce the matrix [Eq. (10-30)] to
only the terms involving unshorted dipoles and solve for the input voltages for a current
vector with one nonzero term (the input). We return to Eq. (10-26) and use the voltage
vector obtained from the solution of Eq. (10-30) to calculate dipole base currents.
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Multiple feeds can also be used to reduce sidelobes. A backward-wave excited
array (crisscross feeder) feeding a Yagi–Uda dipole antenna reduced the antenna
sidelobes [22]. The extra feed points add degrees of freedom for a part of design
independent of the number of elements.

10-3.2 Resonant Loop Yagi–Uda Antennas

We can make Yagi–Uda arrays by using the resonant loop element (Section 5-18). The
loop radiates its maximum signal normal to the plane of the loop (along the axis) and
has a linearly polarized wave in the direction of the voltage across the feed. A two-
element loop parasitic array, reported in 1942, was built to eliminate corona problems
at high altitudes in Ecuador [23]. The maximum standing-wave voltage points occur
at λ/4 from the feed along the loop and not at the ends of rods, where air breakdown
can occur. The symmetry of the loop reduces the effects of nearby structures on the
antenna and they can be mounted at the voltage null opposite the feed, along a metal
rod in a coaxial array with little effect.

Loop shape has only a minor effect on input impedance at a resonant perimeter
length of about 1.1λ. The larger size (and gain) of the basic element raises the gain of a
parasitic (Yagi–Uda) array from an array made with dipoles. A simple antenna consists
of two square loops (Figure 10-13) with a feed element and a parasitic reflector. The
reflector perimeter is somewhat larger than the feed loop. Such an antenna, commonly
called a cubic quad, is usually made by stretching wires on a frame. The direction of
the voltage across the feed point determines the linear polarization sense. The antenna
of Figure 10-13 radiates horizontal polarization as fed.

Table 10-12 lists the dimensions of antennas designed to be resonant (zero reactance)
and have maximum F/B ratios with a wire radius of 0.0002λ. The maximum F/B occurs
for a loop spacing of 0.163λ. Table 10-13 lists the frequency response of the antenna
spaced at 0.15λ. As with a Yagi–Uda dipole antenna, the design must be adjusted
as the wire radius changes to obtain the same response. Table 10-14 lists the design
changes on a logarithmic scale. The greater change occurs to the reflector perimeter.

Beam
Direction

E

Feed

Reflector

S

FIGURE 10-13 Cubic-quad traveling-wave resonant loop antenna.
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TABLE 10-12 Characteristics of Resonant Cubic-Quad Antennas, 0.0002λ-Diameter
Wire

Element
Spacing (λ)

Feed
Perimeter (λ)

Reflector
Perimeter (λ)

Gain
(dB)

F/B
(dB)

Input
Resistance

0.10 1.000 1.059 7.2 17.5 76
0.15 1.010 1.073 7.1 32.8 128
0.16 1.013 1.075 7.1 46.1 137
0.163 1.014 1.0757 7.1 59.6 140
0.17 1.016 1.077 7.1 38.1 145
0.18 1.018 1.079 7.0 31.0 153
0.20 1.025 1.082 6.9 24.6 166

TABLE 10-13 Normalized Frequency Response of a
Cubic-Quad Antenna Resonant at a Spacing of 0.15λ

Normalized
Frequency

Gain
(dB)

F/B
(dB)

Input
Impedance

(�)

0.96 7.3 2.9 38.5 − j140.9
0.98 7.8 11.0 72.9 − j55.4
0.99 7.5 17.9 100.5 − j22.4
1.00 7.1 32.8 128.0
1.01 6.8 19.9 150.7 + j13.3
1.02 6.8 14.8 167.0 + j24.2
1.03 6.2 12.1 178.0 + j35.1
1.04 6.0 10.4 185.4 + j47.3
1.06 5.7 8.2 195.0 + j77
1.08 5.5 6.8 202.0 + j113.4

TABLE 10-14 Cubic-Quad Antenna Adjustments
for Changing Wire Diameter

Wire
Diameter (λ)

Reflector
Perimeter (λ)

Feeder
Perimeter (λ)

0.00005 −0.013 −0.002
0.0001 −0.007 −0.001
0.0002 0 0
0.0004 0.009 0.002
0.0008 0.019 0.003
0.0016 0.033 0.005
0.0032 0.052 0.008

When close to the final design, we adjust the reflector for maximum F/B and the feed
loop for resonance independently. Each has little effect on the other.

We approach the design of coaxial loop arrays from traveling-wave phasing.
Table 10-15 lists the traveling-wave relative propagation constant along an infinite
array of loops. For a given array length we use Eq. (10-8) or (10-10) to determine the
required mode relative propagation constant to maximize gain.
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TABLE 10-15 Relative Propagation Constant Along
a Coaxial Array of Circular Loops

Circumference,
S/b

2πb/λ 0.25 0.50 1.00

0.74 1.05 1.03 1.01
0.76 1.06 1.04 1.016
0.78 1.08 1.05 1.02
0.80 1.09 1.06 1.03
0.82 1.12 1.08 1.04
0.84 1.14 1.11 1.06
0.86 1.17 1.13 1.07
0.88 1.20 1.16 1.09
0.90 1.24 1.20 1.12
0.92 1.30 1.26 1.16
0.94 1.37 1.32 1.23
0.96 1.47 1.40 1.32
0.98 1.60 1.55 1.44

Source: [24].

Example Compute the loop size for an array 2λ long with the ratio of loop spacing
to loop radius = 0.5 for maximum gain.

We use Eq. (10-10) with R = 4.5 to calculate P = 1 + 1/9 = 1.111. By using
Table 10-15, we have 2πb/λ = 0.84 and b = 0.134λ. The spacing between loops is
0.5(0.134) = 0.0668λ, and 30 loops are required for an antenna length of 2λ.

Table 10-15 suggests closely spaced elements. With further tabular data [25], designs
with loop spacing up to 0.3λ are possible. The reflector element is spaced 0.1λ away
from the exciter with a perimeter of 1.05λ and we adjust the perimeter of the feed
element to resonate the antenna.

In the design above, the Hansen–Woodyard criterion for maximum gain for the
relative propagation constant was not used. The gain in Figure 10-1 falls rapidly for
an increase in P (increased frequency), and we obtain a better pattern bandwidth by
designing with less than the maximum gain value of P . The possible gain bandwidth
shrinks (Figure 10-1) when we increase length to obtain more gain. This is a general
property of all traveling-wave end-fire structures. Similarly, the beam of a leaky wave
antenna (P < 1) scans toward end fire with increasing frequency because P increases.

We can combine loops and dipoles in the same array. In some designs, dipoles are
used for far-out directors in front of loops. Similarly, a parasitic loop can provide an
effective reflector element for a dipole or crossed dipoles. A loop spaced 0.25λ from
a resonant dipole (0.47λ long) increased gain to 5.9 dB with an F/B value of 21.7 dB
for a loop circumference of 1.15λ.

10-4 CORRUGATED ROD (CIGAR) ANTENNA

A corrugated rod traveling-wave structure consists of disks attached to a central metal
rod (Figure 10-14). The rod supports a TM axisymmetrical mode with readily calcula-
ble parameters [2] that has a pattern null on axis. The hybrid mode HE11 (Section 7-3)
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FIGURE 10-14 Corrugated rod (cigar) traveling-wave structure.

TABLE 10-16 Measured Relative Propagation
Constant on a Corrugated Rod (Cigar) Antennaa

(D − d)/λ P (D − d)/λ P

0.15 1.03 0.275 1.23
0.175 1.05 0.30 1.31
0.20 1.08 0.325 1.47
0.225 1.12 0.35 1.67
0.25 1.16 0.375 1.92

Source: [26].
a 0.15 ≤ disk spacing/λ ≤ 0.21; 0.15 ≤ central rod diameter/λ ≤
0.21; 0.018 ≤ disk thickness/λ ≤ 0.025.

propagates on the rod to produce a pattern with its peak on the axis with linear polar-
ization. The hybrid mode is the sum of the TE11 and TM11 modes, and the surface
wave has exponentially decaying radial fields.

We design this antenna empirically by measuring phase velocities along an excited
structure. The gain increases slightly for an increased diameter, but it is determined
primarily by length. Table 10-16 lists measured data for the range of disk spacing from
0.15λ to 0.21λ. In this range, disk spacing has a negligible effect on the wave velocity.
We use this table with a given length to determine the necessary relative propagation
constant P .

We can excite the corrugated rod from a number of feeding structures. A circu-
lar waveguide propagating the TE11 mode will excite the rod in the hybrid HE11

mode [26] when tapered into the guide. A resonant ring will excite the rod when
backed by a suitable reflector ring or disk. Wong and King [27] excite the rod from
an open-sleeve dipole in a cavity (Figure 5-28). The length of the rod controls the pat-
tern beamwidth, and the feed structure controls the impedance. Each may be adjusted
somewhat separately.

The traveling-wave disk on rod radiates high sidelobes of about 10 dB, which can
be reduced by placing the antenna in a cone [27]. The rod runs the length of the cone
and extends beyond the end by about 0.72λ. This antenna uses a corrugated rod 3.39λ

long at the center frequency and is placed in a cone with a 2.94λ diameter and a
height of 2.58λ. The rod was under the limit given above with a diameter of 0.074λ

and average disk diameter of 0.311λ. Using the scale, we read P = 1.139, close to
the optimum value of 1.137 for the given rod length. A disk spacing of 0.24λ shows
that we can build successful antennas beyond the limits given above and that the scale
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(Outer Diameter - Inner Diameter/l

Relative Propagation Constant - 1, P -1

SCALE 10-1 Corrugated rod relative propagation constant P given dimensions.

can still be used. When placed in the cone, the sidelobes dropped to about −30 dB,
and when fed by the disk sleeve dipole shown in Figure 5-28, the antenna has a 34%
2 : 1 VSWR bandwidth. At a peak gain of 16.5 dB, the antenna exceeds the gain of a
traveling-wave antenna by about 1 dB for its given length, but falls short of the gain
of a horn by about 1 dB. Table 10-16 was interpolated to produce Scale 10-1 for the
design of a corrugated rod.

Example Design a corrugated rod 4λ long at 10 GHz (30 mm wavelength).
By using Eq. (10-13), we compute directivity = 7.58(4) = 30.32 or 14.8 dB for

P given by Eq. (10-8). P = 1 + 0.465/4 = 1.116. We use P − 1 with Scale 10-1
to determine the difference between the central rod diameter and the disk diameter:
(D − d)/λ = 0.2224. If we select the midpoint in the range of values for the dimen-
sions, we obtain the dimensions of the corrugated rod in the center constant-dimension
region. The disk spacing S = 0.18λ = 5.4 mm. The central rod diameter d = 0.18λ =
5.4 mm. The outer disk diameter D = 0.2224λ + 0.18λ = 0.4024λ = 12.07 mm. The
disk thickness t = 0.022λ = 0.66 mm. The corrugated rod should start with P = 1.3
at the feed point. We read (D − d)/λ = 0.2973, which calculates to an outer disk
diameter D = (0.2973 + 0.18)λ = 14.32 mm. The initial taper can be three disk ele-
ments long. At the end it is a good idea to taper the last few disk diameters to reduce
end reflection.

10-5 DIELECTRIC ROD (POLYROD) ANTENNA

A dielectric rod will support an HE11 hybrid mode. Inside the rod we describe the
fields with Bessel function Jn. Outside the rod the fields fall off exponentially and
we use the modified Bessel function Kn. The hybrid mode consists of the sum of
TE11 and TM11 modes. To determine the mode velocity, we equate the propagation
constants of the internal and external waves. This equation contains two constants and
we eliminate one by equating the radially directed wave impedance at the boundary.
The result is a transcendental equation that must be solved by graphical or numerical
methods [2]. Table 10-17 summarizes the results of these calculations for common
dielectrics. Interpolation of the table produces Scales 10-2 and 10-3 for design using
Telfon or Delrin with a dielectric constant of 3.1.

Figure 10-15 shows a common feeding arrangement for the polyrod antenna. The
rod protrudes from a circular waveguide supporting the TE11 mode, which excites the
hybrid mode HE11 on the rod. At the waveguide exit we use a rod diameter to give
P from 1.2 to 1.3 so that the wave will be closely bound to the rod. The feeding



500 TRAVELING-WAVE ANTENNAS

TABLE 10-17 Diameter of a Dielectric Rod
Supporting an HE11 Mode (λ)

Dielectric Constant

P 2.08 2.32 2.55 3.78 10

1.01 0.345 0.316 0.296 0.240
1.02 0.378 0.345 0.322 0.257 0.1780
1.03 0.403 0.366 0.340 0.270 0.1824
1.04 0.425 0.384 0.356 0.279 0.1860
1.05 0.444 0.400 0.369 0.287 0.1888
1.06 0.462 0.414 0.381 0.294 0.1912
1.07 0.479 0.427 0.393 0.300 0.1933
1.08 0.495 0.440 0.404 0.306 0.1951
1.10 0.527 0.465 0.424 0.317 0.1983
1.12 0.559 0.489 0.444 0.327 0.2010
1.14 0.592 0.513 0.463 0.336 0.2034
1.16 0.627 0.538 0.482 0.344 0.2055
1.18 0.663 0.563 0.501 0.353 0.2074
1.20 0.703 0.590 0.521 0.361 0.2092
1.25 0.823 0.664 0.575 0.381 0.2133
1.30 0.994 0.758 0.638 0.402 0.2170
1.35 1.283 0.885 0.716 0.424 0.2205
1.40 1.081 0.820 0.448 0.2238

Teflon Rod Diameter, l

Relative Propagation Constant - 1, P - 1

SCALE 10-2 Teflon rod HE11-mode relative propagation constant.

Delrin Rod Diameter, l

Relative Propagation Constant - 1, P -1

SCALE 10-3 Delrin rod HE11-mode relative propagation constant.

guide (Figure 10-15) has a quarter-wavelength choke to reduce the backfire lobe due
to direct radiation from the transition [28]. The choke region can also be flared in a
short horn [29].

The second region of the rod tapers either to a uniform diameter section to produce
maximum gain or to a tapered section to reduce sidelobes. At the end of the antenna we
taper the rod rapidly in a terminating section to bring the relative propagation constant
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FIGURE 10-15 Dielectric rod (polyrod) antenna.

of the surface wave near 1, to reduce reflection from the end. We calculate P along
the guide and adjust the uniform section diameter or tapered section length to satisfy
the total extra phase shift condition for maximum end-fire radiation.

Example Design a dielectric rod antenna 5λ long using Teflon and compare it to a
design using Delrin.

The relative propagation constant for peak gain is independent of the material,
which we compute from Eq. (10-8): P = 1 + 0.465/5 = 1.093. By using Scales 10-2
and 10-3, we read the rod diameters: 0.516λ for Teflon and 0.356λ for Delrin. At the
point where the rod exits from the feeding waveguide, a suitable relative propagation
constant is 1.25. We use the scales to find the rod diameters: 0.822λ for Teflon and
0.456λ for Delrin. These diameters are proportional to the free-space wavelength, not
the wavelength in the rod.

The loss tangent for Delrin is 0.005, whereas Teflon is only 0.0012; we need to
consider the loss in the antenna. The loss for a wave propagating through a dielectric
is given by

20π
√

εr tan δ

λ ln 10
= 27.3

√
εr tan δ

λ
dB/λ

Consider that only a portion of the power in the wave propagates in the dielectric. We
use the effective dielectric constant to determine a filling factor that reduces the loss:

filling factor = QF = 1 − 1/εeff

1 − 1/εr

We relate the effective dielectric constant to P : εeff = P 2 = (1.093)2 = 1.195:

loss(dB) = 27.3QF
√

εr tan δ[Length(λ)]
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Continous
Tapered Rod

Constant Dia.
w/ End Tapers

FIGURE 10-16 Teflon rod antenna: constant diameter with short end tapers (solid line); con-
tinuous tapered rod (dashed line).

The filling factors are easily calculated: QF = 0.3138 (Teflon) and QF = 0.2405 (Del-
rin). When we use the filling factor, we calculate the losses: 0.074 dB (Teflon) and
0.29 dB (Delrin). The filling factor reduces the losses if the wave is traveling totally
in the waveguide: 0.24 dB (Teflon) and 1.20 dB in Delrin. Because a large propor-
tion of the power travels outside the rod, it is reasonable to use a lossy dielectric for
the antenna.

Figure 10-16 shows the patterns of 5λ-long Teflon rod antennas for two designs.
The solid curve illustrates the pattern for an antenna with an initial taper 0.4λ long
between the 0.822λ diameter and the constant 0.516λ rod and a final taper 0.15λ long
to a 0.42λ diameter. The dash curve is the pattern of an antenna with a continuous
taper along the length from 0.822λ to 0.42λ. You can see that the first null fills in
and the beamwidth increases. The Delrin rod design shows similar results. For short
dielectric rod antennas we can use a continuous taper. The pattern for a design 6λ long
distorts completely with a continuous taper design.

10-6 HELICAL WIRE ANTENNA [13, Chap. 7]

We can excite a single wire wound in a helix to radiate an end-fire pattern on its axis
for a circumference around one wavelength. The axial beam is circularly polarized in
the same sense as the helix. In low-gain applications the antenna works over a 1.7 : 1
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FIGURE 10-17 Axial mode helical wire antenna (RHC).

bandwidth that decreases as gain increases. We see this result from Figure 10-1 for any
traveling-wave antenna. Figure 10-17 illustrates the parameters of a helical antenna.
The helix has a pitch angle α with spacing S on a diameter D. These parameters are
interdependent.

C = πD circumference

tan α = S

C
= S

πD

L =
√

S2 + C2 = πD

cos α
length of turn

(10-31)

10-6.1 Helical Modes

We arrive at an understanding of antenna operation by considering the modes of the
helical transmission line. For diameters small in wavelengths, the wave travels along
the wire at the free-space velocity in the T0 mode. This mode has equal phase points
occurring on separate turns. Traveling-wave tube amplifiers use this mode to couple
power from an electron beam. The helix slows the axial velocity of the wave by sin α.

The second mode, T1, occurs when the circumference of the helix approaches one
wavelength. The entire phase variation cycles on one turn. The velocity on the wire
adjusts for the circumference in this mode. The adjustment gives a velocity whose axial
component closely matches the Hansen and Woodyard criterion for increased end-fire
directivity over a range of pitch angles.

The third helical transmission-line mode, T2, has two cycles on each turn. The wave
slows as compared with the T1 mode, but near a circumference of one wavelength, the
T1 mode predominates. We express the general mode distribution by Ime±jmφ , where
m is an integer, φ the polar angle of the developing helix, and the sign determines the
polarization sense (− = right hand).

The T1 mode radiates its beam peak on the helix axis. The T0 mode radiates the
normal mode, a dipole-shaped pattern, from a combination of small loops and short
dipoles arrayed along the axis. It produces circular polarization over a narrow band of
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frequencies. The T2 mode radiates a pattern with a shape like that of the traveling-wave
current (Figure 10-5a) with a null on its axis.

10-6.2 Axial Mode

Antennas radiating from the T1 mode have good axial ratio, bandwidth, and the pos-
sibility of high gains over narrow bandwidths. Transitions such as the feed and helix
end excite other helical transmission-line modes detected in their patterns, but proper
construction reduces these anomalies. We analyze the pattern response from a linear
array of single-turn helical antennas spaced at the pitch S. Each loop is a traveling-
wave current element I1e

±jφ , from Ime±jmφ . We calculate the total pattern from pattern
multiplication of the single-turn helical antenna and a uniform-amplitude linear array
with the pattern

E0
sin(Nψ/2)

Nψ/2
(10-32)

where ψ = kS cos θ + δ, δ is the phase shift between array elements, and N is the
number of turns. The antenna currents satisfy the Hansen and Woodyard criterion in
the range of circumferences 0.78λ to 1.33λ. We can excite the T1 mode over that entire
band for short helixes (lengths less than 2λ), but we can obtain it cleanly for only a
limited bandwidth on long helixes. The Hansen–Woodyard criterion determines the
axial phase shift: −δ = kS + (π/N). Since the wave travels around the wire, we add
2π to match the T1 mode. Along the wire we have

PkL = Pk
√

C2 + S2 = kS + π

N
+ 2π or

PL

λ
= S

λ
+ 1 + 1

2N
(10-33)

Given L = πD/ cos α = C/ cos α, we define Cλ = C/λ and substitute it into Eq. (10-33)
to obtain the relative propagation constant along the wire a result verified by experiments:

PCλ

cos α
= Cλ tan α + 2N + 1

2N

P = sin α + [(2N + 1)/2N ] cos α

Cλ

(10-34)

The pattern of a single turn determines polarization along the axis while the array
determines the pattern shape. Figure 10-18 gives the pattern of a single turn of a
helical antenna with the T1 traveling-wave current for a five-turn helix. We see a
cross-polarization level on a boresight of less than 25 dB, but little front to back when
we include both polarizations. The end-fire array forms the beam to produce the total
pattern (Figure 10-19). The five-turn helical antenna has the same boresight polarization
as the individual turn. The boresight axial ratio improves when we add turns by

axial ratio = 2N + 1

2N
(10-35)
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FIGURE 10-18 Single turn of helical wire antenna with a circumference of 0.9λ and α = 13◦.
The relative propagation constant P = 1.416 on wire.

FIGURE 10-19 Five-turn helical wire antenna with a circumference of 0.9λ and α = 13◦. The
relative propagation constant P = 1.416 on wire.
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for current that follows the increased directivity criterion. The current wave rotates
on the helix at nearly the radian frequency that approximately matches a circularly
polarized wave. The helical antenna radiates the same sense of polarization as its screw
sense. When looking into (from the beam peak) a helical antenna radiating RHC, the
currents rotate counterclockwise.

The helical antenna operates best over the following limits:

pitch angle: 12◦ ≤ α ≤ 18◦ circumference/λ: 0.78 ≤ Cλ ≤ 1.33

Helical antennas can be built successfully outside the limits of α. The diameter affects
the possible directivity slightly, but we determine the directivity of the T1 mode mainly
from the helix length. Figure 10-2 includes a plot of helix directivity. Exciting only
the T1 mode becomes a problem as length increases because the feed region excites
other helical transmission-line modes.

10-6.3 Feed of a Helical Antenna

We feed short helical antennas from a coax mounted on a ground plane that should be
at least λ/2 in diameter to achieve a good transition. The pattern does not depend on
the ground plane to achieve good F/B because the five-turn helical antenna does not
contain a ground plane. The antenna can be fed successfully from a coax twisted in a
helix with the outer conductor tapered away in the manner of the split tapered coax
balun (Section 5-15.9) until the center conductor alone feeds the helical antenna and
a good F/B is achieved [30]. We place the coax feed on the edge of the helix and not
on its axis, where an extra length transition must be made to the diameter. When the
wire bends into the axis, it generates additional modes on the helix.

Kraus [13] gives an approximate formula for the helical antenna impedance: R =
141Cλ. The actual value varies about it. We reduce this impedance by soldering a
flat strip on the wire from the feed of the helix [31]. The combination of the strip
and the ground plane form a parallel-plate line that we space close together to form a
tapered impedance transformer to produce a broadband low-impedance input. Empirical
adjustments, by distorting the last half- to quarter-turn to taper wire spacing close to the
ground plane, can also match the antenna to 50 � in a manner similar to the flat plate
on the wire. We can design the transition by considering a flat sheet transmission line
over a ground plane. The thickness of a dielectric sheet h and line width w necessary
to match to the input impedance Z0 is given by [32, p. 234].

h = w

(377/
√

εrZ0) − 2

For narrowband applications we can use a gamma match feed (Section 5-13) to improve
overall system performance. The long helical antenna is grounded and shunt fed. This
prevents static charge buildup on the antenna and discharge through the receiver. The
gamma match feed narrowbands the antenna and makes it act as a filter.

The feed configuration generates modes other than the T1 to satisfy the boundary
conditions. Similarly, conditions on the end of the helical antenna also generate extra
modes. Tapering the last two turns to a diameter 65% of the helix diameter reduces the
mode generation from the end [33]. Tapering the diameter in the middle of the helix
can also control the antenna’s characteristics as we add degrees of freedom.
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10-6.4 Long Helical Antenna
A long helical antenna can achieve the directivity predicted in Figure 10-2 over a
limited bandwidth. The limited bandwidth comes not so much from the restrictions of
Figure 10-1 (because the velocity on the helical transmission line adjusts to the length
through coupling) as from the feed structure. Its structure generates extra modes whose
radiation greatly reduces directivity. The normal flat ground-plane feed is limited to
lengths of about 2λ. Beyond that length the feed generates the T0 mode that radiates
a broad pattern at θ = 90◦.

A circular cup around the feed point (Figure 10-20) greatly reduces the excitation
of unwanted modes. We determine the cup dimensions empirically. The dimensions
given in Table 10-18 have been built or reported. In both cases the directivity fell by
0.2 dB from the curve for the Hansen and Woodyard criterion of Figure 10-2. The cup
cannot fully eliminate the generation of extra modes on the helical antenna, since the
pattern has dropped by about 0.5 dB from prediction because of the radiation of these
extra modes. The 35-turn helical antenna has a 15% bandwidth, and the 50-turn helix
has only a 10% bandwidth.

The helical transmission line fails to maintain the Hansen and Woodyard phase
criterion over the total range of Cλ as the length increases. The lower values of Cλ

retain this property, and the range of acceptable values shrinks as the number of turns
increases. As the helix approaches infinite length, the range of acceptable Cλ values
approaches 0.78 [35]. At 50 turns on a 13◦ pitch helical wire antenna, the proper phase
velocity is maintained over the range 0.78 ≤ Cλ ≤ 1.0.

Based on empirical data the peak gain can be expressed as an approximate formula
in decibels [34]:

Gp = 8.3

(
πD

λp

)√
N+2−1 (

NS

λp

)0.8 (
tan 12.5◦

tan α

)√
N/2

FIGURE 10-20 Cup feed for a long axial mode helical wire antenna.

TABLE 10-18 Cup Feed Dimensions for Long
Helical Antennas

N α C L

Cup
Diameter

Cup
Height

35 12.8◦ 1.07λ 8.5λ 0.82λ 0.40λ

50 14◦ 0.90λ 11.2λ 0.97λ 0.85λ

Source: [34]
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The peak gain occurs when πD/λ ∼ 1.135. Given the ratio of gain to peak gain
G/Gp, the frequency range ratio of high/low frequency is expressed as another empir-
ical formula:

fh

fl

= 1.07

(
0.91

G/Gp

)4/(3
√

N)

The beamwidth of a helical wire antenna has been expressed as an empirical for-
mula [36]:

HPBW = KB[2N/(N + 5)]0.6

(πD/λ)
√

N/4(NS/λ)0.7

(
tan α

tan 12.5◦

)√
N/4

Usual helixes have a constant KB = 61.5◦, but helixes constructed on a dielectric rod
require a different constant because the dielectric slows the wave on the helix.

10-6.5 Short Helical Antenna [37]

We can mount a short helical wire in a square cavity to make a conformal antenna.
As shown in Figure 10-21, the helix has only two turns and the cavity depth is just
sufficient for the helix height. The number of turns has minor effects on the pattern,
determined primarily by the cavity width. Helixes with pitch angles from 12 to 14◦

give the best results when the cavity width is at least 0.5λ. The pattern axial ratio
improves for larger cavities, and the best results are obtained with an antenna on a flat
ground plane. A cavity width of 0.75λ gives good results, with its beamwidths ranging
from 45 to 60◦.

In the last quarter-turn we reduce the pitch angle to between 2 and 6◦ to form the
tapered transformer to match the feed to 50 �. As with the longer helical antennas,
we place the feed connection on the perimeter of the helix. Both the impedance match

FIGURE 10-21 Two-turn helical wire antenna in a cavity. [From [37], Fig. 1,  1956 IRE
(now IEEE).]
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and pattern axial ratio improve compared with the central axis feed. The VSWR and
pattern band extend from 0.9 to about 1.7 times the design frequency when the helix
circumference is one wavelength. A two-turn helical antenna with a pitch angle of
12◦ has a cavity depth given by 2λ tan 12◦ = 0.425λ for a one-wavelength helix cir-
cumference. This antenna is somewhat thicker than the antennas of Chapter 6, but the
increased volume increases the bandwidth to nearly an octave.

10-7 SHORT BACKFIRE ANTENNA

A short backfire antenna consists of a round disk ≈2λ diameter with a λ/4 rim. A
dipole (or crossed dipole) is mounted λ/4 above the disk, and a second small disk
≈λ/2 diameter is located λ/2 above the lower disk [38]. The smaller disk acts as a
semitransparent obstacle that reflects a portion of the radiation from the dipole. The
large disk reflects the signal from the small disk and the ringing between the two
increases the effective length of the antenna. This increases the gain to 12 to 14 dB.
The general backfire consists of a slow-wave radiator pointed into a ground plane that
causes ringing with the reflector element, for example, in a Yagi–Uda dipole antenna.
Unfortunately, the short backfire has a bandwidth that ranges between 3 and 5%.
Changing the large flat disk into a shallow cone and retaining the outer rim increases
the bandwidth but reduces the gain a little [39]. Adding an extra director disk gives
the extra parameter needed for impedance matching over a wider band.

Figure 10-22 shows side views of the normal and conical short backfire antennas.
Often, the dipole is fed with a sleeve that attaches to a central tube used to support
the director disk. We place the balun inside the tube and feed one or two dipoles.
The sleeves cannot increase the bandwidth, but they raise the input resistance. Sim-
ilar to a Yagi–Uda dipole antenna, the director and reflector disks lower the input

(a) (b)

FIGURE 10-22 Short backfire antenna with dimensions in λ: (a) original narrowband design;
(b) conical wideband design.
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impedance. The conical reflector increases the input resistance because the cone lowers
the interaction between the two disks by reducing one reflection.

We could say that the conical back reflector approximates a parabola and explain its
operation in that way, but the director disk is too small to produce an effective ground
plane for the feed dipole. Figure 10-23 plots the pattern of the normal short backfire
of Figure 10-22a when fed from a crossed dipole excited for RHC polarization in
the direction of the director disk. The crossed dipole radiates LHC toward the 2.05λ-
diameter rimmed reflector that converts LHC to RHC upon reflection. Gain peaks at
14.2 dB, as shown, with a narrow beamwidth determined by the 2.05λ diameter with
an F/B ratio of 12 dB (LHC backlobe) and low sidelobes. The conical reflector (15◦

cone, Figure 10-22b) pattern (Figure 10-24) has the same beamwidth as Figure 10-23,
but has higher sidelobes and greater radiation in LHC polarization, which produced
a pattern with 2 dB less directivity. Figure 10-25 plots the Smith chart of a conical
short backfire, showing the dual resonance that produces a 1.6 : 1 VSWR bandwidth of
29%. For comparison a 0.8λ-diameter disk was used as the feed dipole ground plane.
Figure 10-26 gives the pattern of the comparison paraboloidal reflector with diameter
2λ fed by a crossed dipole located over a 0.8λ-diameter disk. We read Table 5-1 to
determine a suitable reflector f/D (0.34) given the beamwidth and place the reflector
focus at the phase center 0.12λ above the ground plane. Gain drops to 10.8 dB because
the feed and reflector combination radiates large spread-out sidelobes and significant
cross-polarization, but its beamwidth matches that of short backfire antennas.

RHC

LHC

FIGURE 10-23 Pattern of a short backfire antenna of Figure 10-22a with RHC crossed-dipole
feed.
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RHC

LHC

FIGURE 10-24 Pattern of a conical short backfire antenna of Figure 10-22b with RHC
crossed-dipole feed.

0.80

1.20

1.0

0.90
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FIGURE 10-25 Normalized impedance response of a conical short backfire antenna
(Figure 10-22b).
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RHC

LHC

FIGURE 10-26 Pattern of a 2λ-diameter paraboloidal reflector f/D = 0.34 with RHC
crossed-dipole feed located over a 0.8λ-diameter disk.

We cannot make significant changes to the pattern obtained from a short backfire
antenna by varying its parameters. We increase gain by arraying these antennas, but
we cannot scan the array because the narrow element beamwidth reduces gain rapidly
with scan. Of course, the larger ground plane of the array reduces the backlobe, but in
Figure 10-23 it only reduces gain by 0.28 dB. The simple construction is its advantage.

10-8 TAPERED SLOT ANTENNAS

A tapered slot antenna uses a flared slot line etched on a dielectric substrate to produce
an end-fire pattern from a surface wave. A single element radiates this end-fire pattern
over a wide bandwidth. When we combine a number of these elements in an array,
their mutual coupling improves the impedance match when we space them closely.
This unique property allows the construction of wide bandwidth arrays with both good
impedance properties and the suppression of grating lobes.

Figure 10-27 illustrates four types of tapered slot antennas. The input at the bot-
tom of the figure consists of a either a coaxial-to-slotline transition or a fin-line in a
waveguide that feeds into the slotline. In the slotline region the small gap binds the
power to the transmission line, and as the transmission line slot widens, it radiates.
Similar to the dielectric rod antenna, where we design the initial portion to have waves
tightly bound to the rod, the slotline binds waves tightly to it. In the dielectric rod we
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(a) (b) (c) (d)

FIGURE 10-27 Tapered slot antennas: (a) exponentially tapered slot antenna; (b) linear tapered
slot antenna; (c) continuous-width slot antenna; (d) dual exponentially tapered slot antenna.

use a slow wave to attach the waves since values of P > 1, the relative propagation
constant, cause a rapid attenuation of the fields for movement away from the surface.
Instead of slowing the wave, we use the narrow gap of the slotline to bind the wave.
Because the tapered slot is etched on a dielectric substrate, the wave is slowed on the
slotline. Opening the slot increases radiation.

An exponentially tapered slot antenna (ETSA) [40], also called a Vivaldi antenna,
radiates nearly equal E- and H -plane beamwidths that change only slightly as fre-
quency increases. The input impedance match is good and the antenna radiates when
the final width of the slot is ≥λ/2. At the lowest frequency the exponential taper is
0.72λ long for an antenna etched on an alumina substrate. The antenna radiates a pat-
tern with a 180◦

H -plane beamwidth and a 70◦
E-plane beamwidth for a λ/2 aperture.

For a λ aperture width it radiates E- and H -plane beamwidths of 60◦ and 70◦. The
two beamwidths are essentially the same for 1.5λ and larger apertures:

Vivaldi antenna beamwidths, alumina substrate

Aperture (λ) 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

Beamwidths (deg) 50 42 38 33 31 30 30 30 32 35

The effective radiation region length combined with the substrate slowing determines
the H -plane beamwidth of this slow-wave structure. Figure 10-2 shows that the antenna
with an aperture of 1.5λ and a length of 2.2λ has its wave slowed by the dielectric
to achieve a 50◦ beamwidth because without dielectric, slowing the beamwidth would
be 75◦. The flat and increasing beamwidth as frequency increases indicates that the
radiation region shrinks. This means that the large slot widths radiate all the power in
the wave before the end.

The antenna has high E-plane sidelobes on the order of −5 dB. It appears that the
antenna generates a surface wave in the dielectric because it has high cross-polarization
that contains 20 to 30% of the radiated power, with its peak cross-polarization occurring
in the diagonal plane. We can improve the cross-polarization by removing the dielectric
in the slot region, but the beamwidth broadens because the dielectric no longer slows
the wave. Even removing a portion, such as a rectangular notch, helps.

We excite this type of tapered slot antenna by using a microstrip-to-slotline tran-
sition. We etch a microstrip transmission line on the side opposite the slotted ground
plane and run it across the slot. We can either connect the line to a via that runs to
the other side of the slotted ground plane or connect it to a fan pattern that produces
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a wide-bandwidth short circuit. The fan reduces fabrication cost because it is only
an etched element. The open-circuited end of the slotline is terminated with a circu-
lar opening to produce a wide-bandwidth open circuit. Unfortunately, this connection
generates a surface wave in the dielectric that radiates cross-polarization, due to the
imbalance between the feed and the ground plane.

A linear tapered slot antenna (LTSA) radiates a higher gain pattern than that of an
ETSA because it relies on length to narrow its beamwidth [41]. The opening angles
of these antennas range from 5 to 12◦. We use the development in Section 10-1 to
determine the gain and beamwidth. The dielectric substrate slows the wave in the slot
and increases gain. We calculate an effective dielectric thickness from the equation

teff

λ
= (

√
εr − 1)

t

λ

The optimum values for teff/λ range between 0.005 and 0.03. Thinner substrates pro-
duce insufficient slowing, and thicker substrates produce too much slowing, which
breaks up the main beam. Figure 10-28 plots the pattern of an LTSA with and without
the dielectric in the tapered region. The pattern of the antenna containing the dielectric
has broken up and has high sidelobes. Removing the dielectric increases the beamwidth
while decreasing the sidelobes.

A continuous-width slot antenna (CWSA), is similar to a dielectric rod antenna. An
initial short taper opens the slot to a uniform-width region where most of the radiation
occurs. Sometimes the uniform region then opens to a wider region (Figure 10-27) that
terminates the slotline. We design this antenna similar to a dielectric rod and determine
its length by the desired gain. This antenna has the narrowest beamwidth and highest
gain of the tapered slot antennas for a given length.

The final configuration in Figure 10-27 uses a dual exponential tapered slot (DETSA)
to improve the impedance match. The bunny-ear version of this antenna achieves a
2 : 1 VSWR from 0.5 to 18 GHz [42]. This antenna uses a balanced slotline to reduce
the cross-polarization. A balanced slotline has the same pattern etched on both sides
of the substrate. The feed region consists of a stripline transition, which crosses both
slots and is terminated in a centrally located fan to generate the short circuit. The
balanced configuration prevents generation of a surface wave in the dielectric. The
narrowed-width slotline ground plane improves the impedance match. Both the ground
plane increases and the slot widens in the radiation region. The size and pattern of this
antenna are similar to those of the Vivaldi, with a reduced mutual coupling because
the substrate surface wave is eliminated.

Other feeding configurations of the tapered slot antenna include the antipodal Vivaldi
antenna [43] and the balanced antipodal antenna [44]. These are not slot antennas but
are similar in shape and performance to the Vivaldi antenna. The antipodal antenna
places the two sides of the Vivaldi exponential taper on opposite sides of the substrate.
We feed one side directly from the microstrip line and rapidly taper the ground plane
symmetrically to form a twin plate line. To form the radiation portion, the twin plate
line is spread into the dual exponentially radiator similar to a bunny-ear antenna.
Unfortunately, the offset between the two sides causes significant cross-polarization,
higher than that of the Vivaldi antenna, etched on a substrate. The advantage of the
antenna is the easy transition from microstrip to radiator. By using a balanced antipodal
design fed from a stripline, cross-polarization can be reduced while retaining the simple
construction. This three-layer structure feeds one ear from the center conductor and
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FIGURE 10-28 LTSA patterns: (a) with εr = 10 substrate in slot; (b) without dielectric in
slot; (c) outline of the antenna. (From [41], Fig. 5,  1989 IEEE.)

balanced ears located on top of each other from the two ground planes. The design
tapers the two ground planes until a balanced triplate line is formed before widening
the center conductor and ground planes by using the dual exponential design. The
balanced configuration reduces cross-polarization by 15 to 20 dB.

Tapered slot antennas have unique properties useful for wide bandwidth arrays.
Although a single-element radiator requires the slot opening to be at least λ/2, in an
array the mutual coupling allows this to be reduced to 0.1λ [45]. The scan impedance
produces a low-VSWR array measured to an array scan angle of 50◦ over a 5.9 : 1
bandwidth. Figure 10-29 shows an antenna built with tapered slot antennas in an egg
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FIGURE 10-29 Square array of 64 tapered slot antennas. (From [45], Fig. 1,  2000 IEEE.)

crate configuration to radiate dual linear polarization. To prevent grating lobes, the
elements must be limited to a little larger than a λ/2 separation at the highest operating
frequency. Remember that the length of the antennas will not increase the element gain
because it cannot exceed the effective area associated with each element. The length is
to improve the impedance match and to increase the mutual coupling that allows the
small slot widths.

Figure 10-30 illustrates construction of an ETSA element in the array. It uses a
balanced slotline construction that has matching slots on both sides of the substrate.
Halfway between the two sides a strip transmission line feeds the two slots when
terminated by a fan that produces a short circuit. A circular open circuit etched in the
two sides terminates the slotline. The stripline feeder contains a tapered transformer to
transition between the 50-� input and the 82-� balanced slotline. The mutual coupling
between the elements produces narrow-frequency bandwidth resonances in the array
that can be suppressed by adding vias between the two sides of the balanced slotline
along the edges and around the stripline feeder.

10-9 LEAKY WAVE STRUCTURES

A leaky wave structure allows for the separate specification of the amplitude distri-
bution and beam direction. We position the beam direction by adjusting the relative
propagation constant [Eq. (10-7)]. The surface-wave structure permits only small mod-
ifications of the amplitude distribution for the pattern scanned to end fire. The uniform
distribution on an axisymmetrical leaky wave structure has a directivity of 2L/λ inde-
pendent of scan angle until the pattern approaches end fire. Near end fire the cone
beamwidths join to produce higher directivities. Figure 10-1 shows the modification
of directivity as these join (P → 1). The directivity is nearly constant below P = 0.9
for lengths 8λ and 10λ.

Tapered amplitude distributions reduce directivity by the amplitude taper efficiency
[Eq. (4-6)]. The relative propagation constant along the structure determines the beam
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FIGURE 10-30 Numerically calculated VSWR for an infinite array comprised of “contour” via
elements scanned to 50◦ in the H -plane. The first grating lobe appears at 6.29 GHz. (From [45],
Fig. 3,  2000 IEEE).

direction [Eq. (10-7)] for small values of attenuation per unit length. We use Eq. (4-44)
for the phase error efficiency due to the varying P along the antenna by replacing
sin θmax by cos θmax:

PEL =

∣∣∣∣
∫ L

0
E(z)ejk cos θmaxzdz

∣∣∣∣
2

[∫ L

0
|E(z)|dz

]2 (10-36)

where E(z) is the voltage distribution along the line source. We can use values other
than θmax in Eq. (10-36) and evaluate the pattern at any θ . When we join a number of
leaky wave line sources into a planar array, scanning the beam causes a reduction in
the effective aperture length. We reduce the gain by a projection of the length in the
scan direction.

Fast-wave structures have cutoff frequencies that modify the relative propagation
constant:

P =
√

1 −
(

fc

f

)2

=
√

1 −
(

λ

λc

)2

(10-37)

where fc is the cutoff frequency and λc is the cutoff wavelength. As frequency
increases, P approaches 1 and scans the beam toward end fire. A waveguide can be
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made into a leaky wave antenna by openings that cut the wall currents. For example, a
slot in the center of the broadwall of a rectangular waveguide does not radiate because
it cuts no net current. If we vary the distance of a continuous slot from the centerline,
we can control the leakage rate. We form other leaky wave antennas by cutting closely
spaced holes or slots. We analyze these discrete radiators as continuous structures
whose radiation rate is controlled by the size of the holes or the placement of the slots.
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11
FREQUENCY-INDEPENDENT
ANTENNAS

We derive the idea of self-scaling or frequency-independent antennas from the princi-
ple of frequency scaling used in model measurements. As we decrease the wavelength
(increase frequency), we decrease the model size in the same proportion. To build wide-
band antennas, we need structures that can be their own scale models. One approach
is to remove any characteristic length by specifying the antenna only in terms of
angles [1]. This method leads to the continuously scaled spiral antennas. A second
approach is to include antenna parts that scale a portion of the antenna exactly at
discrete frequency intervals. We scale these parts logarithmically so that the intervals
between frequencies of perfect scaling grow with frequency. These log-periodically
scaled antennas have varying characteristics between the points of scaling whose rip-
ple decreases as the scaling constant approaches 1 (continuous scaling), but the number
of parts increases.

A continuous or log-periodically scaled structure has no ends, but we must be able
to truncate a successful frequency-independent antenna with little effect on the pattern.
A self-scaling antenna must be a transmission-line structure that delivers power to an
active region where we feed the high-frequency end, and it serves as a transmission line
for the lower-frequency portion. The currents must decay after a radiating active region
so that the structure can be stopped without adversely affecting antenna properties. We
identify the finite active region by truncation constants that we use to size the design.
Although the spiral radiates most of the input power in a finite active region, we
improve the pattern by loading the ends of the arms to prevent radiation of currents
flowing in the reverse direction and accept loss.

The active region radiates most of the power for a particular frequency. A true
frequency-independent antenna has a constant beamwidth over its band, although we
expect small variations between the frequencies of exact scalings (log periodic). We
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obtain constant beamwidths only if the active-region dimensions scale with wave-
length. The truncation requirement affects the pattern. A self-scaling antenna cannot
radiate in the direction of the expanding structure. If the antenna did radiate in that
direction, portions of the structure would be excited in higher-order modes beyond the
normal truncation point. Log-periodic and conical logarithmic spirals backfire toward
the feed point.

We can make a structure with logarithmically scaled radiating parts along a transmis-
sion line and still not achieve a successful broadband antenna. The parts must couple
electromagnetically, not just through the connection of the feeder. We place dipoles of
the log-periodic dipole antenna close together to produce the coupling needed for rapid
attenuation. Similarly, we closely space the turns of a spiral so that the arms couple
and there is sufficient length in the active region along which to radiate. Usually, we
can account for the rapid attenuation of currents through loss of power in radiation by
considering a single mode.

A successful self-scaling antenna structure satisfies these requirements [2]:

1. The antenna contains its own scale model parts—continuous or discrete—that
can be scaled to an infinitesimal size.

2. The antenna radiates most of the power in a finite active region so that it can be
terminated with minimal effect.

3. Fed from the high-frequency end, the antenna must be a transmission line to
carry power to the low-frequency end.

4. The dimensions of the active region must scale with wavelength.
5. The antenna must not radiate in the direction of expanding structure.
6. The parts must have significant direct coupling outside the transmission-line

feeder.

SPIRAL ANTENNAS

Spiral antennas consist of a thin metal foil spiral pattern etched on a substrate, usually
fed from the center, and located over a cavity. The etching contains a symmetrical
pattern of at least two arms, but we build spiral antennas with more arms to radiate in
multiple modes or to suppress unwanted modes. The two-arm version can be fed using
a simple balanced line requiring a balun. With more arms we need a feed network
called a beamformer, which contains an output port for each spiral arm and a separate
input for each spiral mode. This network ideally divides the power into equal-amplitude
outputs with a linear phase progression between them. The phase progression of each
spiral mode cycles one or more times through all phases, and the complex summation
of any set of mode voltages equals zero. The number of complete rotations through
all phases equals the mode number; mode 1 has one cycle, 2π radians; mode 2 has 2
cycles, 4π radians; and so on.

Figure 11-1 plots the measured pattern of an eight-arm equiangular spiral operating
in mode 1 obtained from single-arm measurements added using an ideal feed network
(beamformer). The pattern shows RHC polarization as co-polarization and LHC polar-
ization as cross-polarization. This is the most commonly used mode. When we change
the number of arms and feed them properly with mode 1, we obtain similar patterns.
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LHC

RHC

FIGURE 11-1 Measured pattern of an eight-arm spiral operating in mode 1 using an ideal
beamformer.

The extra arms aid the pattern symmetry, because they suppress radiation of higher-
order modes that distort the pattern. By building a spiral with more than two arms we
can intentionally excite radiation of higher-order modes. Figure 11-2 gives the patterns
of the eight-arm spiral radiating mode 2 when fed from an ideal beamformer. When
we plot the pattern for mode 3, it is similar to the mode 2 except that the beam peak
occurs at an angle farther from broadside. All higher-order modes of the spiral have a
beam shape similar to mode 2 except that the beam peak angle continues to increase
with mode number.

Each spiral mode radiation has a phase rotation of a full 2π radian cycles for con-
ical patterns, which equals the mode number. A conical pattern measurement rotates
φ about the spiral plane normal axis while holding θ constant. For example, we could
measure patterns at θ = 45◦ on the patterns of Figures 11-1 and 11-2 near the peaks
of the higher-order modes. We determine the mode radiating by the phase slope. RHC
polarization produces a negative slope as φ increases [counterclockwise (CCW) rota-
tion]. We use the convention that positive modes radiate RHC and negative modes
radiate LHC and place the negative sign in the mode expressions. Increasing the angle
is similar to increasing the distance in terms of the radiation phase. By exciting the
spiral in adjacent mode numbers, the phase difference between them can be used to
determine the φ angle of arrival when one mode supplies the reference signal for phase
measurement.
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LHC

RHC

FIGURE 11-2 Measured pattern of an eight-arm spiral operating in mode 2 using an ideal
beamformer.

We use multiple modes on the spiral for an angle of arrival (AOA) system by
comparing two modes. The amplitude difference between modes 1 and 2 determines
the angle off the axis of the spiral plane. Off-axis, where the higher-order modes
radiate, we measure a phase progression equal to the mode; for example, mode 2
radiation changes by 720◦ as we rotate the antenna one revolution in a conic pattern.
Given the mode number, the phase varies by −m360◦ during one revolution. If we
use mode 1 as a phase reference, the phase of mode 2 relative to it changes −360◦

during one revolution about the spiral plane axis. By using both amplitude and phase,
the two angles of arrival can be determined. Although a three-arm spiral will support
both modes 1 and 2, necessary for AOA, we use a four-arm spiral because it uses a
simpler feed network [3].

11-1 MODAL EXPANSION OF ANTENNA PATTERNS

We use a modal or Fourier series expansion of conical patterns for the analysis and
measurement of spirals. A conical pattern varies φ while holding θ constant in the
spherical coordinate system and is the AUT or head axis of a model tower positioner.
Each term in the expansion includes the modal phasing of a circularly polarized signal.
For example, the mode 1 phase has a single rotation −2π in the full CCW rotation of
a conical pattern, mode 2 has a −2(2π) phase rotation, and so on.
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The mode number of a spiral refers to the number of 2π (radians) or 360◦ (degrees)
cycles that occur in the feed phasing when progressing through the arms CCW. Mode
1 phases in a two-arm spiral are 0◦ and 180◦. Cycling to the first input adds another
180◦, to give 360◦ around the spiral arms. The phase difference moving CCW between
arms is found from the mode number m and the number of arms N :

phase = −2πm

N
or − 360◦

m

N
(11-1)

The spiral radiates RHC polarization for m = 1 using the notation of Eq. (11-1).
An axially symmetrical antenna such as a spiral can radiate these modes when we

phase the feeding of the ports to match the phase rotation of the mode. We must add
spiral arms to feed higher-order modes. Modes +1 and −1 produce the same phas-
ing at the feed points of a two-arm spiral: 0◦ and 180◦, and the spiral wrap direction
determines the polarization radiated. All odd-order (. . . , −3, −1, 1, 3, 5, . . .) modes
have the same phasing on two feeds, which means that the two-arm spiral will radiate
these modes efficiently if current flows on the arms where the spiral circumference
is the same integer number of wavelengths. The number of arms equals the number
of independent modes, although the zero mode is difficult to use. You should expand
Eq. (11-1) for various numbers of arms and modes. The sense of the spiral wrap and
the direction of current flow determine the circular polarization sense. On an N -arm
structure the modes have a cyclic variation, so that, for example, mode 3 of a four-arm
spiral has phasing equivalent to m = −1 (i.e., mode 1 LHC polarization). In other
words, the modes are modulo 4 with mode 3 equal mode −1. When feeding the right-
hand four-arm spiral with mode 3 from the center, the spiral fails to radiate from the
currents flowing out the arms because each arm radiates RHC while the feed phasing
is LHC, and they cancel. The spiral acts as a circular polarization filter. These currents
reflect from the ends of the open-circuited arms, travel inward, and radiate LHC polar-
ization. On a two-arm spiral, whenever the circumference is an odd-integer multiple
of a wavelength, the currents radiate. Increasing the number of arms to four from two
reduces the number of modes radiating because modes 3, 7, and so on, phases no longer
match the feeding phases of the arms. Only modes 5, 9, . . . phases match mode 1.

When you apply Eq. (11-1) to an eight-arm spiral you will discover that for a rotation
of five-cycles (mode 5) the phase shift between ports −225◦ equals the phasing of
mode −3 135◦ and shows the modulo characteristic of modes. An eight-arm spiral
has the following equivalences: mode − 3 = mode 5, mode − 2 = mode 6, mode − 1 =
mode 7. Although we can divide the feed voltages on an N -arm spiral into N orthogonal
modes, the antenna can radiate any mode. For example, if we feed the center of a two-
arm spiral in mode 1, it will radiate a large portion of the power when its circumference
is 1λ. When the circumference is 2λ, the spiral would radiate mode 2 except that the
180◦ phase difference between the two arms cancels this radiation. The antenna radiates
some power in mode 2 if the feed voltage balance and phasing is not perfect. Mode 3
radiates when the circumference is 3λ and radiates part of the remaining power on the
two spiral arms because the feed phases on the arms do not cancel. If the spiral is large
enough to have a circumference of 5λ, mode 5 will radiate from the two-arm spiral.
Mode 4 radiation is canceled by the arm phasing. Given a spiral with N arms, the modes
that have significant radiation are a multiple of the number of arms when fed with a
perfect beamformer network [3]:

mradiated = m + kN k = . . . , −2,−1, 0, 1, 2, . . . (11-2)
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N -arm spiral suppresses N − 1 modes between possible modes given that the spiral
circumference is large enough to support a particular mode. For example, a six-arm
spiral excited in mode 1 will radiate modes 1, 7, 13, . . . , −5, −11, . . . and when
excited in mode 2 it will radiate modes 2, 8, 14, . . . , −4, −10, . . . , and so on. If
the antenna radiates sufficient power in the lower-order modes, little is left for the
higher-order mode radiation and the patterns will be fine. Increasing the number of
arms reduces the number of spiral modes radiated.

Given a conical pattern F(φ), we expand it in the Fourier series of modes and
easily compute the expansion coefficients from an integral performed numerically on
a measured pattern:

F(φ) =
m=∞∑

m=−∞
Eme−jmφ where Em = 1

2π

∫ 2π

0
F(φ)ejmφ dφ (11-3)

Each conical pattern has its own set of modal coefficients Em (θ ) for each polarization.
The polarizations are pairs of orthogonal polarizations, such as (Eθ , Eφ) or (ERHC,
ELHC). We apply these modal coefficients when testing or analyzing spiral antennas
as a measure of performance. We use an integral over the entire radiation sphere to
determine the relative power in each mode:

Pm =

∫ π

0

[∣∣∣∣
∫ 2π

0
ERHC(θ, φ)ejmφ dφ

∣∣∣∣
2

+
∣∣∣∣
∫ 2π

0
ELHC(θ, φ)ejmφ dφ

∣∣∣∣
2
]

sin θ dθ

∫ π

0

∫ 2π

0
[|ERHC(θ, φ)|2 + |ELHC(θ, φ)|2] sin θ dφ dθ

(11-4)

Equation (11-4) is written in terms of the RHC and LHC polarizations, but we can
substitute any other pair of orthogonal polarizations and use the same formula. The
denominator is proportional to the total power radiated by the antenna.

11-2 ARCHIMEDEAN SPIRAL [4, 5]

Although Archimedean and exponential spirals have different equations defining them,
practice shows that their characteristics do not differ by very much. The Archimedean
spiral arm lengths can be long and produce high circuit losses at low frequencies. The
wrap angle of an Archimedean spiral changes from a high value in the center to a low
value on the outside. The high wrap rate in the center excites more higher-order modes
at high frequencies. The low wrap rate at the outer diameter improves pattern shape at
low frequencies. Although an exponential spiral has more uniform characteristics over
the entire frequency range, an Archimedean spiral is useful.

The Archimedean spiral radius increases uniformly with angle:

r = r0 + aφ (11-5)

where r0 is the initial radius and a is the growth rate. We cannot scale the structure
to an infinitesimal size by using Eq. (11-5), one of the requirements of frequency-
independent antennas. Figure 11-3 shows two shapes of Archimedean spirals. We
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FIGURE 11-3 Archimedean spirals: (a) LHC; (b) RHC.

usually make the antenna complementary—the uniform-width metal strip equals the
spacing between strips. A two-arm infinite structure has an impedance of 188 � from
the Babinet–Booker principle (Section 5-3) for a self-complementary structure.

A balanced line feeds the spiral from the center. The radiations from the nearly equal
and opposite currents at the feed point cancel in the far field. The growing spiral arms
separate the currents. When the perimeter of the turn approaches one wavelength, the
out-of-phase currents at P and Q (Figure 11-3) become in phase at points P and P ′,
and radiation from the currents no longer cancel in the far field. This condition starts
somewhat before the 1λ perimeter point and continues for some distance after it. To
radiate efficiently the antenna should have a perimeter of 1.25λ at the lowest operating
frequency. The upper-frequency truncation size is determined by a requirement to
limit the spacing between feed points to less than λ/4, although to reduce radiation
of higher-mode modes, they should be closer. For higher-mode operation, we increase
the outer diameter to (m + 0.25)λ/π, and the spacing between the feed points can be
increased to mλ/4.

A spiral radiates RHC polarization on one side and LHC polarization on the other
side. We mount the antenna over a cavity to eliminate the unwanted polarization. The
balun producing the balanced feed for a two-arm spiral can be mounted in the cavity.
It converts the antenna from a coax input to prevent pattern squint and to limit higher-
order mode radiation. Hand rules determine the sense of circular polarization. Let your
fingers roll in the direction of the spiral (tips toward increasing radius) and the thumb
points to the pattern maximum.

11-3 EQUIANGULAR SPIRAL

Rumsey [2] states that an antenna shape determined entirely by angles will be fre-
quency independent because it is invariant to a change of scale. The biconical antenna
satisfies the angle requirement but fails the truncation requirement for frequency inde-
pendence because the current remains constant along its length and it fails the truncation
requirement. An equiangular spiral antenna (Figure 11-4) defined by

r = r0e
aφ (11-6)



528 FREQUENCY-INDEPENDENT ANTENNAS

Coax line soldered
to spiral line

Center conductor
 jumper

Dummy coax 
outer shield

R

d

a

FIGURE 11-4 Equiangular spiral (RHC) with an infinite balun feeder.

is defined only by angles, since the inner radius can be related to an angle r0 = eaφ0

and satisfies the requirement for an antenna completely determined by angles. The
wrap angle α (Figure 11-4) relates to the growth rate a of the spiral by

a = 1

tan α
(11-7)

Another way of specifying the curves, the expansion factor (EF) specifies the ratio of
radius increase in one turn; it is similar to the growth rate. The direct relationship to
geometry makes it easy to specify:

a = ln (EF)

2π
or EF = e2πa (11-8)

EF =
(

ro

ri

)1/turns

or Turns = ln (ro/ri)

ln (EF)

Angles also determine the width of the arms. We rotate the spiral by δ to generate the
other edge of the spiral arm. We shift the angle φ by 180◦ (π) to generate the second
arm. We also specify the spiral arms by the arm/gap ratio, so we can use noncomple-
mentary arms as an impedance transformer. For δ specified in radians (substitute 360◦

for 2π if degrees) and N arms in the spiral, we can derive simple formulas between
the two terms:

δ = 2π

N (1 + gap/arm)
or

gap

arm
= 2π

Nδ
− 1 (11-9)
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The input impedance of the antenna depends on the number of arms and the mode
of operation. For complementary arms, or arm/gap = 1, an extension of the Babi-
net–Booker principle determines the impedance for a free-space spiral [6]:

Zm = η0/4

sin (π|m|/N)
(11-10)

Equation (11-10) uses η0 = 376.73 � and positive m for the mode number where m =
1, 2, . . . , N − 1, whether RHC or LHC. Table 11-1 lists the characteristic impedance
of N -arm multiterminal complementary structures in free space.

Table 11-1 does not give the impedance of a real spiral antenna because it will
be mounted over a metallic cavity that will be either empty or partially filled with
a multilayer sheet absorber. Second, the dielectric substrate on which the spiral is
etched slows the waves on the arms and reduces the impedance by 1/

√
εr,eff. Although

these factors change the impedance, the table does illustrate the relative magnitudes of
impedances for the various modes. We need to measure the spiral input impedance in
its final configuration for its modes, which can be done using single-arm measurements
of S11 and coupling to the other arms S21. See Section 11-6 for this method.

We can impedance-match the antenna either for a single mode or for a compromise
between modes by etching a tapered transformer at the spiral inputs. To vary the
impedance we change the arm/gap ratio. The width of the spiral arms has only a minor
effect on the pattern. An approach to this design uses the impedance of a coplanar strip
transmission line for the complementary and noncomplementary structure to scale the
impedances of the spiral [7]:

Zm,noncomp = Zm,comp
Zcp,noncomp

Zcp,comp
(11-11)

Zcp is the impedance of a coplanar stripline found from a model that includes multilayer
substrates of lossy dielectrics, such as the absorber sheets [8, p. 70; 9]. The subscripts
“noncomp” and “comp” refer to the noncomplementary and complementary line widths
in the coplanar stripline and spiral. We generate a table by varying stripwidth/gap and
calculate the impedance in the coplanar stripline and relate it to arm/gap of the spiral to
determine equivalent impedance. This method starts with the impedance measurement

TABLE 11-1 Characteristic Impedance of N -Arm Multiterminal Complementary
Structures in Free Space

Number
of Arms Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7

2 94.2
3 108.8 108.8
4 133.2 94.2 133.2
5 160.2 99 99 160.2
6 188.4 108.8 94.2 108.8 188.4
7 217.1 120.5 96.6 96.6 120.5 217.1
8 246.1 133.2 101.9 94.2 101.9 133.2 246.1

Source: [6].
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for various modes of a complementary spiral in its final configuration. After generating
a table relating arm/gap to spiral impedance, we design a tapered transformer using
standard techniques and interpolating on the table for dimensions. When you vary the
arm/gap ratio along the spiral arm, divide δ [Eq. (11-9)] into two parts (±δ/2) and
vary both sides of the strip centered on the central curve [Eq. (11-6)] so that the etched
spiral pattern retains symmetry.

We integrate Eq. (11-6) to calculate arm length:

L = (r − r0)
√

1 + tan2 α = (r − r0)

√
1 + 1

a2
(11-12)

We estimate the loss in the spiral by modeling the arm as a coplanar transmission
line and calculating the transmission-line loss by including the finite conductive and
dielectric loss tangent of the substrate and the nearest absorber layer in the cavity [8,
p. 70]. Increasing the gap between the substrate and the first absorber layer reduces
transmission-line loss. A few calculations using the multilayer model [9] will determine
a suitable gap for the design. Feeding the spiral from the outside to radiate the opposite
sense of circular polarization, a dual polarized design, can produce a design with
long transmission-line lengths with high losses for the high frequencies whose active
regions occur in the center of the spiral. Increasing the expansion factor will reduce
the transmission-line losses of the spiral.

11-4 PATTERN ANALYSIS OF SPIRAL ANTENNAS

Measurement of spiral patterns shows that they do not have a null in the plane of
the spiral, as predicted by a current sheet model, and that the antenna radiates cross-
polarization in the upper hemisphere. A simple analysis model uses a traveling-wave
loop in free space. This current distribution has constant amplitude on the loop, but its
phase progresses linearly around the loop in integer cycles. Regardless of the actual
circumference of the loop, a mode 1 current progresses through −360◦ (RHC) while
mode 2 current phase changes −720◦ and, in general, mode m current rolls through
−m360◦ for CCW movement along the loop. Mode 1 radiates from a loop 1λ in
circumference and the general mode radiates from a loop mλ in circumference when
the current propagates with the free-space velocity. The loop size determines the pattern
beamwidth and the effective loop size decreases when the spiral is dielectrically loaded
by either the substrate or by dielectric slabs (lenses) and its beamwidth increases.

The traveling-wave loop model radiates only one mode because both the RHC and
LHC signals have integer cycle phase progression in conic patterns. Modal expansion
on the model patterns fails to indicate the level of cross-polarization of actual spirals
when we use the ratio of integrals of the power in the co-polarized signal only to the
sum of the power of both polarizations to determine cross-polarization loss. We need
a better model for that characteristic and a way to predict higher mode radiation.

A method of moments (MOM) model of the spiral using a wire code such as NEC
can predict the multiple-mode radiation of a spiral. The wire diameter in the model
has little effect on the pattern predictions. Since it is difficult to model the absorber-
loaded cavity in a MOM code, accurate impedance values cannot be obtained and
fabricating antennas is the cost-effective method for finding impedance. You should
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(c) (d)

FIGURE 11-5 Equiangular spirals with differing expansion factors: (a) two-arm EF = 1.66;
(b) two-arm EF = 3.32; (c) four-arm EF = 2.32; (d) four-arm EF = 4.64.

use the rotational symmetry capability of the code to reduce the model to a single-arm
input so that the matrix is reduced by the number of arms N . We place the model
in free space, which models the cavity as perfectly absorbing, and consider only the
upper hemisphere.

Figure 11-5 illustrates the faces of two sets of two- and four-arm spirals designed
to operate over a 10 : 1 frequency range. The inner diameter is 0.254λ. The left two-
arm spiral contains five turns, with an expansion factor = 1.66 (α = 85.4◦), while the
looser-wrapped spiral on the right has 2.1 turns and EF = 3.32 (α = 79.15◦). As we
decrease the wrap angle (increased EF) the outer circumference of the spiral must
be increased to support the lowest frequency. To illustrate the effect of the outer
circumference, Table 11-2 lists the modal response of the five-turn (EF = 1.66) spiral
versus outer circumference, and Table 11-3 lists the same results for the 2.1-turn (EF =
3.32) spiral. Scale 1-7 shows that the difference between mode 1 and mode −1 must be
9.6 dB to achieve a 6-dB axial ratio. The five-turn spiral needs an outer circumference
of about 1.4λ at the lowest frequency for this value, while the 2.1-turn spiral should
be 1.9λ. The looser-wrapped spiral requires a larger diameter to achieve the same

TABLE 11-2 Modal Response of a Two-Arm Exponential Spiral with EF = 1.66
(α = 85.4◦), Five Turns

Circumference
(λ)

Mode 1
(dB)

Mode −1
(dB)

Circumference
(λ)

Mode 1
(dB)

Mode −1
(dB)

1.00 −1.96 −4.40 1.60 −0.16 −14.52
1.20 −1.09 −6.55 1.80 −0.05 −19.82
1.40 −0.46 −10.00 2.00 −0.04 −20.60
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TABLE 11-3 Modal Response of a Two-Arm Exponential Spiral with EF = 3.32
(α = 79.16◦), 2.1 Turns

Circumference
(λ)

Mode 1
(dB)

Mode −1
(dB)

Circumference
(λ)

Mode 1
(dB)

Mode −1
(dB)

1.00 −2.34 −3.82 1.80 −0.53 −9.44
1.20 −1.81 −4.69 2.00 −0.34 −11.26
1.40 −1.25 −6.02 2.20 −0.21 −13.38
1.60 −0.82 −7.68 2.40 −0.12 −16.07

low-frequency axial ratio. These spirals have open-circuited arms. We reduce the axial
ratio by loading the ends of the arms, which reduces the reflected mode radiation by the
return loss of the loads relative to the spiral arm impedance. The efficiency decreases
but the axial ratio improves.

An Archimedean spiral with 10.5 turns covers the same 10 : 1 frequency range.
Table 11-4 gives the modal response. The tighter wrap of the spiral near the outer
diameter reduces the diameter required to produce a lower axial ratio design. An outer
circumference of 1.17λ is sufficient for a 6-dB axial ratio. The additional spiral arm
length will reduce efficiency at the low-frequency end due to the transmission-line loss.

Increasing the number of turns will decrease the levels of the over-modes radiated.
The two-arm spiral suppresses the even modes but allows radiation of modes 3, 5,
7, . . . [Eq. (11-2)]. The moment method analysis predicts the over-mode levels given
in Figure 11-6. The higher-order modes occur because the antenna is large enough
to support these modes at higher frequencies but not at lower frequencies. Power
not radiated in the mode 1 region near a 1λ circumference travels along the arms
until it reaches the 3λ and 5λ circumferences and radiates. Over-modes alter conical
patterns by adding amplitude and phase ripple. The phase ripple is added to the mode
single 360◦ linear distribution. Mode 3 adds a single cycle ripple to conical patterns
of mode 1, and mode 5 will add a two-cycle ripple on top of the single mode 3 cycle.
At normalized frequency 9.5 for EF = 1.66, mode 3 at −10 dB relative to mode 1
produces an average peak-to-peak ripple of 5.7 dB (Scale 1-8) while the −23-dB mode
5 produces 1.2 dB of ripple. Amplitude and phase ripple is not a significant problem in
most applications because we cannot use the antenna for an AOA system without two
modes. Table 11-5 lists the mode 3 amplitude on the Archimedean spiral, which says
that we must reduce the inner diameter to limit the over-mode level. For example, to
limit it to −16.4 dB (2.6 dB of ripple), we need to reduce the inner diameter to 80%
of 0.254λ (0.20λ). The Archimedean spiral requires a smaller feed diameter than the
exponential spiral for the same over-mode level.

TABLE 11-4 Modal Response of a Two-Arm Archimedean Spiral with 10.5 Turns

Circumference
(λ)

Mode 1
(dB)

Mode −1
(dB)

Circumference
(λ)

Mode 1
(dB)

Mode −1
(dB)

1.00 −1.81 −4.68 1.20 −0.31 −11.68
1.05 −1.36 −5.70 1.25 −0.14 −14.92
1.10 −0.94 −7.13 1.30 −0.05 −19.34
1.15 −0.57 −9.11 1.35 −0.02 −24.04



PATTERN ANALYSIS OF SPIRAL ANTENNAS 533

Overmode 5, EF = 3.32

Overmode 3, EF = 3.32

Overmode 3, EF = 1.66

M
od

e 
P

ow
er

, d
B

Outer Diameter, l

FIGURE 11-6 Over-modes of a two-arm spiral designed for a 10 : 1 frequency range.

TABLE 11-5 Mode 3 Relative Power for a 10 : 1
Archimedean Spiral with an 0.254λ Inner Diameter

Frequency
Power
(dB) Frequency

Power
(dB)

7.2 −19.3 8.8 −14.0
7.6 −17.8 9.2 −13.0
8.0 −16.4 9.6 −12.0
8.4 −15.2 10.0 −11.0

The two examples of four-arm spirals exhibit results similar to those of two-arm
spirals. Decreasing the expansion factor decreases high-order modes, and the phasing
of the feed network eliminates additional modes. The four-arm spiral radiates mode 5
with a power of −13 dB relative to the total and the extra signal adds and subtracts with
the mode 1 radiation to produce the four-way symmetry of the curves to the pattern
deviation. The pattern ripple number equals the difference in mode number when two
modes interact. The −13 dB extra radiation causes a 4-dB amplitude ripple (Scale 1-8)
and 13◦ peak-to-peak phase variation (Scale 1-9). The similar levels of mode 6 shown
in Figure 11-7 for mode 2 excitation produce pattern ripple. The AOA system uses
the relative phase and amplitude between the two modes, and these extra signals cause
the pattern variation to rotate in angular position as frequency changes. If we do not
control the levels of the extra modes, AOA accuracy will suffer. In other applications
the pattern fluctuation would be acceptable. Table 11-6 lists the modal response of a
four-arm exponential spiral when fed for mode 2 and gives the size required to suppress
mode −2 radiating cross-polarization.

To some extent we can feed the outer arms to radiate the opposite-sense circu-
lar polarization. The signals reach the circumference of higher-mode radiation before
reaching the circumference of lower-order radiation. The spiral radiates substantial
power in the higher-order modes which reduces the signal traveling inward to the
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FIGURE 11-7 Over-modes of a four-arm spiral designed for a 10 : 1 frequency range.

TABLE 11-6 Modal Response of a Four-Arm Exponential Spiral with EF = 2.07
(α = 83.4◦), 3.5 Turns Fed for Mode 2

Circumference
(λ)

Mode 2
(dB)

Mode −2
(dB)

Circumference
(λ)

Mode 2
(dB)

Mode −2
(dB)

2.00 −1.91 −4.49 2.80 −0.25 −12.6
2.20 −1.33 −5.78 3.00 −0.13 −15.4
2.40 −0.82 −7.64 3.20 −0.07 −18.1
2.60 −0.46 −10.0 3.40 −0.04 −20.3

lower-order-mode radiation circumference. We increase the number of arms to suppress
the higher-mode radiation through phase cancellation produced by the feed network.
Figure 11-8 shows the radiation levels of mode −1 for different number of arms. The
outer circumference is 1λ at the lowest frequency for mode −1. We see an initial
efficiency loss for the two-arm spiral in mode −1. Higher order modes have more
restricted frequency regions.

Locating the spiral wire above a ground plane models a reflective cavity antenna to
some extent, but it does not include the effects of the cylinder walls. The reflection of
the waves from the ground plane will excite higher-mode currents farther out in the
spiral, which increases the modal content of the pattern and limits the usable frequency
band of the antenna. For example, a two-arm spiral fed for mode 1 with an initial depth
of λ/8 has a mode 3 level at −8 dB when the cavity depth is λ/2. When the cavity
depth is λ/2, the mode 1 pattern has a null at broadside. To produce an antenna with
a wider bandwidth, we need a shallower cavity. The closer ground plane increases
the power reflected into higher modes and the over-modes problem increases. We
reduce the over-modes by increasing the number of arms to cancel modes through the
feeding phases.
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FIGURE 11-8 Efficiency of outside arm feeding of spirals designed for a 10 : 1 frequency
range for mode −1 for different numbers of arms.

11-5 SPIRAL CONSTRUCTION AND FEEDING

11-5.1 Spiral Construction

We etch the spiral pattern on a thin dielectric sheet. We should specify a circuit board
with a low-loss tangent because the spiral operates as a transmission line between the
arms whose length becomes significant for tightly wrapped spirals. This transmission
can be analyzed as a coplanar strip transmission line for losses, and the equivalent
dielectric constant of the transmission line loads the spiral and reduces the effective
loop radiator size. We can further load the antenna by placing dielectric sheets above
the spiral or by placing a contact lens on the spiral face and shrink the spiral diameter.

Although it is not necessary to place a resistive load on the end of the spiral arms,
it will improve the polarization at low frequencies by reducing reflections that radiate
the opposite sense of circular polarization. Reflected currents travel inward and pass
through the radiation regions of the spiral. Spirals fed from both inside and outside
contain transmission-line feeds that load each arm; otherwise, we use a resistive paste
or film on the last turn, but the antenna may produce acceptable patterns without loads
on the arms.

We can use a reflective cavity under the spiral to prevent radiation of the opposite
sense of circular polarization, but it limits the bandwidth. Waves reflected from the
cavity base couple back into the spiral arms beyond the lower-mode radiation region.
These waves excite spiral currents that travel to the next radiation region or into the
loads on the ends. Without these loads the currents would reflect and travel inward to
radiate in the first active region of an oppositely sensed circularly polarized mode.

We load the base of the cavity with absorber to build a wideband antenna. A tapered
or stepped loaded absorber prevents reflection over a wideband. You should space the
absorber away from the spiral face so that it does not significantly load the transmission
line of the spiral arms. We analyze this absorber loading as an element in a coplanar
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strip transmission line containing multiple lossy dielectric layers. A foam or dielectric
honeycomb spacer between the absorber and the spiral circuit board prevents thermal
or mechanical stress movement that severs the board connections.

Simple analysis says that half the power will be radiated into the absorber and
reduce the gain by 3 dB. Unfortunately, the wave impedance of the absorber loaded
cavity is much less than the impedance of free space. In an admittance model of the
radiation in free space and the cavity, the power divides between the shunt loads of
the two regions and the lower cavity impedance causes more than half of the power
to be dissipated in the cavity, which further reduces the gain. We can recover some
of this lost power by loading the spiral with a hemispherical contact lens that lowers
the effective radiation impedance in the two-shunt-load model. The hemispherical lens
has little effect on pattern shape since the outer surface does not refract rays that pass
through normal to it. A lens with a dielectric constant in the range 2 to 3 increases
gain by 1.5 to 2 dB, but it reduces the efficiency of mode radiation in the active region
and leads to increased cross-polarization and over-mode levels.

A contact lens can decrease the beamwidth of a spiral besides decreasing the cavity
absorber loss. Applying the technique of Section 9-4 and solving for a lens surface, we
obtain the lens in Figure 11-9a, which shows the traced ray refraction for εr = 2.55.
The lens surface can only refract rays straight upward out to an angle of 51◦, but
the side cylinder continues to refract rays from the feed upward. Figure 11-9b and c
shows the measured pattern for a four-arm spiral operating in modes 1 and 2 with a
1.25λ-diameter contact lens on it. The lens reduced the beamwidth of mode 1 from 70◦

to 32◦ and mode 2 from 42◦ to 25◦ when we compare these patterns with Figures 11-1
and 11-2. The mode 2 beam peak moved from 35◦ to 22◦. The lens design uses a point
source, but the spiral radiates from rings approximately 0.33λ (mode 1) and 0.66λ

(mode 2) in diameter. Nevertheless, the lens produces remarkable results with a mode
2 ring current one-half its diameter. The lens continued to shrink the beamwidths
in a linear function as frequency increased. Similar results were reported using a
hemispherical lens raised above the spiral [3]. This example demonstrates that small
lenses have a significant effect on antenna patterns, whereas a reflector of this size
would be useless.

11-5.2 Balun Feed

We feed a two-arm spiral with a balanced line, whereas spirals with more arms require
a beamformer network. A balanced line feeder contains equal and oppositely phased
currents when fed from a balun. The two common baluns used for spirals are the Marc-
hand balun, a compensated sleeve balun (Section 5-15.2), and Bawer and Wolfe [11]
version of the Roberts balun (Section 5-15.1), a compensated folded balun. We place
the Marchand balun below the cavity to position its balance wire output in the center
and we feed a two-wire line across the cavity to feed the spiral. We locate the two
sleeves of the Marchand balun parallel to the cavity base. The Bawer and Wolfe balun
is constructed on two sides of a printed circuit board oriented along the vertical axis.
The balanced output is a short distance from the feed point and we feed two wires
through to the etched board of the spiral. The printed circuit board causes a small
asymmetry in the cavity and the absorber must be removed around the board so that it
does not load it. Because mode 1 impedance is greater than 50 �, we can use a tapered
microstrip balun similar to the split-tube coaxial balun to feed the two-arm spiral.
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FIGURE 11-9 Measured patterns of a 1.25λ-diameter contact lens mounted over a spiral:
(a) ray trace in polyethylene lens; (b) mode 1 pattern; (c) mode 2 pattern.
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11-5.3 Infinite Balun

We can make a balun by using the truncation property of the spiral where the current
attenuates rapidly beyond the active region. The balun prevents currents excited on the
outside of a coax from reaching the input. In Figure 11-4 we solder the coax feeder to
one of the arms. Since the antenna does not radiate in the direction of the expanding
arms, it does not excite currents on the structure after the active region; conversely,
no currents excited on the structure beyond the active region will reach the input. The
coax feeder outer shield becomes part of the antenna. We solder a dummy coax on the
second arm to maintain symmetry.

Because the balun uses the active region limitation on currents of the antenna,
its bandwidth matches that of the antenna. We use the same balun structure for log-
periodic dipole antennas when similar truncation requirements can be used to form the
balun. This construction requires wide spiral traces for soldering, a difficult operation
to perform over the long arm length. To shorten the arm length, we use spirals with
low wrap angles, but they have poor radiation characteristics.

11-5.4 Beamformer and Coaxial Line Feed

Spirals with more than two arms require the direct feeding of each arm with a coax-
ial line. We feed phase-matched cables through the cavity and connect them to a
microwave circuit that generates modal excitations. The beamformer provides a sepa-
rate input port for each mode desired. The coax center conductors feed the spiral arms
while we join the outer conductors. The spiral mode currents sum to zero, which means
that the currents on the outer conductors also sum to zero. When feeding the inside,
we strap the outer conductors together by using a ribbon connected to all shields or
route the cables through a metal cylinder. The cylinder stops short of the spiral circuit
board but is connected to the cavity bottom. For perfect modal feeding the current in
the cylinder is zero. When we feed the outer arms of the spiral, we etch a shorting disk
on the opposite side of the spiral face. We connect each coaxial cable outer conductor
to this ring. By connecting the shorting disk to the outer wall of the cavity, we produce
another path for the currents to sum to zero.

The design and construction of beamformers is beyond our discussion. We use a
Butler matrix as a beamformer for spirals with 2N arms (2, 4, 8, etc.), which provides
a separate input port for the complete set of modes, while beamformers for spirals
with 3, 5, 6, etc. arms present a challenge. Complete analysis of the spiral involves
measurements of the spiral arms and the beamformer.

11-6 SPIRAL AND BEAMFORMER MEASUREMENTS [12]

We measure antenna patterns of the assembly of the spiral and the beamformer and
determine the modal content by applying Eq. (11-4). Of course, we extract the normal
pattern parameters of gain, beamwidth, beam direction, cross-polarization, and possibly
phase center from the measurements. The final antenna can radiate in many modes,
whereas the beamformer Narm outputs can operate only in Narm modes. During con-
struction we gain insight and can correct problems by making single-arm measurements
of the spiral and single port measurements of the beamformer.
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The beamformer outputs can be expanded in Narm modes, where each mode has
equal amplitude on the outputs and a different phase progression in cycles of 2π

radians. The feeding coefficients on arm N , for mode m, are given by

VN = exp[−j2πm(N − 1)/Narm]√
Narm

(11-13)

where we number the arms CCW when looking at the spiral face. We calculate the
modal expansion levels by multiplying network analyzer measurements of the arm
responses bn by the complex conjugate of Eq. (11-13) and adding over the arms. This
is a summation version of Eq. (11-4) used for antenna patterns:

bm =
∑

n

V ∗
n,mbn (11-14)

We repeat these measurements for each spiral mode of the beamformer and expand
them in modes given by Eq. (11-14) to detect beamformer construction problems.

We measure the antenna pattern for each spiral arm separately while placing resistive
loads on the other ports. This is the scan (active) pattern of each arm in a co-located
array. The close arm spacing generates high mutual coupling that excites currents on all
arms even though only one arm is fed. Measurement using an automated pattern system
allows digital storage of all patterns that can be added using the measured outputs of
the beamformer or an ideal beamformer to determine the final pattern. We apply Eq.
(11-4) to the combined single-arm measurements to calculate the mode levels radiated
for each input mode. Except for a φ rotation, all single-arm measurements should be
the same. We gain insight into the construction of each arm by duplicating a single-arm
measurement to produce Narm copies and rotating Narm − 1 of them, applying an ideal
or measured beamformer responses, and calculating the resulting pattern to determine
modal content. Construction differences between the arms become readily apparent. Of
course, we may reduce the initial measurement effort during development by measuring
a single arm and assuming ideal construction between arms. The other arms must be
present so that the single arm couples to them and excites currents on them.

S -Parameter and Impedance Measurements We use a network analyzer to measure
the coupling to the other arms as well as the input reflection of each arm. We compute
the input impedance for each mode by combining the reflection coefficient of a single
arm with the others loaded (S-parameter) and the mutual coupling to the other arms
weighted by the mode voltages [Eq. (11-13)]. Our analysis of the multiarm spiral as
an array allows the use of the scan impedance. If we assume construction symmetry
initially, we measure with only one arm as input. We load the outputs of the spiral
arms if this is the final configuration; otherwise, we leave them with open-circuited
terminations. The resulting reflection coefficient is found from

	1 = b1

a1
= S11 + S12

a2

a1
+ S13

a3

a1
+ · · · + S1N

aN

a1
(11-15)

The coefficients ai are the arm modal coefficients whose sum of magnitude squared
equals 1, and Sij are the mutual coupling values.
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For spirals with arms loaded on the ends, we replace the loads with connectors and
measure the coupling from the inputs to the loads. The power dissipated in each load
depends on the mode. We denote the arm output ports as Narm + 1 to 2Narm in CCW
order and measure the output wave on each arm:

bN+1 = SN+1,1a1 + SN+1,2a2 + SN+1,3a3 + · · · + SN+1,NaN

bN+2 = SN+2,1a1 + SN+2,2a2 + SN+2,3a3 + · · · + SN+2,NaN

...

b2N = S2N,1a1 + S2N,2a2 + S2N,3a3 + · · · + S2N,NaN

(11-16)

We sum the magnitude squared of bN+1 to b2N to calculate the power dissipated in
the loads [Eq. (11-16)] after we apply the modal coefficients ai for a given mode.
Equation (11-15) calculates the reflected power 1 − |	|2 and Eq. (11-16) determine
the power dissipated in loads. We separate the antenna input power into the terms:
(1) reflected, (2) dissipated in loads, (3) radiation, (4) circuit losses, and (5) power
absorbed in the cavity. The power absorbed in the cavity and the circuit losses are
only mildly frequency dependent. The sum of the first two terms will indicate the
frequency range where the antenna has correct dimensions for efficient radiation and
we can determine truncation constants with these bench measurements.

11-7 FEED NETWORK AND ANTENNA INTERACTION
[8, pp. 347–353; 13]

The analysis above assumes an ideal feed network with perfect isolation between the
output ports and impedance-matched ports on the antenna, the spiral arms, but the
real feed network has limited isolation and the antenna ports are often mismatched.
We encounter the same problem when dealing with a phased array because the input
impedance of each element changes when we scan the beam. We use the subdomain
growth method to solve these problems. The antenna has N ports matched by the
same number of outputs on the feed network. We measure the N × N mutual coupling
matrix of the antenna SRR and the complete S-parameter matrix between the outputs of
the feed network SQQ, also N × N . The normal connection matrix between the input
and the feed network outputs SPQ is 1 × N ; the analysis in Section 11-6 used this
matrix. We measure the input reflection coefficient Spp, a single-element matrix, and
then combine the matrices into an overall (2N + 1) × (2N + 1) matrix:


 bP

bQ

bR


 =




SPP SPQ [0]

ST
PQ SQQ [0]

[0] [0] SRR





 aP

aQ

aR


 (11-17)

The term [0] is an N × N null matrix.
We form a 2N × 2N connection matrix between the antenna ports R and the feed

network output ports Q using an N × N identity matrix [I ]:[−SQQ [I ]

[I ] SRR

]
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We invert this matrix by partitioning it and obtain the matrix[
SRR(I − SQQSRR)−1 (I − SRRSQQ)−1

(I − SQQSRR)−1 SQQ(I − SRRSQQ)−1

]
=

[
M11 M12

M21 M22

]
(11-18)

Since we have no direct inputs to the antenna elements, the analysis reduces to

[aQ] = M11SQP aP and [aR] = M21SQP aP with [aQ] = [bR] (11-19)

The element aP is the input to the feed network, and [aR] and [aQ] are the inputs
to the antenna ports and the feed network output ports. We compute the input volt-
age vector to the antenna elements as [V ] = [aR] + [bR] = [aR] + [aQ]. The input
power to the elements is P = [aR]T[aR]∗ − [aQ]T[aQ]∗ and the input reflection is
bP = SPP + SPQ[aQ]. With this method we determine the effects of a non-perfect-
feed network on the spiral or phased-array patterns when we use these excitations to
calculate the pattern.

11-8 MODULATED ARM WIDTH SPIRAL [3, 14]

We have limited ability to feed a spiral from the outside for radiation of the oppo-
site sense of circular polarization, LHC, from a right-hand wound spiral because we
need many arms to suppress undesirable radiation (Figure 11-8) over a significant
bandwidth. Modes −2 and −3 have a more restrictive bandwidth because the current
reaches a higher-mode radiation point before the inner circumference of a particular
mode and radiates. The modulated arm width (MAW) spiral solves these problems.
We feed this antenna from the center to obtain the negative modes assuming that the
spiral is wound right-hand. If we feed a right-hand spiral with left-hand modes, the cur-
rent flows through the spiral with little radiation and in a normal spiral current reflects
from the open-circuited arm ends and travels inward. Traveling backward on the spiral,
the currents radiate LHC polarization at integer multiples of a wavelength circumfer-
ence not suppressed by the phasing of multiple arms. Unfortunately, the complete trip
of the current through the spiral to the ends of the arms and back to the radiation
circumference adds to the transmission-line loss of the antenna.

Figure 11-10 shows the construction of this antenna for four, six, and eight-arms.
We modulate the arm width to form a bandstop choke (filter) that reflects currents
whose center wavelength increases at the same rate as the spiral diameter. The number
of modulation cycles around one spiral turn equals the number of arms. For analy-
sis we consider the spiral as a transmission line in the nonradiating regions whose
arm/gap ratio determines the characteristic impedance. When the length of the modu-
lation section approaches λ/4, the impedance mismatch at one discontinuity adds with
the next one, and the numerous reflections build to form a bandstop choke response
that increases with the line-width ratio. When the distances between the steps are
substantially less than λ/4, the reflections fail to add coherently and cancel.

A four-arm MAW spiral has eight steps around one turn that locates a high reflection
point at a 2λ circumference. If we feed the center of a four-arm spiral with mode 3,
which equals mode −1 (LHC), the current travels outward on a right-hand-wound
spiral with little radiation. The current reflects where the spiral circumference is 2λ
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(a) (b)

(c)

FIGURE 11-10 Modulated arm spirals: (a) four-arm; (b) six-arm; (c) eight-arm.

due to the bandstop chokes before it reaches the 3λ circumference and counterrotates
to the 1λ circumference, where it radiates LHC polarization in mode −1. On the other
hand, mode 1 radiates from the currents before they reach the bandstop region at a 2λ

circumference, and the modulations have little effect. Of course, residual power left on
the spiral after the first radiation region causes pattern ripple that varies over frequency,
but the bandstop choke reduces radiation of mode 2 from the four-arm MAW spiral
because the current reflects in the middle of the 2λ radiation region.

In a similar manner, a six-arm MAW spiral reflects the current at 3λ circumference
and eight-arm MAW spiral at 4λ. The six-arm spiral with its reflection point at 3λ

circumference can support modes −1 (5) and −2 (4). Both the six-arm feed phasing
and the 3λ circumference bandstop choke suppresses mode −3 radiation when we
feed it with mode −1 (5). The MAW spiral radiates mode 2 at a 2λ circumference
before the current reaches the bandstop filter region at 3λ. Whereas a normal six-arm
spiral can radiate mode 3, the MAW spiral cuts off its radiation because the bandstop
region occurs at a 3λ circumference located at the middle of its active region. At
this circumference both mode 3 and mode −3 exist and radiate to produce a linearly
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polarized wave. In a similar manner the eight-arm spiral with its 4λ circumference
bandstop filter can support modes 1, 2, 3, −1 (7), −2 (6), and (−3) 5. The eight-arm
feeding suppresses mode −3 radiation [Eq. (11-2)] when fed mode 7 (−1), although
the currents pass through the 3λ circumference point.

It would seem that we must construct a larger antenna to support the radiation of
these reflected modes. The four-arm spiral effectively radiates only modes 1 and −1,
and the bandstop region occurs at a circumference of 2λ. At the low-frequency end
of the band, we can use the reflection from the open circuits on the ends of the arms
instead of the bandstop filter. It is unnecessary to start modulating the arm width in
the spiral center until approaching the bandstop filter region of the highest frequency.
This eases construction problems and allows normal connection in the center to the
many arms. We can also use this center section to construct a tapered transformer for
impedance matching by varying the arm/gap ratio.

11-9 CONICAL LOG SPIRAL ANTENNA [15, 16]

When we form the equiangular spiral on a cone, the antenna radiates predominantly
toward the vertex and we gain some control of the beamwidth. The antenna projected
on a cone continues to satisfy the truncation condition: Radiation is reduced along
the structure. We modify the beamwidth by varying both the cone angle θ0 and the
wrap angle δ (Figure 11-11). The antenna is a slow-wave structure from the feed on

a

r

q 0

δ

FIGURE 11-11 Two-arm conical log spiral antenna (RHC).
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the upper diameter to the active region, but in the active region the antenna changes
to a fast-wave structure to radiate a backfire pattern toward the cone vertex. Because
the spiral on the cone radiates a unidirectional pattern, it reduces the radiation of one
circular polarization sense. The flat spiral radiates equally on both sides, but because
the pattern has a null in the direction of increasing structure, we can bend it downward
on the cone and decrease the radiation of one sense of circular polarization. Figure 11-
12 shows the calculated pattern of a conical spiral and illustrates the reduced back lobe
and reduced cross-polarization caused by the conical shape.

We describe the spiral arms by the radius from the cone apex:

ρ = ρ0e
bφ where b = sin θ0

tan α
(11-20)

We measure the angle of the spiral α with respect to the radius ρ along the cone. The
angle δ determines the stripwidth, since Eq. (11-20) describes every edge of the spiral
within an offset angle of φ. The length of the spiral strip edge is

L = (ρ − ρ0)

√
1 + 1

b2
= (ρ − ρ0)

√
1 + tan2 α

sin2 θ0
(11-21)

As θ0 approaches π/2 (90◦), we have the flat equiangular spiral.

RHC

LHC

FIGURE 11-12 Calculated pattern of a two-arm conical spiral with a 30◦ total cone angle,
α = 80◦, 11 turns.
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We can describe the conical spiral using an expansion factor. Equation for the radius
from the axis r is the same as the radius from the virtual apex ρ:

r = ρ0 sin θ0e
bφ = r0e

bφ

In terms of the expansion factor, we have

b = sin θ0

tan α
= ln(EF)

2π
or EF = exp

(
2π sin θ0

tan α

)

We rearrange these equations to compute the wrap angle α and the number of turns:

α = tan−1 2π sin θ0

ln(EF)
and turns = tan α ln(ro/ri)

2π sin θ0

Dyson [16] measured a large number of antennas to determine their properties, and
we reduce his results to design tables. Table 11-7 gives the average beamwidth of the
conical spiral. If we increase the wrap angle (tighter spiral) or decrease the cone angle
(longer antenna), the beamwidth decreases and directivity increases. As we decrease the
wrap angle to increase the beamwidth, the variation in beamwidth of various pattern
cuts through the cone vertex increases because there are too few turns to maintain
pattern symmetry, due to over-modes caused by an inefficient active region.

We specify the active region by upper and lower cone diameters. Dyson found a
correlation between the band edges and the level of near-field probed currents. The
current peaks in the active region, and in terms of design we can remove those portions
of the antenna where the current drops by 3 dB on the high-frequency (small) end and
15 dB on the lower-frequency (large) end without affecting performance. These near-
field current points give us upper and lower truncation diameters to scale the design.
If we allow small changes in the beamwidth at the low-frequency end, we can use the
10-dB point to determine the lower diameter from the lowest operating frequency and
make a smaller antenna. Tables 11-8 and 11-9 list the radiuses of the circles truncating

TABLE 11-7 Average Half-Power Beamwidth of a Two-Arm Conical Log Spiral
Antenna (δ = 90◦)

Twice Cone Angle
Wrap Angle,

α (deg) 2θ0 = 2◦ 2θ0 = 5◦ 2θ0 = 10◦ 2θ0 = 15◦ 2θ0 = 20◦ 2θ0 = 30◦

90 36 49 55 60 65 70
85 37 50 58 64 68 74
80 38 53 63 70 74 81
75 41 56 70 78 83 90
70 44 60 79 88 95 103
65 47 65 89 100 108 119
60 52 71 102 114 127 139
55 57 79 115 132
50 63 89
45 69 106



546 FREQUENCY-INDEPENDENT ANTENNAS

TABLE 11-8 Two-Arm Conical Log Spiral Antenna Upper Radius of Active Region
(a−

3 /λ), Where the Current Drops 3 dB from the Peak

Twice Cone Angle
Wrap Angle,

α (deg) 2θ0 = 2◦ 2θ0 = 5◦ 2θ0 = 10◦ 2θ0 = 15◦ 2θ0 = 20◦ 2θ0 = 30◦ 2θ0 = 45◦

85 0.119 0.111 0.106 0.091
80 0.101 0.096 0.090 0.084 0.080 0.071 0.067
75 0.089 0.084 0.078 0.074 0.069 0.067
70 0.078 0.074 0.069 0.066 0.060 0.057
65 0.071 0.067 0.062 0.058 0.052 0.053
60 0.063 0.059 0.054 0.050 0.045 0.046
55 0.057 0.053 0.049 0.043 0.039
50 0.052 0.048 0.043 0.035 0.036
45 0.046 0.043 0.031 0.032

TABLE 11-9 Two-Arm Conical Log Spiral Antenna Lower Radius (a+
10/λ) of Active

Region (Slightly Degraded Pattern), Where the Current Drops 10 dB from the Peak

Twice Cone Angle
Wrap Angle,

α (deg) 2θ0 = 2◦ 2θ0 = 5◦ 2θ0 = 10◦ 2θ0 = 15◦ 2θ0 = 20◦ 2θ0 = 30◦

85 0.136 0.144 0.150 0.174
80 0.117 0.128 0.132 0.147 0.156 0.164
75 0.106 0.120 0.132 0.144 0.156 0.172
70 0.100 0.118 0.130 0.144 0.159 0.185
65 0.096 0.117 0.131 0.145 0.168 0.215
60 0.095 0.116 0.132 0.150 0.178 0.250
55 0.095 0.116 0.134 0.156 0.186
50 0.096 0.116 0.166 0.200
45 0.098 0.117 0.180 0.215

the cone at the end of the active region as functions of wrap angle and cone angle to
be used to scale a design.

Example Design a conical log spiral with cone angle of 10◦ and wrap angle of 75◦

from 1 to 3 GHz.
2θ0 = 20◦. From Table 11-8, the upper truncation constant a−

3 /λ = 0.069. From
Table 11-9, the lower truncation constant a+

10/λ = 0.156. We use the radius a−
3 /λ with

3 GHz to determine the upper cone diameter and the radius a+
10/λ with 1 GHz to

determine the lower cone diameter:

upper diameter = 1.38 cm lower diameter = 9.36 cm

We compute the cone height from the projected central trapezoid:

height = DL − Du

2 tan θ0
= 22.63 cm
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TABLE 11-10 Average Front/Back Ratio (dB) for a Conical Spiral Designed for the
10 : 1 Frequency Range Given the Cone Angle and Winding Wrap Angle

Wrap Angle (deg)
Cone Angle,

2θ 60 62.5 65 67.5 70 72.5 75 77.5 80

20 13.5 15.7 17.7 19.6 21.5 23.0 24.5 26.3 28.7
30 6.1 6.6 7.0 10.1 10.2 11.6 13.1 15.0 17.1
40 5.3 6.5 7.8 9.1 10.5

We determine the sense of circular polarization from the projection of the spiral on
a plane (θ0 = 90◦) and by using hand rules with radiation toward the vertex. We use
the same mode theory as the flat spiral to describe the radiation modes. The two-arm
conical spiral radiates from the mode 1 with its peak on the boresight (on the axis).
Table 11-10 lists the average front-to-back ratios for conical spirals averaged over a
10 : 1 frequency range and shows that long, thin cones produce the best F/B values.

Paraboloid Reflector Feed We can use the conical log spiral antenna as a broad band-
width circularly polarized feed for a paraboloid reflector. The phase center moves along
the cone axis when the frequency changes, but the illumination loss due to phase error
is minor. Analysis of a number of possible feeds shows that the phase-center location
depends almost entirely on cone geometry, not on wrap angle. The optimum location is
dependent on the reflector f /D to a minor extent, but the location given by Table 11-11
is close to the optimum. Flatter cones have the phase center near the 1λ circumfer-
ence, and as we narrow the cone it moves toward the virtual apex. Figure 11-12 for
the conical spiral has a wider beamwidth than the flat spiral of Figure 11-1 because
the phase center of the conical spiral occurs at 0.88λ circumference, whereas the spiral
active region is centered at 1λ. The active region of this conical spiral has little axial
length, which does decrease the beamwidth of the long, thin antennas (Table 11-7).

Table 11-12 lists the parameters of three conical spirals operating in mode 1 that
produce the lowest average illumination losses as a paraboloid feed for designs that
cover a 10 : 1 frequency range. Each design uses a wrap angle of 80◦ to reduce the
pattern variation over the frequency range and to increase the F/B ratio to reduce
spillover loss. Except for the lowest frequency range, the antennas have nearly con-
stant beamwidth and produce nearly constant spillover and amplitude taper losses.
Table 11-13 illustrates that varying reflector f /D has a slowly changing effect on the
total average losses.

TABLE 11-11 Phase-Center Location of a Mode 1
Conical Spiral Relative to the Virtual Apex

Cone Angle,
2θ0 (deg)

Axial Distance from
Virtual Apex (λ)

Circumference
(λ)

20 0.746 0.826
30 0.522 0.880
40 0.408 0.933
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TABLE 11-12 Optimum Conical Spiral Mode 1 Feeds for a Paraboloid Reflector for a
10 : 1 Frequency Range

Phase Error Loss
(dB)

Cone Angle,
2θ0 (deg) f /D Average Maximum

Taper
Loss
(dB)

Spillover
Loss
(dB)

Cross-Polarization
Loss
(dB)

Average
Total
(dB)

20 0.46 0.36 1.00 0.43 0.54 0.09 1.42
30 0.42 0.22 0.60 0.42 0.63 0.16 1.45
40 0.38 0.19 0.55 0.50 0.60 0.28 1.56

TABLE 11-13 Effect of Reflector f /D on Total Average Illumination Losses of the
Designs of Table 11-12 (dB)

Reflector f /D
Cone Angle,

2θ0 (deg) 0.34 0.36 0.38 0.40 0.42 0.44 0.46 0.48 0.50

20 2.24 1.97 1.76 1.61 1.51 1.44 1.42 1.42 1.44
30 1.68 1.55 1.48 1.45 1.45 1.47 1.53 1.60 1.68
40 1.63 1.58 1.56 1.58 1.63 1.70 1.79 1.89 2.00

Frequency, GHz

Cone = 40°
f/D = 0.38

Cone = 20°
f/D = 0.46

Cone = 30°
f/D = 0.42
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FIGURE 11-13 Total illumination losses for two-arm spirals designed for 1 to 10 GHz using
Tables 11-8 and 11-9 feeding a paraboloid reflector.

Figure 11-13 gives the frequency response of the three reflector feeds. The narrower
20◦ design produces better reflector illumination over a narrower frequency range than
that for the wider cones because the antennas were designed using truncation constants
from Table 11-9, where the fields drop by 10 dB instead of 15 dB and the low-frequency
pattern degrades.



MODE 2 CONICAL LOG SPIRAL ANTENNA 549

11-10 MODE 2 CONICAL LOG SPIRAL ANTENNA

Conical log spiral antennas have limited available design information [17,18,19]. The
beams off the boresight have half-power beamwidths ranging from 48 to 60◦. Higher
wrap angles and smaller cone angles decrease the beamwidth, but within this limited
range. We cannot increase the axial length of the active region beyond a certain point,
which limits the achievable gain. Although we have limited control of beamwidth, we
can control the beam direction by the wrap angle. Table 11-14 lists the approximate
beam peak given wrap angle on a 10◦ cone log spiral. Antennas built with cone angles
in the range 2θ0 = 20 to 40◦ follow Table 11-14 closely.

We must increase the diameters of the bottom and top of the four-arm mode 2 spiral
from those calculated for the two-arm mode 1 conical log spiral. We obtain a suitable
lower truncation constant from Dyson’s results (Tables 11-8 and 11-9) if we multiply
the lower truncation diameter by 1.42. The upper truncation constant multiplier varies
linearly from 4 at α = 65◦ to 2.3 at α = 80◦. Since a little extra length on the top of
the antenna will not degrade the pattern or increase the height significantly, we use the
lower value for all designs.

Example Design a four-arm mode 2 conical log spiral antenna to point the beam at
50◦ over the frequency range 500 to 1500 MHz on a 10◦ cone.

Table 11-14 determines the wrap angle to scan the beam to 50◦, α = 67◦. Table 11-8
gives us the upper truncation radius of the two-arm mode 1 spiral (0.055). Multiply
by 2.3 for the mode 2 spiral:

a−
3

λ
= 2.3(0.055) = 0.126 mode 2

Similarly, Table 11-9 gives us the 10-dB lower truncation radius (0.165). We multiply
it by 1.42 to calculate the lower truncation radius of the mode 2 spiral:

a+
10

λ
= 1.42(0.165) = 0.234 mode 2

We use a−
3 /λ with the highest frequency (1500 MHz) to determine the upper radius

and use a+
10/λ with the lowest frequency (500 MHz) to determine the lower radius of

TABLE 11-14 Beam Direction of a Mode 2 Conical
Log Spiral Antenna for 2θ0 = 20◦

Wrap Angle,
α (deg)

Beam Peak,
θ (deg)

Wrap Angle,
α (deg)

Beam Peak,
θ (deg)

38 82 62 58
42 80 66 52
46 76 70 46
50 74 74 41
54 70 78 38
58 64

Source: [19].
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the truncated cone of the antenna:

DU = 5.04 cm DL = 28.08 cm

height = DL − DU

2 tan θ0
= 65.33 cm

11-11 FEEDING CONICAL LOG SPIRALS

We must feed the two-arm mode 1 spiral with a balanced line. The infinite balun
consisting of coax soldered to the windings uses the truncation properties of the antenna
to prevent currents induced on the outside of the coax from reaching the input. On the
top we connect the center conductor of the coax to the second winding, which contains
a dummy coax, to maintain symmetry. The coax length and associated loss become
prohibitive for many spirals. We shorten the coax length by using a split tapered coax
balun along the cone axis. Its bandwidth matches the antenna bandwidth.

It is difficult to tell if the four-arm mode 2 conical spiral antenna needs a balun. The
pattern null on axis reduces the induced currents on the outside of a coax and we achieve
suitable patterns without a balun. In some cases we see narrowband pattern distortion
caused by the interaction of the outer-shield currents and higher-order modes. These
cause pattern ripple in roll plane patterns (constant θ ) near the beam peak. We can
feed the antenna from four coax lines along the axis. We feed each winding separately
and obtain cancellation of currents among the four shields soldered together.

Dyson says that we obtain the best patterns from complementary antennas—spacing
equal stripwidth. The Babinet–Booker principle (Section 5-3) predicts an impedance
of 188 � for a flat two-arm complementary spiral and 94 � for the four-arm spiral.
Forming the spiral on a cone lowers the input impedance to about 150 � for the two-
arm spiral and 85 � for the four-arm spiral. We can vary the stripwidth in the same
way as a flat spiral to impedance-match the antenna with minor effects on the pattern.

LOG-PERIODIC ANTENNAS

All continuously scaled antennas radiate circular polarization. The point of constant
beamwidth rotates with frequency. We can build linearly polarized self-scaling antennas
only with structures that scale at discrete frequency intervals. The pattern characteristics
will ripple between exact scaling frequencies, but with closely spaced scalings the
antenna is practically frequency independent.

Every log-periodic structure has a basic scaling cell where we scale every dimension
throughout the antenna by a constant:

f1

f2
= λ2

λ1
= τ scaling constant τ < 1

The antenna will scale exactly at the sequence of frequencies: fn = f0/τ
n. We make

the antenna periodic in the logarithm of frequency with every dimension scaled by τ

from element to element.
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Log-periodic antennas were developed in the late 1950s out of modifications to
the conical spiral concept of an antenna specified by angles. We will depart from an
historical development and discuss the log-periodic dipole antenna first.

11-12 LOG-PERIODIC DIPOLE ANTENNA [20–23]

The design of a log-periodic antenna proceeds in two parts. First, the desired pattern
characteristics determine the required number of elements in the active region and the
element spacing. Second, we determine truncation points from the current levels on
the antenna to establish the number of elements required for a given frequency range.
As is true of the conical spiral, only a limited range of gains is possible because the
aperture length is limited.

Figure 11-14 shows the log-periodic dipole antenna with a crisscross feeder line.
We denote the longest dipole length by L1. The element ends lie along lines that meet
at the virtual apex. We measure the distance from the virtual apex to the dipole by Rn.
The distance between elements is dn. Starting with initial dimensions L1, R1, and d1,
we iterate all other dimensions by using the scaling constant τ :

L2 = τL1 R2 = τR1 d2 = τd1 L3 = τL2 = τ 2L1 etc.

In general,
Ln = τn−1L1 Rn = τn−1R1 dn = τn−1d1 (11-22)

Note: dn is not an independent variable, since

dn = Rn − Rn+1 = Rn(1 − τ) (11-23)

L1

d1

d2

d3 R3

R2

R1

R4

L2 L3 L4

Feed

Half Apex Angle

Virtual
Apex

a

Point

FIGURE 11-14 Log-periodic dipole antenna.
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The angle between the dipole endpoints and the centerline—α, the half apex angle—is
given by

α = tan−1 Ln

2Rn

(11-24)

Carrel introduced a spacing constant σ as a second constant to describe the antenna:

σ = dn

2Ln

(11-25)

We specify the log-periodic dipole antenna by the constants τ and σ . We can compute
α, the half apex angle, from τ and σ :

α = tan−1 1 − τ

4σ
(11-26)

A method of moment analysis combining coupling between dipoles and transmission-
line networks (Section 10-3.1) [23] was used to calculate the frequency response of a
number of designs. These results were averaged over the operating frequency to obtain
the values in tables below. Log-periodic dipole responses contain narrow-frequency-
range regions where the pattern becomes distorted and the analysis summaries disre-
garded these regions. Nevertheless, the antenna response varies significantly. Table 11-
15 lists the average gain for length/element diameter as 70. The element diameters were
scaled by τ to maintain the same ratio (L/d) throughout the antenna. Tables 11-16 and
11-17 list the E- and H -plane average beamwidths over a suitable range of parameters
τ and σ . The beamwidths vary between scaled frequency points. We use Tables 11-15
to 11-17 to determine suitable design constants. Although these tables give the average
values for gain and beamwidth, the values have considerable ripple about the average
that increases as τ is reduced.

We combine the desired operating frequency range with upper and lower truncation
constants determined for τ and σ to compute the length of the longest element and

TABLE 11-15 Calculated Average Gain of a Log-Periodic Dipole Antenna for
Length/Diameter = 70

Scaling Constant, τ

σ 0.80 0.82 0.84 0.86 0.88 0.90 0.92 0.94 0.96

0.06 6.0 6.5 6.0 6.0 6.9 7.2 7.9 8.6 9.7
0.07 5.2 6.1 6.9 6.8 6.9 7.6 8.2 9.0 10.1
0.08 5.5 5.6 6.7 7.2 7.1 7.8 8.4 9.2 10.4
0.09 6.0 5.7 6.0 7.3 7.7 7.8 8.8 9.6 10.7
0.10 6.6 6.4 6.1 6.5 7.7 8.2 8.8 9.7 10.9
0.12 6.5 6.9 7.3 7.5 7.7 8.3 9.3 10.1 11.4
0.14 6.3 6.7 7.1 7.5 8.0 8.6 9.5 10.4 11.7
0.16 6.7 7.1 7.6 8.0 8.4 8.7 9.4 10.6 11.9
0.18 6.3 6.8 7.5 8.1 8.8 9.3 9.8 10.6 12.1
0.20 5.7 5.9 6.4 7.2 8.1 9.0 10.0 10.8 12.1
0.22 5.3 5.3 5.7 6.3 7.2 8.3 9.6 10.8 12.1
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TABLE 11-16 Calculated Average E -Plane Beamwidth of a Log-Periodic Dipole
Antenna for Length/Diameter = 70

Scaling Constant, τ

σ 0.80 0.82 0.84 0.86 0.88 0.90 0.92 0.94 0.96

0.06 60 59 86 78 61 69 66 62 58
0.07 76 61 57 73 69 67 64 61 56
0.08 83 76 61 63 71 61 64 60 55
0.09 75 83 72 60 62 69 62 58 54
0.10 57 76 81 72 63 62 62 58 53
0.12 66 61 60 63 69 65 59 57 51
0.14 73 69 67 65 63 63 61 54 50
0.16 64 65 64 63 62 63 61 54 49
0.18 69 66 66 64 60 58 56 55 48
0.20 78 80 80 76 71 64 57 53 48
0.22 81 81 86 84 79 71 62 55 48

TABLE 11-17 Calculated Average H -Plane Beamwidth of a Log-Periodic Dipole
Antenna for Length/Diameter = 70

Scaling Constant, τ

σ 0.80 0.82 0.84 0.86 0.88 0.90 0.92 0.94 0.96

0.06 157 127 118 150 118 120 104 92 78
0.07 171 146 111 122 124 107 97 87 74
0.08 166 156 123 101 122 98 98 83 70
0.09 115 159 135 106 96 108 90 80 68
0.10 103 124 142 122 99 100 88 77 65
0.12 108 99 95 106 113 95 82 74 62
0.14 121 115 107 99 95 100 82 71 59
0.16 107 106 100 96 95 92 82 68 58
0.18 121 109 99 90 82 77 74 70 56
0.20 135 131 123 111 98 86 73 66 56
0.22 149 136 126 116 100 82 67 56

determine the number of elements required. The longest element length is given by

L1 = K1λL (11-27)

where λL is the longest operating wavelength and K1 is the lower truncation constant.
We determine K1 from the empirical equation [22]

K1 = 1.01 − 0.519τ (11-28)

Equation (11-28) overestimates K1 for τ > 0.95, and the lower band edge will be
extended slightly. We calculate the upper truncation constant from

K2 = 7.08τ 3 − 21.3τ 2 + 21.98τ − 7.30 + σ(21.82 − 66τ + 62.12τ 2 − 18.29τ 3)

(11-29)
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another empirical equation. The shortest element length is LU = K2λU , where λU is
the shortest operating wavelength. We use the truncation constants and the frequency
band edges to determine the number of dipoles in the antenna:

N = 1 + log(K2/K1) + log(fL/fU )

log τ
(11-30)

For a given frequency, fL = fU = f , and we compute the number of elements in the
active region from Eq. (11-30):

Na = 1 + log(K2/K1)

log τ
(11-31)

Increasing the number of elements in the active region increases gain. We combine
Eqs. (11-23) and (11-25) to determine the virtual apex distance:

Rn = 2Lnσ

1 − τ
(11-32)

The axial length of the antenna is the difference between R1 and RN :

length = R1 − RN = R1(1 − τN−1) = 2L1σ(1 − τN−1)

1 − τ
(11-33)

We compute the dimensions of the antenna from the equations above by using an
integer number of dipoles [Eq. (11-30)].

Example Design a log-periodic dipole antenna to operate from 100 to 1000 MHz.
Use τ = 0.9 and σ = 0.15. We estimate the E- and H -plane average beamwidths

from Tables 11-16 and 11-17.

E-plane beamwidth = 63◦
H -plane beamwidth = 96◦

We use Eqs. (11-28) and (11-29) to compute the truncation constants: K1 = 0.54
and K2 = 0.32. We calculate the length L1 by using K1 and the lowest operating
wavelength [Eq. (11-27)]: L1 = K1λ100 MHz = 162 cm. We determine the number of
elements from Eq. (11-30), N = 28, and substitute N into Eq. (11-33) to determine
the total length, 457.7 cm. We rearrange Eq. (11-25) to calculate the first spacing,
d1 = 2σL1 = 48.6 cm. We compute the virtual apex distance from Eq. (11-32):

R1 = 2L1σ

1 − τ
= 486 cm

We use these dimensions and the scaling constant to iterate the rest of the antenna
dimensions by using Eq. (11-22). For example,

L2 = τL1 = 145.8 cm R2 = τR1 = 437.4 cm d2 = τd1 = 43.74 cm

We can estimate the gain from the length of the active region. We calculate
the half apex angle from Eq. (11-26): 9.46◦. The axial length of the active region
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is (K1 − K2)/ tan α = 1.32λ, and we use Eq. (10-12) for the directivity of a linear
end-fire antenna:

directivity = 4L

λ
= 5.28 (7.2 dB)

The dipole pattern of the elements decreases the average radiation intensity and
increases directivity by 1.4 dB, somewhat less than the 2.1 dB of the dipole because
effective radiation length had already shaped the pattern. We read a gain of 8.6 dB
from Table 11-15.

Table 11-15 has multiple points with similar gain. The length of the active region
determines gain, but increasing the number of elements reduces the ripple in the fre-
quency response. We can also reduce the ripple by increasing the element diameters
or, equivalently, by using flat trapezoidal teeth for elements instead of thin dipoles. We
substitute a dipole for a flat strip by using a diameter equal to half the strip width. Three
antennas were designed to cover the frequency range 100 to 1000 MHz: (1) τ = 0.8,
σ = 0.1, and L/d = 140; (2) τ = 0.8, σ = 0.1, and L/d = 25; (3) τ = 0.9, σ = 0.06,
and L/d = 140. The first two designs contain 16 elements with a boom length of
1.78 m, and the second one has 26 elements along a 1.96-m boom.

Figure 11-15 plots the frequency response of gain for the three designs. All three
plots show narrow frequency ranges where the gain drops due to the combination of
adverse coupling and feed network. This analysis ignores the currents induced on the
feed lines, which produce additional dropout regions. When we use the lower truncation
constant to design the longest element, the antenna has its full gain at the lower-
frequency edge. The solid and long-dashed curves plot the responses of the antennas
with τ = 0.8 and σ = 0.1 and demonstrate a similar ripple period, whereas the design
with more elements (τ = 0.9 and σ = 0.06), plotted with short dashes, shows little
ripple. The antenna with thin elements produces a design with more than 1 dB of gain
ripple. The thicker elements also reduce the level of gain dropouts in the response.
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Frequency, MHz

t = 0.9, s = 0.06
L/d = 140

t = 0.8, s = 0.1
L/d = 140

t = 0.8, s = 0.1
L/d = 25

FIGURE 11-15 Frequency response of 16-element log-periodic dipole antennas designed for
a 10 : 1 frequency range.
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H-plane
180 MHz

E-plane
180 MHz

E-plane
210 MHz

H-plane
210 MHz

FIGURE 11-16 Patterns of a 16-element log-periodic dipole antenna with τ = 0.80 and
σ = 0.1.

Figure 11-16 gives the E- and H -plane patterns of case 1 at a normal frequency
(180 MHz, solid) and at a frequency in the dropout region (210 MHz, dashed). The E-
plane pattern contains a null at 90◦ due to the dipoles. The H -plane pattern shows how
the pattern broadens and no longer has a traveling wave phasing along the elements
in the active region to produce a significant front-to-back ratio. The pattern almost
reduces to that of a single dipole. The front-to-back ratio is a more telling indicator than
boresight gain of phasing problems in the log-periodic antenna. Antennas using thin
dipoles and few elements in the active region have many regions with poor response.
Increasing the diameter of the elements improves the F/B ratio. Increasing τ both
improves F/B and increases the ripple rate.

11-12.1 Feeding a Log-Periodic Dipole Antenna

The antenna of Figure 11-14 must be fed from a balanced line; antennas designed
for HF frequencies use that type of feed. If we can run a coax along the center of
the antenna, we can use an infinite balun. We alternate the direction of the elements
(Figure 11-17) on the outer shield of the coax feeder with a dummy coax to achieve the
crisscross. The combination of the feed coax and dummy coax form a two-wire trans-
mission line that feeds the elements. The truncation property of the antenna inhibits the
flow of induced current on the feeder beyond the active region from reaching the input.
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Dummy Coax
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FIGURE 11-17 Log-periodic dipole antenna feed with an infinite balun.

We use a crisscross feed to increase the phase velocity on the feeder in the active
region. If we used straight feeders between dipoles, the phase delay would equal that
necessary for end fire in the direction of the feeder currents. This would produce a
pattern in the direction of increasing structure and violate the truncation requirement.
The extra 180◦ phase shift between elements produces a backfiring fast wave in the
active region.

The region before the active region is a transmission line loaded with small open-
circuited stubs (the dipoles). These capacitively load the line and reduce the effective
characteristic impedance of the two-wire line. Each short dipole has capacitance

Z = −jZa cot
kLi

2
(11-34)

where Li is the total dipole length, k the wave number (2π/λ), and Za the average
characteristic impedance of the dipole:

Za = 120

(
ln

Li

2a
− 2.25

)
(11-35)

for a dipole radius a. We use Eq. (11-35) with a constant length/diameter ratio in
Eq. (11-34) to compute an effective added capacitance per unit length along the
feeder due to the nonresonant dipoles. With a little manipulation we reduce this to
an expression in terms of the log-periodic dipole antenna parameters. The effective
feeder impedance R0 is related to the unloaded two-wire impedance Z0 by

R0 = Z0√
1 + (

√
τZ0)/σZa

(11-36)
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If the length-to-diameter ratio of the dipoles remains constant, R0 is constant along
the antenna length. Even with a changing Z0 or Za , the feeder acts as a tapered
transmission-line transformer. We may expect impedance variations about the nominal
value of Eq. (11-36) with a cycle of τ . The currents on the feeder radiate, but because
they are close enough together and are nearly equal and opposite, they cancel in the
far field. The feeder currents and the jumper at the feed limit the cross-polarization
response to about 20 dB, which ripples with frequency changes.

The jumper between the center conductor of the coax feeder and the dummy coax
line will squint the beam toward the dummy coax at high frequencies. We can represent
the jumper as a series inductor in the transmission line, and construction difficul-
ties with this jumper connection limit the high-frequency operation of log-periodic
dipole antennas.

11-12.2 Phase Center

We expect the antenna phase center to be in the middle of the active region. If the
antenna were made from many half-wavelength dipoles each resonant at a single fre-
quency, we would look to the one λ/2 long at a given frequency to be the phase center.
In the preceding example the active region dipoles ranged from 0.32λ to 0.54λ. We
expect the phase center to be in front of the λ/2 element (or location along the triangle
of the element ends of a possible element), since a great deal of the active region has
elements of less than λ/2.

Table 11-18 lists the approximate E- and H -plane phase-center locations measured
from the virtual apex relative to a λ/2 element. We may not have a λ/2 element at
a given frequency; but given the envelope of elements defined by the apex angle,
we compute the location of a possible element. Table 11-18 shows the astigmatism
of the antenna with the H -plane phase center behind the E-plane phase center. The
phase-center distance from the virtual apex increases linearly with λ.

Example Compute E- and H -plane phase centers of the antenna designed above for
the range 100 to 1000 MHz (τ = 0.9) at 600 MHz.

The half apex angle is 9.46◦. The apex distance of the half-wavelength element is

Rg = λ

4 tan α
= 50

4 tan 9.46◦ = 75.02 cm

TABLE 11-18 Log-Periodic Dipole Antenna Phase Center Rp Measured from the
Virtual Apex Relative to the Location of a λ/2 Element Rg = λ/(4 tan α)

Rp/Rg Rp/Rg
Scaling

Constant, τ E-Plane H -Plane
Scaling

Constant, τ E-Plane H -Plane

0.80 0.959 0.997 0.90 0.862 0.874
0.82 0.939 0.968 0.92 0.849 0.859
0.84 0.928 0.941 0.94 0.842 0.849
0.86 0.897 0.916 0.96 0.840 0.844
0.88 0.878 0.893

Source: [22].
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From Table 11-18 we read Rp/Rg(E-plane) = 0.862 and Rp/Rg(H -plane) = 0.874.
The phase center distances from the virtual apex are

Rp(E − plane) = 64.67 cm Rp(H − plane) = 65.57 cm

This astigmatism of 0.018λ produces an insignificant loss as a paraboloidal reflector
feed (Figure 8-4).

11-12.3 Elevation Angle

The dipole elements must be connected alternately to the coax feeder and the dummy
coax, but the feeder lines can diverge (Figure 11-18). We direct the feeder lines at
angles ±ψ from the antenna axis. For the antenna to remain frequency independent,
it is necessary for the projection of the two feeders to intersect at the virtual apex.
Spacing the sides at angles ±ψ decreases the H -plane beamwidth since the aperture
size increases in that plane. The elevation angle moves the antenna phase center toward
the virtual apex and reduces movement with frequency changes. We must analyze the
feeder line as a tapered transmission line. Moving the sides apart will increase the

y

y

(a)

(b)

FIGURE 11-18 Log-periodic dipole antennas with the feeder diverged by elevation angle.
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backlobe of the pattern because in the limit of ψ = 90◦, the front and back lobes
are equal.

11-12.4 Arrays of Log-Periodic Dipole Antennas [24]

We can make broadband arrays with log-periodic antennas. Like the elevation angle
of the single antenna, we have frequency-independent arrays only if the virtual apexes
of all the elements of the array are coincident. The elements must also have the same
τ and σ . Figure 11-19 shows E- and H -plane arrays. The relative phasing between
elements can be changed in a frequency-independent manner. If an antenna is turned
over, its far-field phase changes by 180◦. In an array of two elements this will produce
a null on the axis between them, the effect of placing a horizontally polarized antenna
over a ground plane. On a particular antenna, if we multiply every element by the
scaling constant, the far-field phase shifts by 180◦. Multiplying every element by τ

is equivalent to turning the antenna over (somewhere in the middle of the frequency
band). Adding elements at the feed end does not change the location of the phase
center. We can change the phase arbitrarily by multiplying the antenna dimensions by
τ γ/180◦

, where γ is the phase shift. Changing the phase by τ γ/180◦
has meaning only

in an array.

H-Plane Array

E-Plane Array

FIGURE 11-19 Arrays of log-periodic antennas.
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We can build a frequency-independent circularly polarized antenna from two log-
periodic antennas. We orient the two antennas at right angles with one of them scaled
by τ 1/2. When fed in phase, the pair combines 90◦ out of phase and radiates circular
polarization. When we array log-periodic antennas, they may develop narrowband
gain dropouts [25]. These dropouts occur in a sequence of frequencies with the scaling
constant τ of the antenna. Antennas arrayed in either the E- or H -plane show these
dropouts, as do antennas arrayed orthogonally. If we mismatch the scaling constants
between the antennas in the array, each has dropouts scaled by its own scaling constant.
Single antennas also can develop gain dropouts, although they seldom occur in a
sequence of frequencies.

The phenomenon points to the importance of swept gain measurements because
the location of the frequencies of dropouts remains somewhat unpredictable except
for the sequence. Moment method models of the antenna will predict dropouts, but
a large number of cases must be run to locate the frequencies. Unbalanced cur-
rents on the feeder lines interact with the elements to produce cross-polarization and
large amounts of off-boresight radiation that lowers gain. These unwanted currents on
the feeder are produced by either asymmetry in the antenna or interactions between
antennas.

11-13 OTHER LOG-PERIODIC TYPES [26, 27]

Many different types of log-periodic antennas have been built. If we discover a structure
that satisfies the self-scaling antenna requirements and has the desired polarization, we
will have a new frequency-independent antenna. The first log-periodic antennas were
teeth cut into the sides of bifin antennas. These radiated equally on both sides with
polarization rotated parallel to the teeth instead of along the feed line. Isbell folded the
sides at elevation angles to produce a unidirectional pattern. DuHamel and Ore [27]
straighten the teeth to form the trapezoidal tooth antenna (Figure 11-20). We separate
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FIGURE 11-20 Trapezoidal tooth log-periodic antenna.
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the sides by an angle 2ψ , and they project to the virtual apex. This is a good high-
frequency antenna because it can be largely self-supporting. Figure 11-20 shows the
teeth with the same width as the spacings. We can reduce the width of the teeth, but
we continue to measure the distances Rn to the bottom of the teeth. As we continue to
reduce the width of the teeth, the antenna transforms into a log-periodic dipole antenna.

When we remove material to form the teeth of a wire outline trapezoidal tooth
antenna (Figure 11-21), it has only minor effects on the pattern. The shape of the teeth
is not too important as long as the teeth scale with τ because the triangular tooth wire
outline antenna (Figure 11-22) also works well. This tooth shape reduces some of the
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FIGURE 11-21 Trapezoidal tooth wire outline log-periodic antenna.
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FIGURE 11-22 Triangular tooth wire outline log-periodic antenna.
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TABLE 11-19 Trapezoidal Tooth Wire Outline Log-Periodic Antenna Designs

Beamwidth
Scaling

Constant, τ

Elevation
Angle, ψ

Half Apex
Angle, α E-Plane H -Plane

Directivity
(dB)

Sidelobes
(dB)

0.63 15 30 85 153 5.0 12
0.63 15 37.5 74 155 5.6 12.4
0.71 15 30 70 118 7.0 17.7
0.71 15 37.5 66 126 7.0 17.0
0.63 22.5 30 86 112 6.3 8.6
0.63 22.5 37.5 72 125 6.6 11.4
0.71 22.5 30 71 95 7.9 14.0
0.71 22.5 37.5 67 106 7.6 14.9
0.77 22.5 30 67 85 8.6 15.8
0.84 22.5 22.5 66 66 9.8 12.3
0.84 22.5 30 64 79 9.1 15.8
0.63 30 30 87 87 7.4 7.0
0.63 30 37.5 73 103 7.4 8.6
0.71 30 30 71 77 8.8 9.9
0.71 30 37.5 68 93 8.1 12.8

Source: [27].

construction problems of the trapezoidal tooth design, especially at low frequencies.
Because the wider teeth have greater coupling than dipoles, we can use smaller scaling
constants τ and achieve good designs. Antennas have been built with τ = 0.63, and the
log-periodic dipole has a lower limit of about 0.80 for a good response. Table 11-19
lists the parameters of successful trapezoidal tooth wire outline antennas [27] in terms
of log-periodic dipole parameters. Increasing the elevation angle decreases the H -plane
beamwidth and raises the sidelobes. The H -plane beamwidth decreases as we increase
the half apex angle, but the dipole-type pattern of the E-plane is its predominant
factor. In the range of scaling constants given, the directivity increases with increasing
scaling constant.

11-14 LOG-PERIODIC ANTENNA FEEDING
PARABOLOIDAL REFLECTOR

The combination of a log periodic antenna feeding a paraboloidal reflector produces
a wideband antenna with high gain. The significant problem is the movement of the
phase center of the antenna over the frequency range, which causes phase error loss.
For a given frequency range we locate the weighted-average phase center at the focus
of the reflector. You determine the phase center by analysis or measurement at the
lowest and highest frequencies of operation and calculate the best position to locate at
the reflector focus:

PC avg = PC LFL + PC UFU

FL + FU

(11-37)

This location of the phase center, PCavg, produces the same loss at the lower frequency,
FL, and the upper frequency, FU . You can extend Eq. (11-37) to include all fre-
quencies for calculation of the average phase center as a weighted average. If you
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build a log-periodic antenna using dipoles, having unequal beamwidths in the E- and
H -planes generates cross-polarization in the diagonal plane when converted to dual-
polarized Huygens sources. Each Huygens source excites uniformly polarized currents
on the reflector. The nearly constant beamwidth of the antenna at all frequencies pro-
duces a constant sum of the spillover and taper loss over the frequency range of the
feed operation.

Parameters for both broad- and narrowband designs were found to optimize the
gain of the reflector using Carrell’s analysis method [28]. Table 11-20 lists the design
parameters of a wideband design given by the scaling constant τ and the half apex
angle α. Antennas designed to the parameters of Table 11-20 to operate over a 10 : 1
frequency range were analyzed as feeds for a paraboloid reflector. We use Eq. (11-37)
to locate the phase center so that we have the same phase error loss at the upper and
lower frequencies. Table 11-21 lists the results.

TABLE 11-20 Parameters of Wide-Bandwidth Log-Periodic Dipole Feed for a Reflector

Beamwidth
Reflector,

f/D

Scaling
Constant, τ

Half Apex
Angle, α

Average
Gain (dB) E-Plane H -Plane

0.25 0.855 41.7 6.1 61.3 143.3
0.30 0.867 40 6.0 73.0 141.4
0.35 0.869 37.5 6.1 72.2 139.4
0.40 0.900 32 6.5 69.3 126.0
0.45 0.914 27 6.8 67.0 124.1
0.50 0.923 22 7.3 66.6 112.2
0.55 0.928 20 7.4 66.9 112.4
0.60 0.934 17.5 7.8 65.5 105.6
0.65 0.940 16 8.0 64.2 101.0
0.70 0.944 13.5 8.4 62.7 94.2
0.75 0.947 12 8.8 61.6 90.0

TABLE 11-21 Reflector Illumination Losses of Log-Periodic Dipole Antennas Designed
to Operate over a 10 : 1 Frequency Range

Total (dB)
Reflector,

f/D

Number of
Elements

Maximum
PEL
(dB)

Average
ATL
(dB)

Average
SPL
(dB)

Cross-
Polarization

Loss Minimum Maximum Average

0.25 19 0.60 1.52 0.46 0.40 2.32 3.37 2.64
0.30 21 0.44 0.95 0.73 0.36 1.93 2.94 2.20
0.35 23 0.53 0.97 0.71 0.35 1.97 2.95 2.23
0.40 26 0.38 0.44 1.22 0.32 2.05 2.60 2.21
0.45 30 0.40 0.36 1.52 0.28 2.10 2.70 2.30
0.50 33 0.44 0.26 1.63 0.23 2.04 2.80 2.28
0.55 36 0.38 0.20 1.90 0.21 2.19 3.08 2.44
0.60 40 0.38 0.16 2.07 0.17 2.30 3.10 2.53
0.65 43 0.34 0.12 2.33 0.15 2.48 3.30 2.73
0.70 47 0.36 0.11 2.40 0.11 2.50 3.40 2.74
0.75 50 0.36 0.09 2.55 0.09 2.61 3.50 2.85
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Repeating the analysis of the antennas in Table 11-21 over a 20 : 1 frequency range
for f /D between 0.30 and 0.50 increased the maximum loss by only 0.1 dB. The
wideband antennas use short lengths to limit the phase-center movement as the oper-
ating frequency changes and radiate wide H -plane beamwidths from their short active
region. The ideal feed for a reflector has nearly equal beamwidths to reduce spillover
and reduce cross-polarization in the diagonal planes. Table 11-22 gives a second set
of designs that produce optimum illumination from the log-periodic dipole antenna for
a narrow band of frequencies. If we consider an additional 0.5 dB loss, similar to the
2 : 1 VSWR, the bandwidth of these antennas is approximately 70%, or equivalently,
a 2 : 1 frequency range. Of course, the antenna needs to be designed with sufficient
elements to cover the frequency range.

We reduce the number of elements required by using a trapezoidal tooth design
(Figure 11-20). These designs work best with a reflector f/D between 0.40 and
0.55. We separate the sides by an angle 2ψ to decrease the H -plane beamwidth.
Table 11-23 lists the results from a method of moments analysis for varying ψ on
an antenna designed to operate over a 10 : 1 frequency range (16 elements) with
τ = 0.80, σ = 0.125 (α = 21.8◦), and tooth width/element spacing = 1

3 . The MOM
analysis includes the currents flowing on the feeder lines that radiate increasing cross-
polarization as the sides separate. This design peaks at f/D = 0.48. Table 11-24 shows
that the illumination losses change very slowly for different f/D and it is difficult to
say that the feed peaks for a particular f/D.

A trapezoidal tooth log-periodic antenna was built and tested as a feed for a reflector.
Table 11-25 lists the average and maximum sum of the illumination losses calculated

TABLE 11-22 Optimum Narrowband Log-Periodic Dipole Antennas Reflector Feeds

Beamwidth (deg)

f/D

Scaling
Constant, τ α

Gain
(dB) E-Plane H -Plane

ATL
(dB)

SPL
(dB)

Cross-Polarization
Loss

Minimum
Total (dB)

0.30 0.920 18.5 7.7 66.6 108.1 1.35 0.27 0.18 1.79
0.35 0.928 15 8.1 64.1 99.8 1.00 0.33 0.13 1.46
0.40 0.940 12 8.7 61.8 90.1 0.78 0.39 0.10 1.23
0.45 0.944 10 9.1 60.3 85.5 0.61 0.47 0.08 1.10
0.50 0.947 8.2 9.6 58.4 79.6 0.50 0.52 0.06 1.02
0.55 0.952 7 10 56.5 74.3 0.42 0.58 0.04 0.99
0.60 0.952 5.3 10.7 53.8 68.0 0.34 0.54 0.03 0.96

TABLE 11-23 Trapezoidal Tooth Log-Periodic Antenna Feed for a Reflector with
f /D = 0.48, 10 : 1 Frequency Range (16 Elements) with τ = 0.80, σ = 0.125 (α = 21.8◦)

Beamwidth (deg)
Maximum Average Average Average

Total (dB)10-dB 10-dB PEL ATL SPL XOL F/B
ψ E-Plane H -Plane (dB) (dB) (dB) (dB) (dB) Average Maximum

5 108.1 180.4 0.54 0.44 1.13 0.23 20 1.98 2.51
10 108.0 158.1 0.53 0.45 0.93 0.26 15 1.82 2.37
15 110.2 143.3 0.57 0.42 0.83 0.38 13 1.87 2.52
20 113.5 124.7 0.49 0.52 0.84 0.60 12 2.15 2.80
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TABLE 11-24 Illumination Loss Variation for Trapezoidal Tooth Log-Periodic Antenna
Reflector Feed Over a 10 : 1 Frequency Range (16 Elements) with τ = 0.80, σ = 0.125
(α = 21.8◦), and ψ = 15◦

f/D

Loss (dB) 0.40 0.42 0.44 0.46 0.48 0.50 0.52 0.54

Average 1.94 1.88 1.86 1.85 1.87 1.91 1.95 2.01
Maximum 2.80 2.68 2.60 2.54 2.52 2.52 2.53 2.55
Minimum 1.58 1.54 1.53 1.55 1.58 1.67 1.67 1.73

TABLE 11-25 Measured Illumination Losses for Trapezoidal Tooth Log-Periodic
Antenna Reflector Feed Over a 6 : 1 Frequency Range with τ = 0.80, σ = 0.1
(α = 26.6◦), and ψ = 6◦

f/D

Loss (dB) 0.40 0.42 0.44 0.46 0.48 0.50 0.52 0.54

Average 1.78 1.69 1.64 1.63 1.64 1.68 1.74 1.82
Maximum 2.73 2.53 2.38 2.28 2.24 2.40 2.47 2.56

At f/D = 0.46:

Beamwidth (deg)

10-dB
E-Plane

10-dB
H -Plane

Maximum
PEL
(dB)

Average
ATL
(dB)

Average
SPL
(dB)

Average
XOL
(dB)

Average
Total
(dB)

Maximum
Total
(dB)

107.6 147.0 0.58 0.49 0.63 0.28 1.63 2.28

from measurements over a 6 : 1 frequency range. An infinite balun feed was made by
attaching the feeding coax to the central plate of one side and connecting the coax center
conductor to a coax outer shield attached to the second arm. Small movements between
the two sides rapidly alter the input impedance, and a few experiments involving
changing their spacing produce an acceptable return loss. Table 11-25 shows results
similar to Table 11-24 in that the antenna has a broad optimum affected very little
by the reflector parameters. This antenna has an improved performance relative to the
preceding design (Tables 11-23 and 11-24) because it operates over a 6 : 1 bandwidth
instead of 10 : 1.

Increasing α to 30◦ (σ = 0.0866) makes the antenna shorter, and its performance
peaks for f/D = 0.42 for the same 10 : 1 frequency range and τ = 0.8. Table 11-26
lists the parameters of this design. Although this design peaks for f/D = 0.42, the
losses increase only slowly when we change f/D, similar to the design in Table 11-24.
For higher f/D we need narrower beamwidths to reduce spillover, which requires a
design with a longer active region. The longer antenna will have a greater phase-center
movement over the frequency range. A design that peaks at about f/D = 0.54 uses
τ = 0.84 and σ = 0.125 (α = 17.7◦). Table 11-27 lists the results for this antenna.

A paper by DuHamel and Ore [29] reports the results of measurements of trapezoidal
tooth log-periodic feeds for reflectors. These antennas use small scaling constants τ ,
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TABLE 11-26 Trapezoidal Tooth Log-Periodic Antenna Feed for a Reflector with
f /D = 0.42

Beamwidth (deg)
Maximum Average Average Average

Total (dB)10-dB 10-dB PEL ATL SPL XOL F/B
ψ E-Plane H -Plane (dB) (dB) (dB) (dB) (dB) Average Maximum

5 116.1 203.8 0.38 0.44 1.09 0.29 23 1.96 2.16
10 114.4 186.5 0.38 0.49 0.90 0.28 18 1.80 2.04
15 114.9 179.2 0.36 0.52 0.82 0.31 17 1.78 2.01
20 116.1 166.0 0.35 0.56 0.79 0.41 13 1.90 2.15

TABLE 11-27 Trapezoidal Tooth Log-Periodic Antenna Feed for a Reflector with
f /D = 0.54, 10 : 1 Frequency Range (16 Elements) with τ = 0.84, σ = 0.125 (α = 17.7◦)

Beamwidth (deg)
Maximum Average Average Average

Total (dB)10-dB 10-dB PEL ATL SPL XOL F/B
ψ E-Plane H -Plane (dB) (dB) (dB) (dB) (dB) Average Maximum

5 107.2 158.5 0.56 0.30 1.27 0.21 20 1.97 2.45
10 107.5 139.5 0.54 0.32 1.04 0.33 16 1.87 2.57
15 110.6 118.4 0.53 0.36 0.95 0.60 14 2.09 3.00
20 114.4 97.3 0.49 0.47 1.04 0.95 8 2.64 3.82

TABLE 11-28 Trapezoidal Tooth Log-Periodic Antenna Feed for a Reflector with
f /D = 0.46

Beamwidth (deg)
Maximum Average Average Average

Total (dB)10-dB 10-dB PEL ATL SPL XOL F/B
ψ E-Plane H -Plane (dB) (dB) (dB) (dB) (dB) Average Maximum

10 102.5 181.4 0.32 0.49 1.24 0.76 13 2.62 3.64
22.5 105.4 154.7 0.36 0.56 1.17 1.14 8 3.01 4.55

Source: [29].

wide half apex angles α, and widely separated sides ψ to reduce the reflector feed
phase error loss due to axial defocusing. The paper reports results over a large range
of parameters. Two of the better ones were analyzed as a feed for a reflector with
f/D = 0.46. These antennas have a scaling constant τ = 0.707 and a half apex angle
α = 30◦ (σ = 0.127). Table 11-28 lists analysis results of two designs; both produce
high cross-polarization loss due to feed line radiation and unequal E- and H -plane
beamwidths.

11-15 V LOG-PERIODIC ARRAY [30]

A V log-periodic antenna sweeps the dipole elements of the log-periodic antenna shown
in Figure 11-14 forward to form a series of V dipoles. This antenna can be operated
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over a large frequency range such that the dipoles operate in higher-order modes. The
dipoles operate in λ/2 mode at the lowest frequencies and are then scattered among a
series of transition frequency bands of poor performance. The antenna operates again in
3λ/2, 5λ/2, 7λ/2, and so on, modes of the dipoles. Dipoles, resonant in the higher-order
modes, radiate multiple lobe patterns. In a log-periodic antenna these lobes produce
high sidelobes. To reduce these sidelobes the elements are swept forward so that the
pattern nulls are aligned with the poles that reduce them. The antenna does not need the
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FIGURE 11-23 V-dipole log-periodic antenna gain for τ = 0.9, σ = 0.05, ψ = 45◦.
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FIGURE 11-24 V-dipole log-periodic antenna beamwidth for τ = 0.9, σ = 0.05, ψ = 45◦:
12 elements (solid curve); 15 elements (dashed curve).
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small dipoles required for high frequencies in normally designed log-periodic dipole
antennas, which eases construction problems.

Designs use scaling constants τ ≥ 0.9 and small spacing constants σ ≤ 0.05. Two
antennas were designed with 12 and 15 elements using these factors and analyzed.
The 12-element antenna requires a dipole length ratio of 3.2 across the elements and
has a length of 0.37λ at the lowest frequency; the 15-element antenna dipole length
ratio is 4.37, with a boom length 0.42λ at the lowest frequency. Figure 11-23 gives
the gain versus normalized frequency found by reducing directivity by the reflected
power loss due to impedance mismatch. The poor impedance match reduces gain in the
band 2.7 to 3.7 for the 12-element antenna and 3.7 to 5.2 for the 15-element antenna.
The return loss is better than −6 dB (3 : 1 VSWR) over the remaining frequency range.
Figure 11-24 shows that the E-plane beamwidth decreases drastically when the antenna
operates in the higher-order dipole modes. The H -plane pattern exhibits considerable
variation and at some frequency ratios has large sidelobes that reduce gain. We cannot
use the beamwidths to estimate directivity, but must integrate the entire pattern. The
12-element antenna has its shortest elements 2λ long at the highest frequency.

11-16 CAVITY-BACKED PLANAR LOG-PERIODIC ANTENNAS

We use some of the original planar log-periodic antennas that have wide beamwidth
patterns on both sides and eliminate one side by placing it on a cavity in the same
manner as a spiral. By using elements morphed into arcs, we interleave two or more
antennas to build an antenna to radiate dual linear polarization, or we can combine
the two linear polarizations with a hybrid power divider (0◦ and 90◦ phases) to obtain
RHC and LHC polarization. Similar to a spiral, we can design antennas with multiple
spiral modes by interleaving more than two antennas in a single aperture.

Figure 11-25 shows a layout of the interlog antenna [31] that contains two planar
log-periodic antennas interleaved. We design such antennas using normal log-periodic
antenna design procedures and roll the poles into arcs. We feed the antenna from the
center and mount it over an absorber-loaded cavity. The antenna can radiate either
dual linear or dual circular polarizations, depending on the feed network. The typical

FIGURE 11-25 Interlog antenna.
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predicted pattern of the antenna when fed for RHC polarization is similar to a spiral.
The log-periodic nature of the antenna produces a lower amplitude pattern at θ = 90◦

than a spiral. Although the antenna has four arms, we cannot form a mode 2 spiral beam
because generating circular polarization consumes a degree of freedom. The antenna
shown in Figure 11-25 has a 1.54λ circumference at the lowest frequency. Interleav-
ing causes problems because the coupling produces pattern distortion periodic with
frequency. The cross-polarization for an antenna fed RHC increases and beamwidth
broadens over narrow frequency ranges. We reduce this effect by decreasing the inter-
leaving, but antenna size grows.

The second example of a planar log-periodic antenna over a cavity is a sinuous
antenna [32,33]. The triangular tooth antenna has been morphed into arcs using a
sinuous curve to reduce reflections from the corners (Figure 11-26). We use the same
sinuous curve to define both edges of each arm by rotating it about the center axis.
Similar to the interlog antenna, we can feed the four-arm antenna for dual linear or
dual circular polarizations. The sinuous antenna radiates a pattern similar to a spiral.
To design these antennas we make the sweep of the curved triangles λ/4, although it
is one-half the dipole of a log-periodic antenna. Given the angle of the triangle sweep
of the sinuous antenna, α + δ (rad), we compute its length from the center distance r:

length = r(α + δ) = K1λ

2
(11-38)

We determine the factor K1 from Eq. (11-28) for the lower truncation constant given τ ,
the scaling constant. A recommended value for α + δ is 67.5◦ for a four-arm antenna
that produces a self-complementary structure. We compute the circumference from the
lowest frequency and K1:

circumference = πK1λL

α + δ
(rad) = 180◦

K1λL

α + δ
≈ πλL

2(α + δ)
(11-39)

For τ = 0.8, Eq. (11-28) gives K1 = 0.595. When we use α + δ = 67.5◦ for the four-
arm antenna and insert these values in Eq. (11-40), we compute circumference = 1.58λ,
a value similar to that for the interlog antenna.

FIGURE 11-26 Sinuous antenna.
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When we use a sinuous antenna for dual linear polarization, we discover that the
polarization direction oscillates about ±3◦ when we vary frequency. The two directions
track each other for both pairs of a four-arm structure, and cross-polarization is reduced
when we feed it to radiate circular polarization.
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12
PHASED ARRAYS

Chapter 3 covers the basics of phased arrays. We place phase shifters or time-delay
networks on every element or a combination of these in a feed network to shift the beam
direction. In this chapter we discuss the particular problems of phased arrays when we
consider the effects of phase shifters and architecture of the feed network. In Chapter 4
we discuss array pattern synthesis using direct methods and array characteristics of
those that sample aperture distributions. We do not repeat those topics in this chapter.

The pattern properties desired determine the number of array elements and their
layout, from which we calculate gain as discussed in Section 3-12. To prevent grating
lobes (Sections 3-5 and 3-8), we must place an element approximately every λ/2 for
an array that scans to 90◦. Of course, if we limit scan, we may place elements farther
apart. By using a uniform linear aperture beamwidth approximation to a line array, its
beamwidth is 100 (HPBW factor)/Nx in degrees for the general amplitude distribution
when elements are spaced λ/2. We initially ignore the HPBW factor and assume a
uniform distribution (minimum beamwidth). Given the beamwidth in the principal
planes, θx and θy , the number of elements in the array is

N = NxNy = 10,000

θxθy

(12-1)

When we use a tapered distribution to lower sidelobes, the required number of elements
increases by the HPBW factors in the two planes. Section 3-12 showed that array gain
is limited by its area for closely spaced elements. The area of λ/2 spaced elements is
λ2/4, which relates gain to the number of elements by effective area:

gain = πN (12-2)

This assigns an effective gain of π to each element. When we scan the beam, the
effective area (length in the scan plane) drops by cos θ0, which causes gain to drop
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and beamwidth to broaden:

gain = πN cos θ0 and θx(scanned) = θx

cos θ0
(12-3)

Because the gain drops by cos θ0 as the beam scans, it leads to the idea of an ele-
ment pattern:

Ee(θ) = √
cos θ (12-4)

The element pattern alters the array factor pattern as the element is scanned. In general,
narrow beamwidth elements greatly alter the pattern when the array factor scans across
the element pattern, and it limits the practical scan range. To scan to wide angles, we
need broad-beamwidth array elements.

Aperture theory uses a Huygens source along the array with a pattern given by

E(θ) = cos2 θ

2

a function with values almost identical to those of the ideal element pattern [Eq. (12-4)].
The Huygens source is the combination of electric and magnetic incremental sources
whose ratio equals the free-space impedance η = 376.73. A Huygens source array
element impedance matched at broadside has a resistance η. Scanning the array in the
E-plane foreshortens the electric field by cos θ0, which reduces the resistance by the
same factor:

ηE = E cos θ0

H
= η cos θ0 (12-5)

In the same manner the magnetic field is foreshortened for scan in the H -plane. The
scan resistance becomes

ηH = E

H cos θ0
= η

cos θ0
(12-6)

Equations (12-5) and (12-6) predict the general nature of array element impedance
when it scans. E-plane scanning reduces input resistance while H -plane scanning
increases resistance, a consequence of the infinite current sheet model [1,2]. A finite
array has an impedance response generally similar to Eqs. (12-5) and (12-6) but depen-
dent on element position. General scanning has a resistance response relative to the
broadside value R0 given by

η(θ, φ) = (1 − sin2 θ cos2 φ)R0

cos θ
(12-7)

In Section 3-9 we discuss how to use self- and mutual impedance to find the scan
impedance for a finite array, and in Section 11-7 we discuss the interaction of the
element impedance with the feed network.

12-1 FIXED PHASE SHIFTERS (PHASERS)

In a phased array every antenna element is connected to a phase shifter or time-delay
network. We scan the beam by commanding every network to compensate for the
extra time it takes the signal to propagate to a plane normal to the beam direction.
Phase shifters operate in terms of a single frequency in a modulo 2π radians fashion
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to compensate for the kdi phase distance to the reference plane for the ith element,
where di is the distance and k = 2π/λ.

The ideal phased array uses switched time-delay networks because the beam remains
at a fixed direction as frequency changes. We make time-delay networks by varying
lengths of transmission lines. In large phased arrays that use fixed phase differences
instead of time-delay networks, we use time-delay networks near the input to limit
the size of the phase-shift-controlled subarrays to increase bandwidth. Switching the
length of a transmission line changes the insertion loss, and the switched time delay
modulates the element amplitudes. We must add amplitude control in the time delay to
compensate for the varying insertion loss to maintain the design aperture distribution.
Another approach modulates a laser beam with RF signal, uses low-loss fiber optics to
switch time delays, and detects the optical signal to recover the RF before transmission.
Fortunately, the losses are so low when switching fiber optics that amplitude control
is unnecessary. Unfortunately, the modulator losses must be overcome to make this
approach useful.

Some phase shifters (also called phasers) are made by switching short transmission-
line sections, but the modulo nature of their phase shift limits bandwidth. The most
common feed architecture has equal path lengths from the single input to the multi-
ple radiating elements, and the equal path lengths of the corporate feed maintain the
arrays broadside pointing when frequency shifts. If we scan a beam by setting phase
shifters based on frequency and scan angle, the beam will scan toward broadside as
frequency increases. The amount of angular beam shift is independent of the array size,
as given by Eq. (3-14). For a planar surface array with its normal along the z-axis with
beam scanned to θ0, measured from the normal vector, changing frequency shifts the
beam �θ :

�θ = f2 − f1

f2
tan

(π

2
− θ0

)
(12-8)

where f1 and f2 are the two frequencies. Figure 12-1 shows the beam scanning due
to a 5% change in frequency. Figure 12-1 was drawn for a particular array, but the
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FIGURE 12-1 Scan of array with fixed phase shifters for 5% frequency shift scanned to 30◦.
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beam shift is independent of array size because array length affects only beamwidth.
Larger arrays shift their beams the same amount as do short arrays. Only when we
define bandwidth in terms of a factional part of the beamwidth do shorter arrays have
greater bandwidth.

We can use frequency shift to scan a linear array beam direction. The array must be
series-fed similar to waveguide slots, where a single line feeds the array by having each
element coupling a portion of the remaining power traveling down the transmission
line. Figure 12-2 shows the nature of the series feed in terms of slot radiators that
can be replaced by any antenna element. We load the transmission line after the last
element. We use this feeding arrangement for waveguide-fed slot arrays, except that we
use straight sections of waveguide to reduce beam scanning as frequency changes. In
this application we add a meander to increase the electrical length between elements.
Given element-to-element spacing d and a length along the meander s, in general made
from a waveguide with relative propagation constant P , we find the phasing equation
of the radiated wave:

kd cos θ + 2πN = Pks + (−π) for P = λ

λg

=
√

1 −
(

λ

λc

)2

(12-9)

The −π term occurs when we have alternating phases on the elements, such as alter-
nating slots. For coax line we use the dielectric constant for P = √

εr . For a given N

we solve for the meander length s:

s

λ
= 1

P

[
d

λ
cos θM +

(
N + 1

2

)]
(12-10)

The 1
2 term is included for alternating phases on the elements. Larger values of N

increase the beam direction frequency slope:

f
dθ

df
=




−
[

s

d

(
λ

λc

)2 1

P
+

(
N + 1

2

)
λ

d

]
1

sin θ
(rad) waveguide

−
[

s

d
+

(
N + 1

2

)
λ

d

]
1

sin θ
(rad) coax

(12-11)

FIGURE 12-2 Frequency scanning array using the meander line between antennas.
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Example For a coaxial feeder using N = 8 and a spacing D/λ = 0.6, find the phase
slope when θM = 90◦ and the elements do not have alternating phases.

We substitute these values into Eq. (12-11b):

�θ = −�f

f

8

0.6
= −13.33

�f

f
(rad) = −764

�f

f
(deg)

To shift the beam 30◦, we change frequency by 3.93%.

Phasers have been designed using high-speed diode switches and lower-speed ferrite
devices. The diode (or FET) switches enable rapid scan but have high loss compared
to ferrite phasers. The switches redirect the RF path through different lengths of trans-
mission lines and lead to digital phasers. A digital phase shifter has quantized values:
180◦, 90◦, 45◦, 22.5◦, and so on, at a particular frequency. Each phaser bit directs the
signal through one of two paths, each containing two diode switches, whose nearly
equal losses reduce amplitude modulation. But we must design carefully for impedance
match in both states to prevent amplitude modulation. Each bit adds significant trans-
mission loss due to the diode switches, and unfortunately, all bits are in series. Adding
bits gives better control but increases loss.

The design of transmit/receive (T/R) modules eliminates phaser loss system impacts.
If the antenna both transmits and receives signals, such as radar, we add two paths
through the module and rely on the nonreciprocal nature of amplifiers to separate the
channels. Of course, if the antenna does only one function, we eliminate its path.
When transmitting, a final amplifier produces almost all the power when its output is
connected to the antenna. The phaser operates on the drive signal and the amplifier
overcomes the phaser loss. In the receive channel the signal first passes through a low-
noise amplifier (LNA) connected to each antenna element. Section 1-15 shows that a
LNA with sufficient gain overcomes the loss of networks with high loss (and noise
figure) that follow in the receiver chain. The amplifier overcomes the phaser loss that
follows it.

Ferrite phase shifters operate along a magnetic hysteresis loop and it is latched at a
zero magnetic drive point for a given phase shift. This requires drive magnetic fields
to cycle it along the loop to produce the desired value, but operate only when changing
phase. For arbitrary phase shift the ferrite must be demagnetized before changing to a
new state. An alternative design digitizes the ferrite cores by using shorter cores and
pulse magnetic fields developed by current pulses through a wire that threads through
the center of the core to latch it at the two opposite points along the hysteresis loop.
We mount the ferrite toroidal cores in a waveguide and vary the lengths to alter the
phase shift. The phase shift depends on the direction of the wave through the ferrite
phaser. It is nonreciprocal, and in radar all phasers must be reset between transmittal
and receipt of pulses. Reciprocal Faraday rotation phasers convert the input signal to
circular polarization in the waveguide by using a quarter-wave plate tilted at 45◦ along
the axis of a circular waveguide relative to the input linear polarization. The input
wave divides into two signals at the quarter-wave plate, which retards or advances the
two signals relative to a waveguide without the plate until their phase difference is 90◦.
The wave exits as circular polarized. The magnetized ferrite alters the phase of the
CP wave independent of direction. On the output another quarter-wave plate converts
the wave to a linearly polarized wave. Although ferrite phasers are analog devices
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capable of any phase shift, the drive currents are controlled by digital commands and
our designs end up having quantized values.

12-2 QUANTIZATION LOBES

Quantization of the phase shifters produces extra sidelobes for scans near broadside.
We apply a linear-phase slope across the face to scan an array, and the distance between
phase changes is large for scans near broadside because the phase slope is shallow.
These widely spaced phase changes produce grating lobes. Given the scan angle θ0 for
an array with M bits in the phase shifters, the quantization lobes are evenly spaced in
sin θ -space:

θq = sin−1[sin θ0(1 ± N · 2M)] (12-12)

The quantization lobes occur at every integer N until θq leaves visible space. Figure
12-3 gives the pattern of a 128-element linear array with amplitudes from sampling a
30-dB Taylor distribution scanned to 1◦ and illustrating quantization lobes. The inner
two quantization lobes can be found from Eq. (12-12) for N = 1:

θq(−1) = sin−1[sin(1◦
)(1 − 8)] = −7.02◦

θq(1) = sin−1[sin(1◦
)(1 + 8)] = 9.04◦

Figure 12-4 shows how the quantization lobes appear at greater angles as the array
scan increases, but the sidelobe levels are approximately the same in Figures 12-3
and 12-4. Figure 12-5 illustrates the effect of adding another bit to the phase shifters.
The quantization lobes move out in angle and reduce in level for additional bits in
the phase shifters. These sidelobes have predictable levels. We use the peak sawtooth
phase error due to quantization β = π/2M , and the lobe voltage amplitude is given by
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FIGURE 12-3 Quantization lobes of a 128-element line array (30-dB Taylor distribution) with
3-bit phase shifters scanned to 1◦.
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FIGURE 12-4 Quantization lobes of a 128-element line array (30-dB Taylor distribution) with
3-bit phase shifters scanned to 2◦.
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FIGURE 12-5 Quantization lobes of a 128-element line array (30-dB Taylor distribution) with
4-bit phase shifters scanned to 1◦.

sinc(β ± Nπ) for a uniform amplitude array. N = 0 is the main beam, which gives
the quantization loss due to phase shifters. Table 12-1 lists the main-beam loss and
quantization lobe (QL) amplitudes versus the number of bits M in the phase shifters
for a positive scan. The negative QL appear on the opposite of the scan. There are no
QL values for a scan of zero. We can solve Eq. (12-12) for the scan angle that places
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TABLE 12-1 Quantization Sidelobe Levels and Scan of Last QL for a Phased Array

Phase
Bits, M

Main-Beam
Loss (dB)

−2 QL
(dB)

−1 QL
(dB)

+1 QL
(dB)

+2 QL
(dB)

Scan Angle
of Last QL

Scan Increment
Ratio of BW

2 0.91 17.8 10.4 14.9 20.0 19.47 0.243
3 0.22 23.7 17.1 19.3 24.8 8.21 0.121
4 0.056 29.9 23.6 24.7 30.4 3.82 0.0607
5 0.014 36.0 29.8 30.4 36.3 1.85 0.0304
6 0.003 48.1 42.1 42.2 42.2 0.91 0.0152

the first quantization lobe at −90◦ and eliminates them for all higher scan angles:

θ0 = sin−1 1

2M − 1
(12-13)

Table 12-1 lists the scan angle that places the first quantization lobe at −90◦. The
number of phase bits limits the scan increments given as a ratio of the 3-dB beamwidth
θ3 [3]. Table 12-1 lists this ratio:

θincr

θ3
= 1

2M(1.029)
(12-14)

12-3 ARRAY ERRORS [4; 5; 6, pp. 393–399]

Phase arrays contain random errors that lower gain and increase sidelobe levels. We
assume a Gaussian distribution for random amplitude and phase errors with zero mean
and variances of �

2
(volts)2 for amplitude and δ

2
(radians)2 for phase. Although quan-

tization of phase shifters is a systematic error, we can assign a variance to it. The
peak error of a quantized phase shifter is π/2M (radians). We calculate the equivalent
Gaussian distribution variance of this triangular error distribution:

δ2
Q = π2

3(22M)
rad2 (12-15)

We add this variance to the phase term. Array element failure lowers gain and raises
sidelobes. Pe is the probability of survival for each element in the array. The advantage
of an array is the graceful degradation of the pattern as elements fail and no single
failure shuts down the system. The gain reduction is given by

G

G0
= Pe

1 + �
2 + δ

2 (12-16)

We find the efficiency of an array in the same manner as amplitude taper efficiency
of a continuous distribution (Section 4-1) by replacing the integrals with summations
and using constant phase for the voltage (current) amplitudes ai of the elements:

ηa =
(∑N

i=1
|ai |

)2

N
∑N

i=1
|ai |2

(12-17)
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The average sidelobe level σ 2
s (volts)2 is related to the beam peak provided that we

consider the far sidelobes:

σ 2
s = (1 − Pe) + �

2 + δ
2

PeNηa

(12-18)

Equation (12-18) shows that to achieve low sidelobes, we must control the amplitude
and phase errors of elements in an array and that increasing the number of elements
decreases the requirements on feeding errors. Sidelobes follow a Rayleigh distribution,
and the probability that a sidelobe exceeds a level v2

0 (volts)2 is given by

P(v > v0) = e−v2
0/σ 2

s (12-19)

We solve Eq. (12-18) for requirements on arrays to achieve average sidelobes:

phase error variance δ
2 = σ 2

s Nηa − (1 − Pe + �
2
)

amplitude error variance �
2 = σ 2

s PeNηa − δ
2 − 1 + Pe

element survivability Pe = 1 + �
2 + δ

2

σ 2
s Nηa + 1

number of elements N = 1 − Pe + �
2 + δ

2

Peσ 2
s ηa

If we substitute Eq. (12-14) into Eq. (12-18), we find the average sidelobe level due
to phase quantization:

SL(dB) = 10 log

(
π2

3(22M)

)
− 10 log(N) − 10 log(ηa) (12-20)

Table 12-2 gives the first term of Eq. (12-20).

Example Given a 64-element array with amplitudes found by sampling a 30-dB
Taylor distribution, find the RMS sidelobes versus phase quantization.

TABLE 12-2 Average Sidelobe Factor Due to Phase
Quantization Normalized to the Number of Elements
and Array Efficiency

Number of Bits Sidelobe Factor (dB)

1 −0.9
2 −6.9
3 −12.9
4 −18.9
5 −24.9
6 −31.0
7 −37.0
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The efficiency of the Taylor distribution is 0.66 dB, from Table 4-5. The element
number factor 10 log(N ) is 18.06 dB.

SL(dB) =
{ −12.9 − 18.06 + 0.66 = −30.3 for 3 bits

−18.9 − 18.06 + 0.66 = −36.3 for 4 bits

Of course, the distribution will determine the sidelobe levels in the pattern. With only
3 bits, we can expect the peak sidelobes to rise above 30 dB. Quantization lobes exceed
these levels for scan angles close to broadside. This example and Eq. (12-20) show
that the sidelobe level is proportional to 10 log(N ).

12-4 NONUNIFORM AND RANDOM ELEMENT EXISTENCE ARRAYS [4]

12-4.1 Linear Space Tapered Array

Array synthesis discussed in Chapter 4 uses uniformly spaced elements. For arrays
along a line, we can analyze them by the Schelkunoff unit circle. These arrays control
the sidelobe level by tapering element amplitudes: high in the center and tapered
at both ends. We can design planar arrays by sampling aperture distributions, such
as the circular Taylor distribution for arrays confined to circles or hexagons. These
taper element amplitudes as well. An alternative approach is to taper the spacing
between elements fed with uniform amplitude so that the average follows an aperture
distribution. When we sample an aperture distribution, we have each element sample a
length along the distribution equal to the element spacing. We either find the element
amplitude by point sampling the distribution at the element location or we integrate
the aperture distribution plus and minus the half-element spacing. Integrating along
the distribution produces a better match between the pattern of array and the aperture
distribution, but for large arrays we notice little difference between methods. For a
nonuniformly spaced array we assign half spacing on each side of the element for
integration along the sampled aperture distribution. Because we feed all elements with
the same amplitude, we space elements so that the integral of the aperture distribution
over each spacing interval is the same for each element.

Figure 12-6a illustrates sampling the aperture distribution with an array so that the
area under the region assigned to each element is the same. To find element locations,
we start by generating a table of the cumulative distribution. We calculate this by
integrating the normalized length distribution from the start at −0.5 to a given point x:

I (x) =
∫ x

−0.5
E(x) dx (12-21)

We divide this cumulative distribution into equal-length intervals along the ordinate
as shown in Figure 12-6c, equal to the number of elements in the array. We locate
the position of the element by projecting the center of each interval to the abscissa.
Instead of using a graphical technique, we calculate a cubic spline with I (x) as the
independent variable normalized to 1 and x as the dependent variable. We evaluate
the spline at (i − 0.5)/N to find element location xi . So far we have only found the
relative element location normalized to an array length of 1. We have two choices.
We can choose the spacing of the closest elements because our planned elements have
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FIGURE 12-6 Deterministic density taper for a line array: (a) amplitude taper divided in
equal areas; (b) location of elements; (c) cumulative distribution equally divided along ordinate.
(From [4], Fig. 6.2,  1969 McGraw-Hill.)

a given size and we need to limit mutual coupling. This scales the location of all
elements and determines the effective array length. In the second choice we design to
a given beamwidth that determines the total array length by considering the half-power
beamwidth factor of the distribution sampled. In this case we scale element locations
by this length.

A 32-element space tapered array was designed for a 30-dB Taylor linear distribu-
tion. Figure 12-7 gives the relative element locations along the line, and Table 12-3
lists element locations when the center element spacing is 0.45λ. Figure 12-8 shows
the calculated pattern of this array and another designed with 24 elements, both
using elements with 90◦ beamwidths. The 24-element array has a larger beamwidth
because it is shorter. These two patterns show that increasing the number of elements
improves the ability of the array to realize the aperture distribution pattern. With so
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FIGURE 12-7 Locations of a 32-element space tapered line array for 30-dB Taylor distribution.

TABLE 12-3 Space-Tapered 32-Element Array for
30-dB Taylor Linear Distribution

Element Position Element Position

32, 1 ±10.288 24, 9 ±3.552
31, 2 ±8.798 23, 10 ±3.036
30, 3 ±7.649 22, 11 ±2.539
29, 4 ±6.739 21, 12 ±2.059
28, 5 ±5.971 20, 13 ±1.590
27, 6 ±5.291 19, 14 ±1.130
26, 7 ±4.671 18, 15 ±0.676
25, 8 ±4.095 17, 16 ±0.225
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FIGURE 12-8 Pattern of space tapered arrays using 90◦ beamwidth elements: 32 elements
(solid); 24 elements (dashed).

few elements the far sidelobes rise because we narrow the beamwidth relative to a
uniformly spaced array that does not radiate grating lobes. The nonuniformly spaced
array will not produce lobes at the same amplitude of the main beam, grating lobes
of the uniformly spaced array, but spreads the power in these lobes among all far
sidelobes.

12-4.2 Circular Space Tapered Array

Space tapered arrays can be designed for circular aperture distributions by evenly spac-
ing array elements in rings [7]. We start by designing a circular aperture distribution,
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such as the Taylor distribution (Sections 4-18 and 4-19). We choose a distribution for
the spacing of elements in the rings as a function of radius, de(r): generally wider
near the edge, to match the circular aperture distribution. A table of the cumulative
distribution is found by integrating the voltage distribution times the element spacing
function de(r) from zero to a given radius r:

I (r) =
∫ r

0
de(ρ)E(ρ) dρ (12-22)

Figure 12-9 shows the division of the cumulative distribution into 10 rings for a 30-dB
circular Taylor distribution where the element spacing de(r) is a linear function from
0.66λ to 1.4λ from the center to the edge. A ring is located in the center of each region
along the radius where the maximum aperture radius is 8.5λ. We space the elements
evenly around each ring of radius ri :

Ni = 2πri

de(ri)
(12-23)

Because Ni must be integers, the radial element spacing only approximately satisfies
the de(r) distribution when we design small arrays. Table 12-4 lists the parameters of
a 10-ring design.

The diagram of the element positions (Figure 12-10) shows the increasing element
spacing as radius increases. The combination of Figures 12-9 and 12-10 illustrates the
nearly even ring spacing, due to a design with increasing element spacing with radius.
Figure 12-11 plots the pattern response and shows the nearly equal sidelobe response
for the first few sidelobes. Adding rings improves the match between the aperture
distribution and the space tapered array radiation patterns.
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FIGURE 12-9 Cumulative aperture distribution of a 10-ring space tapered (30-dB Taylor
distribution) ring array with linear taper on the element spacing from 0.66λ to 1.4λ.
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TABLE 12-4 Design of a 10-Ring (223 Elements) Space Tapered Array for 30-dB
Circular Taylor Distribution with Linearly Tapered Radial Spacing from 0.66λ to 1.4λ

Ring Radius Ni de Ring Radius Ni de

1 0.403 4 0.695 6 4.004 25 1.009
2 1.155 10 0.761 7 4.779 28 1.076
3 1.864 14 0.822 8 5.677 31 1.154
4 2.562 18 0.883 9 6.826 34 1.254
5 3.272 22 0.945 10 7.989 37 1.356

FIGURE 12-10 Layout of a 223-element ring array for 30-dB circular Taylor distribution with
10 rings.
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FIGURE 12-11 Pattern of a 223-element space tapered ring array with 90◦ beamwidth
elements.
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12-4.3 Statistically Thinned Array [8]

Low sidelobe patterns can be obtained from uniform-amplitude fed arrays by thinning
a uniformly spaced array statistically. Each element has a random chance of existence,
determined by using the aperture distribution as the probability density function. In this
method we lay out a uniformly spaced array and use a random number generator output
times the desired aperture distribution to determine whether to include each element.
We multiply the product of the random number [0,1] by the aperture distribution [0,1]
and by a scale factor k to scale to the level of thinning. We call k = 1 natural thinning
because the process removes about half the elements. When the random number is
higher than the product of k times the aperture distribution, the element is removed,
and therefore a lower k produces greater thinning.

Thinning reduces gain by the ratio of the remaining elements to the initial total, but
array size determines beamwidth. We obtain patterns determined by aperture extent
but with reduced gain. The number of elements determines the average sidelobe level
at 10 log(N ) dB. Provided that we use sufficient elements, the near-in sidelobes will
follow the aperture distribution, but the far-out sidelobes rise to the average level. For
initially large arrays, 90% thinning is reasonable. A convenient method in a computer
program is to mark elements for removal and report on the remaining element number
so that the algorithm can be repeated after adjusting k until the desired number is
achieved before actual removal. We obtain a different number of elements with the
same k because of the variability of the random number generator.

To show the method we pick a hexagon array with 0.66λ element spacing first
confined to a radius = 8.7λ. A 30-dB circular Taylor distribution used as the probability
density and k = 1 produced an array with 337 elements starting from an array with 637
elements inside the circle. Figure 12-12 shows the layout of the remaining elements.
The low aperture distribution near the rim removed many of the outer elements while

FIGURE 12-12 Layout of a 337-element statistically tapered array for 30-dB circular Taylor
distribution.



588 PHASED ARRAYS

Pattern Angle (degrees)

A
m

pl
itu

de
, d

B

FIGURE 12-13 Pattern of a 337-element statistically tapered array for 30-dB circular Taylor
distribution using 90◦ beamwidth elements.

most of the inner elements remain. Figure 12-13 plots the pattern response of this array
when 90◦ beamwidth elements are used in the array.

12-5 ARRAY ELEMENT PATTERN

When we insert an antenna element into an array, its effective pattern changes. Through-
out the book we have shown that the pattern of isolated elements change when we
mount them on finite ground planes. An antenna mounted over a ground plane excites
currents on it that radiate and contribute to the pattern. We place many antennas near
each other in a phased array. Radiation from one antenna excites currents on its neigh-
bors, and the sum of these currents radiates a pattern different from that of the isolated
element. If we want to apply pattern multiplication between the array factor and the
element pattern, we need to modify the element pattern to include the radiation from
the current excited on its neighbors. This is a simplifying assumption because in the
final configuration the array will be mounted on a finite ground plane, and not all
elements will be surrounded by the same configuration of elements. Each element will
have a different pattern, but to first order we use the array element pattern.

We could assume current basis functions on the elements and on the nearby structure
and use an integral equation method to solve for the coefficients of these basis functions
(moment method). The final pattern calculated would be found from a weighted sum of
currents. By increasing the number of basis functions, the calculation converges to the
measured result (within measurement error). We simplify the problem by assuming an
infinite mounting structure to eliminate edge effects that eliminate the basis functions
on the ground plane, and we can use image elements. To find mutual impedance we
calculate the reaction integral over the surface of one element, with an assumed current
distribution, times the field radiated from the first antenna. The first antenna and its
image radiate to the second antenna. Since the reaction integral is over the surface of
the second antenna, its image is not included in the integral. The elements along the
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edge can have a different pattern than the central elements, and a full moment method
solution accounts for differing current distributions. The next approximation assumes
that the antenna elements radiate in fundamental modes with fixed current distributions.
For example, these could be sinusoidal current distributions on dipoles that reduce the
basis functions to one on each antenna.

Because we have a linear problem, we can calculate the coupling (or mutual
impedance) between elements using pairs. Assuming only one mode on each antenna
reduces the matrix problem to one with rank equal to the number of elements. We
multiply the inverse impedance matrix by the excitation voltage vector to find the cur-
rent on each element (one mode on each). This method becomes intractable for a large
array, because we must invert the impedance matrix.

The next level of approximation assumes that all antennas are surrounded by the
same element configuration. We assume that the edge elements have the same effec-
tive pattern as the inner elements. If we supply power to one element, its radiation is
received by all other elements in the array that excites currents on the element simply
as a scaled version of the fundamental mode. For this analysis we feed only a single
element and calculate the current excited on nearby elements loaded by their charac-
teristic impedance. This suggests an experimental approach of feeding a single element
surrounded by other loaded elements. We call this the array element pattern or scan
element pattern (formally the active element pattern). Analytically, we calculate the
mutual impedance matrix and add twice the element resistance to the diagonal elements
to account for the loop of source and load resistance on the antennas. We invert this
matrix and find the current on the fed element and on its loaded nearby neighbors.
This current sum radiates a pattern that we associate with the fed element and call it
the array element pattern. We assume that all elements radiate the same pattern and
multiply by the array factor to calculate the array pattern.

Consider an array of V-dipoles mounted on a ground plane. To equalize the E- and
H -plane beamwidths, we tilt the elements 30◦ toward the ground plane. This broadens
the E-plane beamwidth by removing the pattern null along the horizontal plane due to
the dipole current. We reduce the mutual coupling when we locate a horizontal dipole
over a ground plane because its image radiation decreases the radiated field of antenna
along the ground plane. Figure 12-14 plots the E-plane pattern of the V-dipole tilted
30◦ when located in a hexagon array of loaded elements for 2 (19) and 3 (37) rings of
elements. The radiation from currents excited on the extra dipoles widens the pattern
beamwidth and lowers gain. The H -plane pattern (Figure 12-15) has lower gain than
the isolated element, but narrower beamwidth. The increased E-plane beamwidth has
decreased gain and the H -plane narrowed beamwidth fails to offset the gain loss
significantly. The analysis shows the increased pattern ripple as more elements are
added. These plots illustrate results expected from calculations or measurements on an
antenna element where the ground plane reduced mutual coupling.

Figure 12-16 gives the pattern of an edge element in the V-dipole array in the
E-plane. The analysis placed the elements over an infinite ground plane to eliminate
ground-plane effects. We see significant asymmetry in the pattern due to its placement.
Of course, we expect a large variation from this small array for the edge element. As
we increase array size, these effects diminish. It is reasonable to start with an idealized
element pattern for the initial design since array element pattern effects are small for
good elements. As the design progresses an array element pattern should be measured
(or calculated) and used for analysis at the next level.
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FIGURE 12-14 E-plane pattern of a V-dipole tilted 30◦ located in the center of a hexagon
array.
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FIGURE 12-15 H -plane pattern of a V-dipole tilted 30◦ located in the center of a hexagon
array.

12-6 FEED NETWORKS

12-6.1 Corporate Feed

Figures 12-17 and 12-18 illustrate schematically the two types of constrained feeds.
In these networks we route signals through transmission lines and power dividers to
deliver power to each element for transmittal and, by reciprocity, route the receive sig-
nals to single outputs. A phase shifter is placed between the power division network
and every antenna element to scan the beam. The corporate feeds in Figure 12-17
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FIGURE 12-16 E-plane pattern of a V-dipole tilted 30◦ located at the edge of a hexagon
array.
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FIGURE 12-17 Corporate feeds: (a) matched with isolation resistors; (b) reactive. (From T.
C. Cheston and J. Frank, Array antennas, Chapter 11 in M. I. Skolnik, ed., Radar Handbook,
Fig. 38,  1990 McGraw-Hill.)

usually divide to 2N elements because two-way power dividers have the simplest
designs. The matched corporate feed contains isolation resistors on the power dividers.
We fabricate power dividers from four-port microwave circuits where one port is iso-
lated, which means that in normal matched-impedance operation it receives no signal.
When the output ports do not have matched loads, a portion of the reflected signal will
be dissipated in the load on the isolated port. The impedance of phased array elements
change as we scan the beam and it is impossible to match the elements at all scan
angles. The isolation resistors prevent propagation of these reflected signals beyond the
first network, whereas reactive power divider networks cannot prevent the accumulation
of errors as the phase array scans. These networks work best in fixed-beam operation,
not in phased arrays. Isolation resistors dissipate no power under impedance-matched
conditions. In Section 11-7 we discuss how to analyze the connection between the
feed network and the array with its mutual coupling, to calculate the resulting feed
coefficients of the array.
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FIGURE 12-18 Series feed networks: (a) end feed; (b) center feed; (c) center feed with
separately optimized sum and difference channels; (d) equal-path-length feed; (e) series phase
shifters. (From T. C. Cheston and J. Frank, Array antennas, Chapter 11 in M. I. Skolnik, ed.,
Radar Handbook, Fig. 37,  1990 McGraw-Hill.)

12-6.2 Series Feed

Figure 12-18 shows types of series feeds. We use series feeds for frequency scanning,
but these contain phase shifters that can scan the beam in other directions not deter-
mined by frequency scanning. Of course, a series feed has limited bandwidth because
the long transmission lines cause frequency scanning. The end feed in Figure 12-18a
is the same as the waveguide-fed slot array, which has a bandwidth 50%/N , where N

is the number of elements along the line. Feeding in the center, Figure 12-18b doubles
the bandwidth and allows both sum and difference feeding used in monopulse. The
network of Figure 12-18c has separate lines for sum and difference distributions so
that each can be optimized. This double line configuration does suffer from coupling
between the two rows of couplers because of the limited isolation in the couplers and
the changing impedance as the array scans. If we place the phase shifters along the
feeder line as shown in Figure 12-18e, all can be set to the same value to scan the beam.
The problem is that each phase shifter has loss and these accumulate as the signal trav-
els down the feed line. The network in Figure 12-18a has the loss of only one phase
shifter. By equalizing the path lengths in each arm (Figure 12-18d), we increase the
frequency bandwidth to that of the phase shifters and array size, because series feed
frequency scanning is eliminated.

12-6.3 Variable Power Divider and Phase Shifter

Figure 12-19 gives the schematic of two transmission-line couplers connected in tan-
dem with lines that contain phase shifters. We build 3-dB power divider couplers in
stripline made with a centerboard with totally overlapped lines a quarter-wavelength
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FIGURE 12-19 Variable power divider and phase shifter combination.

long in the dielectric. In a dielectric of 2.21 the centerboard is 0.013 in. (0.33 mm)
thick and the outer spacers to the two ground planes are 0.062 in. (1.60 mm) thick. The
totally overlapped lines are 0.065 in. (1.65 mm) wide to produce a 3-dB coupler. By
crossing over the two coupled lines, the outputs occur on the side opposite the feed.

If the phase shifters have the same value, the network produces a 0-dB coupler
where signals at the left input flow to the right output. Of course, the network has
symmetry, and a signal at the right input couples totally to the left output. Through
the two couplers the signal switches from one side of the centerboard to the other
side. This dual coupler can be used to cross signals in a feed network without using
the vertical vias that are useful for the construction of Butler matrices and other feed
networks where crossovers are needed.

With two phase shifters in the lines between the two couplers, as shown in Figure
12-19, we can build a combination variable power divider and phase shifter. The
voltage coupling cp is determined by the phase difference in the two paths:

φ2 − φ1 = cos−1(1 − 2c2
p) (12-24)

The output phase of the two arms is given by

phase = φ1 − tan−1 sin(φ2 − φ1)

1 − cos(φ2 − φ1)
(12-25)

Figure 12-20 shows a feed network using variable power dividers so that the output
can be any amplitude and phase distribution. We discussed the formation of multiple
beams from a single input in Section 3-6. We can form any combination of beams
when we have control of both amplitude and phase. Of course, the array size limits
our ability to form distinct beams, but the beamwidth of each beam is determined
by the full size of the array. Each power divider is variable. Since the output from
a variable power divider with one phase shifter can be any amplitude, we only need
the extra phase shifter, either in the last variable power divider or on the output as
shown. Because the network provides one input, the gain drops as we form multiple
beams. No power is lost in the loads for impedance-matched outputs. Depending on
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FIGURE 12-20 Eight-element feed network using variable power dividers with final phase
shifters at the elements.

the phase of the outputs, the reflected signals from the antennas are either dissipated
in the isolation loads or appear at the input.

12-6.4 Butler Matrix [9]

A Butler matrix is a feed network with 2N inputs and 2N outputs used to feed a
uniformly spaced line array that produces a beam for every input port. The network
consists of 3-dB hybrid couplers and fixed phase shifters. Figure 12-21 shows the
schematic of the microwave feed network for eight ports. Each input port produces
a uniform-amplitude distribution on the outputs with a uniform phase slope across
the ports. We can use 0-dB couplers for the internal line crossings because adding
couplers to an etching for the centerboard of a stripline has no cost. We make the
output line crossings by using equal-length coaxial lines connecting the feed network
to the antennas.

Each input port of the Butler matrix has the full gain of the array. On transmit we
provide 2N inputs and insert 2N times the power of a single input into the feed network
that provides full power to each beam. If we scan an array to an angle different from
the angle of the input wave, the array will either dissipate the signal in internal loads
or scatter it, but it does not collect at the input port. A Butler matrix provides an
input port for the sequence of waves incident from 2N directions. Signals from these
directions are not dissipated or scattered, but the array collects them with the full gain
of the array.

Figure 12-22 plots the patterns for all eight ports of a Butler matrix feeding an array
with λ/2-element spacing. The array elements have 90◦ beamwidths and the further
scanned patterns show the decrease due to element pattern. The uniform-amplitude
arrays radiate 13.2-dB sidelobes, which limits the separation of the signals into the
various input ports. The pattern peaks occur at evenly spaced values of u-space, where
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FIGURE 12-21 Eight-element Butler matrix network: (a) equal-path-length beam-forming
matrix; (b) eight-element, eight-beam matrix. (From T. C. Cheston and J. Frank, Array antennas,
Chapter 11 in M. I. Skolnik, ed., Radar Handbook, Fig. 57,  1990 McGraw-Hill.)

ui = (d/λ)(sin θ − sin θi) for an element spacing of d:

sin θi = ± iλ

2Nd
i = 1, 3, 5, . . . , N − 1 (12-26)

The uniform amplitude line array has a pattern:

Ee(θ) sin Nπui

N sin πui

Since the minimum value of the index i is 1, the first beams scan from broadside. The
crossover level between beams occurs at −3.92 dB for an isotropic element pattern.

Equation (12-26) shows that the beams move closer together as we increase the
electrical distance between elements. Figure 12-23 gives the pattern response of a
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FIGURE 12-22 Patterns of an eight-element line array spaced λ/2 with Butler matrix feed.

FIGURE 12-23 Patterns of an eight-element line array spaced 0.6λ with Butler matrix feed.

Butler matrix feeding an array with 0.6λ element spacing. All beams shift toward
broadside. The crossover level is still at −3.92 dB and the first sidelobe level at 13.2 dB.
The two dashed patterns radiate grating lobes reduced in amplitude only by the element
pattern. The response seems to have 10 beams. Although the Butler matrix can be
designed to cover an octave bandwidth by using quarter-wavelength hybrid couplers
and compensated line Schiffman phase shifters [10], an array will not operate over this
bandwidth without forming grating lobes. An octave-bandwidth Butler matrix is useful
as the beamformer for a multiple-mode spiral antenna (Section 11-5.4).

12-6.5 Space Feeding
Instead of using a feed network with the signals constrained in transmission lines,
we can use a feed antenna and an array of receiving antennas to distribute the sig-
nal. Figure 12-24 illustrates space feeding where a single feed antenna radiates to the
backside of an array, where pickup antennas collect the signal and deliver it to a phase
shifter and amplifier chain that feed the radiating antennas of the array. Of course, this
feeding method can be used for reception as well. Although Figure 12-24 shows a line
array, we actually have a planar array.
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FIGURE 12-24 Space-fed array.

We analyze this feed network as a lens. The phase shifters compensate for the
phase shift due to the extra transmission distance and eliminate the quadratic phase
error, but the network cannot compensate for the amplitude taper. The feed-antenna-
narrowed beamwidth, which matches the angular extent of the plane to reduce spillover
loss, reduces amplitude to the edge elements. Similarly, the receiving antennas have a
pattern that adds to the amplitude taper. We equate feed power in differential area to
aperture power in a differential area [Eq. (9-11)]:

A(r, φ)

F (ψ, φ)
= sin ψ

r

dψ

dr

We add the geometry of the flat-plate receiving surface and carry out the indicated
operations to find the distribution on the array:

A(r, φ) = F(ψ, φ)R(ψ, φ) cos3 ψ

f 2
(12-27)

Equation (12-27) includes a receive antenna power pattern R(ψ, φ). Of course, the
feed arrangement can be offset instead of centrally fed as shown, with phase shifters
compensating for the different feed path lengths.

12-6.6 Tapered Feed Network with Uniform-Amplitude Subarrays

One approach to produce a wider bandwidth array is to combine a feed network
containing time-delay networks that feed subarrays. We construct the subarrays with
identical networks containing phase shifters and a uniform-amplitude distribution. We
apply the amplitude taper to the smaller feed array that feeds the subarrays to lower
sidelobes. The beam scanned with time-delay networks does not shift when frequency
changes, but the phase shifters cause phase stepping across the array face. This causes
quantization lobes.

Initially, we consider the array at broadside, where it does not matter whether the
input feed network contains time-delay networks or phase shifters. We consider the
subarray to be the element pattern of the smaller input feed network. Figure 12-25
shows the pattern at broadside using an eight-element subarray and a 16-element
input array that zero-sampled a linear 30-dB Taylor distribution (n = 6). Because the
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FIGURE 12-25 Paired sidelobes of a 128-element array with a 16-element subarray with an
eight-element 30-dB Taylor distribution feed network.

sidelobes of the uniform array do not occur at the same angles as the Taylor distribution,
Figure 12-25 contains paired high sidelobes. Decreasing the number of elements in
the feed array to eight causes the paired sidelobes to rise above 30 dB because the
distribution controls only seven nulls instead of the 15 shown in Figure 12-25.

When we scan the beam, we apply phase shift to both feed and subarray so that the
beams remain aligned. This presents no pattern problem if we use continuous phase
shifters, but when we quantize the phase shifters, misalignment occurs unless we space
elements on λ/2 centers. Figure 12-26 gives the pattern responses a for 128-element

Pattern Angle (degrees)

A
m

pl
itu

de
, d

B

FIGURE 12-26 Paired sidelobes of a 128-element array with an eight-element subarray with
a 16-element 30-dB Taylor distribution feed network.
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array with an eight-element uniform-amplitude subarray and a 16-element feed array
with a 30-dB Taylor (n = 6) sampled distribution for 0.6λ element spacing. The curve
occurs when the feed array has 4-bit phase shifters and the feed array has 3-bit phase
shifters. Decreasing the feed array to 3 bits or reducing the number of elements degrades
the sidelobes further. Adding time-delay networks does not eliminate these problems
because the subarray and feed network sidelobes increase their misalignment when
frequency shifts even for elements initially on λ/2 centers.

The solution to these problems lies in using an overlapped subarray scheme [11].
In this case we need multiple inputs to the feed array, such as a Butler matrix, whose
outputs feed multiple subarrays. One method uses space feeding so that all Butler matrix
output ports feed every subarray. We phase the multiple input ports in a Woodward
synthesis (Section 4-8) to form a flat-top pattern output for the subarray. The flat-top
pattern eliminates the misalignment between the subarray and feed patterns and allows
the use of time-delay networks. The overlapped subarray method greatly complicates
the feed network.

12-7 PATTERN NULL FORMATION IN ARBITRARY ARRAY

In Chapter 4 we discussed the control of an array pattern by manipulation of pattern
nulls. In Section 4-9 we applied the Schelkunoff unit-circle method to line arrays.
In Sections 4-21 and 4-22 we combined nulls found for rhombic and linear arrays
to synthesize planar arrays by convolution. We can extend these ideas to arbitrarily
positioned and oriented arrays. We start with the equation for the pattern for any array
with feed coefficients wn:

E(θ, φ) =
N∑

n=1

[Eθn(θ, φ)θ̂ + Eφn(θ, φ)φ̂]wne
jk·rn (12-28)

The array elements can be oriented arbitrarily and located at rn = (xn, yn, zn) with
the vector propagation constant k = k(sin θ cos φ, sin θ sin φ, cos θ). We calculate the
pattern for one element of the array in a particular direction km = k(sin θm cos φm, sin θm

sin φm, cos θm):
Sm,n = [Eθn(θm, φm)θ̂ + Eφn(θm, φm)φ̂]ejkm·rn (12-29)

The array pattern in direction m is found by combining Eqs. (12-28) and (12-29):

Em(θm, φm) =
N∑

n=1

Sm,nwn (12-30)

Since we only have one set of coefficients, wn, only a single linear combination of
the theta and phi components can form a null in a given direction. We project the
polarization components of each element onto a particular polarization that reduces
Eq. (12-29) to a single scalar term. For a given direction we define the vector [Si,n]
using patterns of the array elements in direction ki evaluated projected on a given
polarization:

[Si,n] = [Si,1, Si,2, . . . , Si,N ]T (12-31)

The operation [·]T is the matrix transpose and [Si,n] is a column vector.
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We start with an initial vector [w0] of array feeding coefficients that includes
amplitudes and phases. We modify the coefficients to form a pattern null k1 =
k(sin θ1 cos φ1, sin θ1 sin φ1, cos θ1) by multiplying the coefficient vector by a matrix
found from the pattern of each element in that direction:

[wp] =
{

I − [S1,n]∗[S1,n]T

[S1,n]T[S1,n]∗

}
[w0] =

{
I − [S1,n]∗[S1,n]T

A

}
[w0] = [P1][w0] (12-32)

The product of the column vector and its transform generates an n × n matrix. The
coefficient A is a summation: A = ∑N

n=1 S1,nS
∗
1,n. Equation (12-32) is derived from

Gram–Schmidt vector orthogonalization [12, pp. 41–46]. The vector [w0] is the initial
state of the array that includes any amplitude distribution to lower sidelobes and the
phasing to scan the beam. We form nulls after scanning the beam.

This process can be extended to multiple nulls, but numerical precision and the
number of elements limit the process and it is exact only for the last null. Equation (12-
32) extends to m (< N − 1) nulls by matrix multiplication:

[wp] = [Pm] · · · [P2][P1][w0] (12-33)

The method does not exactly match the locations of initial nulls, but it improves when
we have large arrays. We do not need to store the matrix [Pi] because its elements are
easily formed from the vector [Si,n] when needed, and by starting with [w0] we work
Eq. (12-33) from right to left and store the new excitation vector at each step.

To design an array we specify N − 1 nulls and one desired signal direction. We
extend Eq. (12-30) to a matrix for a given beam direction E1(θ1, φ1) and the direction
of N − 1 nulls:




E1(θ1, φ1)

E2(θ2, φ2)

...

EN(θN, φN)


 =




S1,1 S1,2 · · · S1,N

S2,1 S2,2 · · · S2,N

...
...

. . .
...

SN,1 SN,2 · · · SN,N







w1

w2
...

wN


 (12-34)

We invert the matrix to find the feeding coefficients:




w1

w2
...

wN


 =




S1,1 S1,2 · · · S1,N

S2,1 S2,2 · · · S2,N

...
...

. . .
...

SN,1 SN,2 · · · SN,N




−1 


E1(θ1, φ1)

E2(θ2, φ2)

...

EN(θN, φN)


 (12-35)

All N coefficients of the vector E are not necessarily zero, we could solve for multiple
beams with individually specified levels. The array has N degrees of freedom. This
analysis ignores the effects of mutual coupling, whereas scattering from nearby objects
can be included in the element patterns because this development has not assumed
identical array elements. We can use the results of Section 3-11 to compensate the
network for mutual coupling, but this development leads to an adaptive array which
changes its feeding coefficients based on incident fields.
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12-8 PHASED ARRAY APPLICATION TO COMMUNICATION SYSTEMS

Radar has been the chief application of phased arrays, but small arrays find appli-
cation in communication systems. Terrestrial line-of-sight (LOS) microwave systems
use multiple antennas to reduce downtime due to fading, but these systems operate at
very high connectivity. Cellular telephone operates with high multipath that produces
a Rayleigh probability distribution because most of the time there is no direct signal
path (Section 1-19). Diversity combining improves connectivity in the same manner
as the LOS system by providing an alternative path when the signal fades in the first
path. The LOS system has slowly varying fades due to changing atmospheric condi-
tions, while cellular telephone has rapid fades as the user moves. Diversity combining
reduces signal null depths but does little to increase the average signal.

The second cellular telephone system problem is channel capacity. The number of
users continues to grow and their demand for service soon saturates existing systems.
Adding phase arrays to base stations provides multiple beams to subdivide the cells that
allow improvements without building new sites. Beyond using fixed multiple beams
formed by networks such as Butler matrices, adaptive arrays (smart antennas) increase
capacity. Antennas are the same pieces of metal; adaptive electronic beamforming is
the smart part. Since adaptive array analysis and design are mostly signal processing,
they will not be discussed in detail.

When signals fade in one channel because the user or a scattering object moves, a
second signal uncorrelated to the cause of the fade may provide a better communication
path. If we have two signals, it may be better to combine them to reduce fading. We
discuss two signals, and the extension to more is straightforward. Imagine two antennas
and a network that connects them. The best system uses maximal ratio combining
(MRC), which adjusts both amplitude and phase (complex phasers) of the two signals
before adding them. MRC requires the most complicated equipment, because we need
a variable power divider combined with a phase shifter. Equal gain combining (EGC)
is a phased array with only a phase shifter that brings both signals to a common
phase before combining them. Selective combining (SEC) detects the strongest signal
and switches to it and ignores the second signal. Finally, we have switch combining
(SWC), which switches when the signal drops below a threshold. Of course, SWC
can switch back and forth rapidly when the signal drops in both paths. SWC is the
lowest-cost system because it needs only one receiver front end.

A communication system provides connectivity at a given probability and we accept
dropped calls and lost data. Fortunately, voice encoding can tolerate high BER (bit
error rate), whereas LOS systems use error detection and retransmit to lower errors to
near zero. Diversity gain measures the increased signal level at a given probability at
the average signal level. Propagation models give us the log-normal (median) signal
level, about which the level varies rapidly due to multipath. Diversity gain is usually
given relative to the 90% signal reliability level, the improvement that allows a lower
median signal level. We relate the improvement to the difference in signal level in
the two channels � (dB) and the branch correlation ρ. Branch correlation measures
the independence between the two signals. For example, polarization separation is one
method to generate two channels, and cross-polarization in the two channels produces
signal correlation. In other implementations two antennas are separated either vertically
or horizontally, so a fade in reception at one antenna has a minor effect on the other.
Two channels that receive the same signal have ρ = 1, whereas the ideal two-channel
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system has ρ = 0. The following diversity gain (dB) at the 90% signal reliability level
has been found empirically for the various combining techniques [13, p. 48]:

Gain (dB) =



7.14e−0.59ρe−0.11� MRC
−8.98 + 15.22e−0.2ρe−0.04� EGC
5.71e−0.87ρe−0.16� SEC

(12-36)

MRC always produces a positive diversity gain. Selecting the larger signal has less
benefit than MRC, and the EGC system can actually give a negative diversity gain
under unfavorable situations. If the signal drops in one channel, adding two signals
reduces overall performance because in essence the high signal level channel is reduced
by 3 dB by the power divider.

Adaptive arrays (smart antennas) improve the system by directing a main beam
at a particular user while producing nulls in directions of interfering signals. These
signals could be from nearby cells using the same frequencies. Adaptive receiving
arrays enable closer frequency reuse between cells and increases system capacity while
improving quality of transmission. We either adaptively control element excitation at
RF or detect and combine them at IF. The weak link in the cellular telephone system
is the transmission from the mobile to the base station, and the base station contains
the array used to separate signals, so we concentrate on the receiving path.

The array either uses the least mean squares (LMS) algorithm or an eigen-
decomposition technique to set the element weights. LMS requires a known reference
signal on which the system minimizes the errors. This system adjusts the weights to
maximize the S/N ratio. The known signal can be a portion of the coded waveform
transmitted by the mobile unit, which increases overhead and reduces transmit rate
slightly when each unit sends a unique reference signal. The LMS algorithm can
adjust weights to optimize the constant amplitude of receive signal, since a phased
modulated wave (PSK, QPSK) has constant amplitude. Systems that optimize on a
known reference signal include recursive least squares and Wiener filter methods.

Eigen-decomposition techniques operate without a known reference signal. A cross-
correlation matrix is formed from the input signals by considering their locations using
the terms of Eq. (12-29). A cross-correlation matrix is the product of the pairs of these
terms using the complex conjugate of one factor. By solving the eigenvalue problem,
the algorithm detects directions of incoming signals and the beamforming is based on
the angular information of these beams. Two commonly used algorithms are MUSIC
and ESPRIT.

To increase system performance significantly, we use digital beamforming, where
we connect a receiver to every antenna. We can make as many copies of the signals
after detection and form the beams digitally without loss of S/N . We had to detect
the signals anyway to apply the adaptive array algorithms that set the element weights
at RF. Digital beamforming eliminates the phase shifters and variable power dividers
on the antennas and replaces them with receiver components. Element location and
quantization values of the receiver components still affect the array patterns, but by
using adaptive algorithms, enable production of identical arrays. The array adjusts to
its location and the input signals by using signal processing—a smart antenna.

12-9 NEAR-FIELD MEASUREMENTS ON PHASED ARRAYS

Near-field measurements produce excellent diagnostics of phased arrays. We exercise
the phase shifters and measure element outputs directly. Initially we built small loop
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probes and moved them across the array face and recorded measurements. The small
probes have little effect on the array elements, due to mutual coupling, because they
are poor antennas. We improve precision by fabricating scanners to hold and position
the probes at the array elements. Unfortunately, if we move the probe away from the
array surface to reduce the probe effect on the elements, increased signal is received
from more than one array element and it is difficult to separate element responses. The
answer lies in using the transforms of near-field measurements to separate element
responses.

Figure 12-27 shows the simulated response of radiation to a 90◦ beamwidth probe
positioned directly over a 64-element linear array made with 90◦ beamwidth elements.
The array sampled a 30-dB Taylor linear aperture distribution to set its amplitudes,
and the twentieth element amplitude was reduced by 6 dB. The two dashed curves give
the responses at λ/2 and 3λ above the surface. The probe located at λ/2 produces a
response with about a 3-dB dip at the twentieth element. The probe at 3λ above the
array face gives a vague dip over a number of elements. Both probe heights measure
responses with significant ripples. Many arrays have been measured and corrected
using this approach.

A planar near-field measurement combined with simple mathematical transforms
produces better results. We scan the near-field probe sufficiently above the array
to reduce mutual coupling effects that change what we are measuring. Planar near-
field measurements take readings at evenly spaced intervals and use the fast Fourier
transform (FFT) to calculate the far-field response at points evenly spaced in sin θ -
space, where θ is measured from the planar normal. The planar measurements use
kx = sin θx = sin θ cos φ and ky = sin θy = sin θ sin φ found from an FFT along each
axis. For example, we transform each row along the x-axis using the FFT algorithm
and transform resulting columns of FFT on the rows along the y-axis. The FFT requires
2N samples along the array face and produces the same number of pattern directions

3λ Probe
Distance

l/2 Probe
Distance

Compensated
Near Field

A
pe

rt
ur

e 
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, d
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Array Axis, l

FIGURE 12-27 Near field measurements of a 64-element line array with 30-dB Taylor distri-
bution at probe distances of 3λ, λ/2, and compensated to face.
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TABLE 12-5 Planar Near-Field Sampling to a
Far-Field Pattern Using FFT

Aperture Spacing, d (λ) Sin θmax θmax (deg)

0.25 2 Invisible space
0.5 1 90
0.75 2/3 41.8
1.0 0.5 30
2.0 0.25 14.48

evenly spaced in sin θ -space. We find the range of kx-space from the aperture sampling
spacing d:

sin θmax = ± λ

2d
(12-37)

Table 12-5 shows that sampling closer than λ/2 produces pattern points in invisible
space, and for most arrays, larger sampling spacing fails to produce a point over each
element. Since we want to capture the radiation from the edge elements, it is necessary
to scan the near-field probe beyond the edge of the array face. If we space the probe a
distance a above the array space, we should sample out to the maximum transformed
angle. Given an array of length D and probe length L, the maximum angle for accurate
measurements is given by θc = tan−1[(L − D)/(2a)]. If we use λ/2 sampling distance,
L extends to ∞ and we compromise by also assuming that the array element beamwidth
captures most of the power radiated. After probing the field, we transform to the far
field by using FFT−1. This pattern has been multiplied by the probe antenna pattern
and the pattern of a Huygens source (Section 2-2) of an aperture. The Huygens source
has a pattern EH(θ) = cos2(θ/2). The far-field pattern also has a phase distribution
relative to the array face, due to the distance between the face and the probe plane a
distance a above it. We apply probe compensation and shift the far-field phase so that
when we transform the k-space pattern back to the aperture, the scan plane lies on the
array face. Given the desired position z for the new aperture plane, we first adjust the
far-field pattern:

Enew(θx, θy) = E(θx, θy)e
−jk cos θx(z−a)e−jk cos θy (z−a)

Eprobe(θx, θy) cos2(θx/2) cos2(θy/2)
(12-38)

The solid curve on Figure 12-29 shows the results of these calculations on the array
with altered element amplitude when z = 0. If the array contained more feeding errors,
all of them would appear in the FFT of the far field to the near-field aperture plane.
We use the same method to determine errors in paraboloidal reflectors, but we apply
multiple steps to the z-axis plane position in the back transform to produce planar cross
sections through the reflector surface.

REFERENCES

1. H. A. Wheeler, The radiation resistance of an antenna in an infinite array or waveguide,
Proceedings of IRE, vol. 36, April 1948, pp. 478–488.



REFERENCES 605

2. H. A. Wheeler, Simple relations derived from a phased-array antenna made of an infinite
current sheet, IEEE Transactions on Antennas and Propagation, vol. AP-13, no. 4, July
1965, pp. 506–514.

3. R. C. Hansen, Linear arrays, Chapter 9 in A. W. Rudge et al., eds., Handbook of Antenna
Design, IEE/Peter Peregrinus, London, 1983.

4. M. I. Skolnik, Nonuniform arrays, Chapter 6 in R. E. Collin and F. J. Zucker, eds., Antenna
Theory, Part 2, McGraw-Hill, New York, 1969.

5. R. J. Mailloux, Periodic arrays, Chapter 13 in Y. T. Lo and S. W. Lee, eds., Antenna Hand-
book, Van Nostrand Reinhold, New York, 1992.

6. R. J. Mailloux, Phase Array Antenna Handbook, Artech House, Boston, 1994, pp. 393–399.

7. T. A. Milligan, Space tapered circular (ring) arrays, IEEE Antennas and Propagation Mag-
azine, vol. 46, no. 3, June 2004.

8. M. I. Skolnik, J. W. Sherman III, and F. C. Ogg, Jr., Statistically designed density tapered
arrays, IEEE Transactions on Antennas and Propagation, vol. AP-12, no. 4, July 1964,
pp. 408–417.

9. J. L. Butler, Digital, matrix, and intermediate-frequency scanning, in R. C. Hansen, ed.,
Microwave Scanning Antennas, Vol. III, Academic Press, New York, 1966.

10. B. M. Schiffman, A new class of broadband microwave 90◦ phase shifters, IRE Transactions
on Microwave Theory and Techniques, Vol. MTT-6, no. 4, April 1958, pp. 232–237.

11. R. Tang, Survey of time-delay beam steering techniques, 1970 Phased Array Conference,
Artech House, Boston, 1972.

12. J. E. Hudson, Adaptive Array Principles, IEE/Peter Peregrinus, Stevenage, Hertfordshire,
England, 1981.

13. A. Paulraj et al., Space-time processing in wireless communications, Proceedings of the
3rd Workshop on Smart Antennas in Wireless Mobile Communications, Stanford University,
Stanford, CA, 1996.





INDEX

Abbe sine condition, 466, 470
Absorbing boundary conditions, 77, 80
Active element pattern, 128, 589
Active impedance, 127
Active region, 521
Adaptive array, 601
Airy function, 396
Alford loop, 261
Amplitude taper loss, 137–140

array, 580
paraboloidal reflector, 383

Analytical pattern, 11, 14
Antenna factor, 29
Antenna mode RCS, 9
Antenna temperature, 30
Antenna polarization response, 23
Antipodal vivaldi antenna, 514
Aperture approximation, 51, 336
Aperture blockage, 208
Aperture dead zones, 452
Aperture efficiency, 6, 52, 136–140
Aperture fed microstrip patch, 306, 325
Aperture sidelobe decay, 143
Aperture synthesis lens, 468
Arm/gap, spiral, 528
Array directivity, 108
Array element impedance, 127, 539
Array element pattern, 128, 588
Array factor, 104, 589
Array gain, 129, 573
Array mathematical description, 103
Array, multiple beam, 118–120

Array null synthesis, 168, 206, 600
Array reflector feed, 397
Arbitrarily orientated array, 133, 599
Archimedean spiral, 526, 532
Astigmatic ray, 92
Astigmatism, 347, 389
Axial defocusing, 387
Axial mode helix antenna, 504
Axial ratio, 21, 232

Babinet–Booker principle, 222
Balanced mode, 251
Balun, 218, 251–260
Bandwidth and Q, 232, 285, 294
Batwing antenna, 234–237
Bawer and Wolfe balun, 536
Bayliss circular distribution, 200
Bayliss line distribution, 158–161
Bazooka balun, 253, 256
Beam deviation factor, 391, 404, 464
Beam efficiency, 16, 214
Beamformer feed, spiral, 522, 538
Beamwidth, 3
Beamwidth factor, 141, 194
Beamwidth relationship, 12, 342
Beverage antenna, 481
Biconical horn, 376
Binomial array, 168
Bistatic radar, 8
Blockage efficiency, 208
Blockage sidelobes, 210
Bootlace lens, 470
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Boundary conditions, 57
Box horn, 372
Branchline hybrid, 316
Breakpoint propagation analysis, 39
Brewster angle, 37
Broadwall transverse waveguide slot, 274
Bunny-ear antenna, 514
Butler matrix, 538, 594, 601
Butterfly pattern, 13

Cable derating, 18
Candelabra balun, 256, 258
Cascaded noise analysis, 33, 577
Cassegrain dual reflector, 61, 408–416

diffraction loss, 413
displaced-axis, 424
feed blockage, 410
G/T, 421
magnification, 410
Mizugutch tilt, 426
offset fed, 424
optimization synthesis, 442
shaped, 437
tolerances, 414

Caustic, 93, 405, 429
Cavity backed slot, 266, 269
Cavity mounted dipole, 245–247
Central blockage of aperture, 209
Central difference derivative, 77
Choke horn, 358
Cigar antenna, 497
Circle diagram, 109
Circular aperture, 140, 191
Circular aperture gain, 7
Circular aperture horn, 348
Circular Gaussian distribution, 194

blockage efficiency, 210
quadratic phase error, 212, 389

Circular microstrip patch antenna, 313–316
Circular polarization, 19

corrugated surface, 361
crossed dipole, 231
Smith chart cusp, 233

Circular polarization measurement, 22, 26
Circular polarization ratio, 20
Circular quad-ridged waveguide, 368
Circular space tapered array, 584
Circular waveguide slots, 276
Circularly polarized patch antennas, 316
Circularly symmetrical reflector synthesis,

434
Coaxial corrugations, 361
Coaxial dipole, 253
Coaxial line slots, 277
Coma free lens, 466, 470
Coma lobe, 390, 464
Compact patch, 319–321
Condon lobes, 403

Cone, notched, 232
Conical log spiral antenna, 543–550
Conical pattern, 3
Conic section reflectors, 405
Conjugate match, 5
Contact lens, 459, 536
Convolution synthesis, 203
Corner diffraction, 99
Corner reflector, 61–64 , 237–241
Corporate feed network, 590
Corrugated ground plane, 242, 359
Corrugated horn, 353

corrugation design, 357
Gaussian beam approximation, 365
scalar horn, 357

Corrugated rod antenna, 497
Cosecant-squared pattern, 164, 186
Cosine distribution, 142

quadratic phase error, 212
Cosine-squared distribution, 142

quadratic phase error, 212
Coupling between antennas, 29, 397
Critically coupled impedance, 303
Cross polarization, 22
Cross polarization loss, 384
Cubic phase error, 390
Cubic quad antenna, 495
Cup mounted dipole, 245
Cylinder, slotted, 262
Cylindrical array, 328
Cylindrical reflector synthesis, 433
Cylindrical wave, 93

Dielectric loss, 463, 501
Dielectric rod antenna, 499
Dielectric slab surface wave, 296
Dielectric surface loss, 463
Difference array synthesis, 183
Diffraction from curved surface, 99
Digital beamforming, 602
Diode phase shifter, 577
Dipole, 217

cavity mounted, 245–247
circular polarization, 231
cup mounting, 245
cylinder mounting, 228
directivity, 220
discone, 249
finite ground plane, 225
folded, 247
half wavelength, 47, 222
Hertzian, 46, 293
images, 224
incremental, 46, 293
microstrip, 330
notched cone, 233
over ground plane, 223
short, 46, 222, 293
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shunt feeding, 248
sleeve, 242–245
slot interaction, 232
super turnstile, 234–237
tilted, 228, 231, 589
turnstile, 231–233

Diffraction loss, 413
Directivity, 10

pencil beam, 11
omnidirectional, 13
traveling wave, 477

Directly fed stacked patches, 323
Directrix, 407
Discone antenna, 249
Disk on rod antenna, 497
Displaced axis reflector, 421
Diversity combining, 40, 601
Dolph–Chebyshev array, 136, 170–172

planar, 202
Doubly curved reflector, 437
Dragonian dual reflector, 427
Dual focus lens, 457
Dual reflector antennas, 408–416

diffraction loss, 413
displaced axis, 421
Dragonian, 427
feed blockage, 410
G/T, 421
magnification, 410
Mizugutch tilt, 426
offset fed, 424
optimization synthesis, 442
rim ellipse, 408
shaped, 437, 439
tolerances, 414

Dual surface lenses, 465
Dyadic Green’s function, 46, 59

Edge diffraction, 96
Edge equivalent currents, 99
Effective area, 6
Effective height, 27
Efficiency, 4, 49
Efficiency, polarization, 23, 27
EFIE, 58, 69
Eigen-decomposition adaptive array, 602
EIRP, 8, 35
Electric field given gain, 4
Electric field integral equation, 58, 69
Electric vector potential, 49
Electric wall, 251
Elevation angle design, 484
Ellipse, 405
Elliptical lens, 449
Elliptical pattern approximation, 12
Endfire antenna, 476
End-fire array, 105, 113–115, 167, 181
Energy radiated, 36

Equal gain combining (EGC), 601
Equiangular spiral, 527
Equivalence theorem, 55
Equivalent currents, 65, 99
Euler angles, 134
Even-mode array, 104
Even-mode circuit, 251
Expansion factor, spiral, 528, 545
Exponential spiral, 527

Fading, multipath, 39
Far-field, 55
Fast wave, 420, 480
FDTD, 43, 76–84
Feed cable derating, 18
Feed coupling errors, 328
Feed dead zones, 452
Feed mismatch, 397
Feed network antenna interaction, 540
Feed scanning, 390, 464
FEM, 43, 275
Fermat’s principle, 85
Ferrite core baluns, 256
Ferrite phase shifters, 577
Field intensity, 3
Filamentary currents, 45
Filling factor, 501
Finite ground plane, 72, 85, 108

dipole, 72, 85, 225–234
microstrip patch, 289, 312
monopole, 242
notched cone, 233
resonant loop, 263

Flat-top beam array synthesis, 176, 184
Focal plane fields, 396
Focal spot, lens, 456
Folded balun, 252
Folded dipole, 247
Fourier series array synthesis, 175–178
Fourier series pattern expansion, 526
Franklin array, 332
Frequency independent antennas, 521
Frequency scanning, 576
Fresnel zones, 39
Front-to-back ratio, 62, 399

Gain, 3, 52
array, 108, 129, 573
from electric field, 5

Gamma match, 248
Gap/arm, spiral, 528
Gaussian beam, 65, 362–365, 456
Gaussian pulse, 81
Geometric optics, 43, 84–100
Gore surface, 395
Gram–Schmidt orthogonalization,

600
Grating lobe, 107, 117, 125–127
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Great circle pattern, 3
Green’s function, 44, 46, 50, 59
Gregorian reflector, 408–416

diffraction loss, 414
displaced-axis reflector, 421
feed blockage, 410
G/T, 421
magnification, 410
Mizugutch tilt, 426
offset fed, 424
optimization synthesis, 442
shaped, 437
tolerances, 414

Growth rate, spiral, 528, 544
G/T, 33, 421
GTD, 43, 57, 84–100

Half-power beamwidth, 3
Half-wavelength balun, 256
Half-wavelength dipole, 47, 222
Hamming distribution, 143
Hansen and Woodyard endfire criterion, 114, 168,

476
Hansen single-parameter distribution, 195

blockage efficiency, 210
quadratic phase error, 213

Helical modes, 503
Helical wire antenna, 502

feeding, 506
long, 507
quadrifilar, 264
short, 508

Hertzian dipole, 46, 293
Hexagon array, 123
Horn, 336

beamwidth design, 346
biconical, 376
box, 372
choke, 358
circular, 348
corrugated, 353
Gaussian beam approximation, 365
modal expansion, 370
phase center, 347, 352, 356
rectangular, 337
ridged, 365
optimum, 343, 352, 357
scalar, 353
small, 342, 345
T-bar-fed, 374

Horn analysis, 74, 83, 87
Horn reflector, 427
Huygens polarization, 21
Huygens source approximation, 51, 57
Hybrid feeding, 231, 316
Hybrid mode, 354, 497
Hyperbola, 406
Hyperbolical lens, 449, 464

Image analysis, 58, 237
Impedance bandwidth, 3
Impedance mismatch loss, 17
Incremental current element, 46, 293
Induced current ratio (ICR), 419
Induced field ratio (IFR), 416
Induction theorem, 55
Inter-log antenna, 569
Infinite balun, 260, 538, 550
Inset-fed microstrip patch, 304
Isotropic antenna, 4
Isotropic line array, 109

k-space, 45, 140, 603

Leaky waves, 474, 480, 516
Lenses, 447

aperture distribution, 450
aperture synthesis, 468
artificial dielectric, 464
bootlace, 470
coma, 464
coma free, 466, 470
contact, 459, 536
dielectric loss, 464
dual focus, 457
dual surface, 465
feed scanning, 464
focal spot, 456
Gaussian beam analysis, 457
Luneburg, 472
metal plate, 461
Rotman, 471
scanning loss, 465
single refracting surface, 448
surface mismatch, 463
two surface design, 454, 465, 468
virtual focus, 457
zoned, 451, 462, 470

Lens analysis, 66, 450
Linear polarization ratio, 19
Linear space tapered array, 582
Link budget, 35
LMS adaptive array, 602
Log periodic antennas, 550–569

apex angle, 552
arrays, 560
beamwidth, 553
cavity back planar LP, 569
circularly polarized, 561
dipole, 551
feeding, 556
gain, 552
interlog, 569
paraboloidal reflector feed, 563
phase center, 558
scaling constant, 550
sinuous, 570
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spacing constant, 552
trapezoidal tooth, 561
trapezoidal wire outline, 562
truncation constants, 553
V-dipole, 567

Long helix antenna, 507
Long wire antennas, 481
Longitudinal waveguide slot, 273
Loop antenna, 49, 218, 260

Alford, 261
cubic quad, 495
ferrite, 260
parasitic, 264, 497
quadrifilar helix, 264
resonant, 263
small, 49, 260
Yagi-Uda, 495

Loss tangent, 296, 464, 501
Luneburg lens, 472

Magnetic currents, 49, 217, 287
Magnetic vector potential, 44
Magnetic wall, 251, 327
Marchand balun, 253, 536
Maximal ratio combining (MRC), 601
Measurement ripple, 107
Metal plate lenses, 461
MFIE, 58, 69
Microstrip, 286, 299
Microstrip patch antenna, 285

aperture fed, 306–309, 325–327
bandwidth, 293, 311, 316
capacitor tuned, 303
circular, 313–316
circularly polarized, 316–319
compact, 319–321
coplanar, 323
critically coupled feed, 303
cross-fed, 316
dipole, 330
directivity, 290
feed coupling errors, 328
finite ground plane, 289, 312
folded edge, 322
Franklin array, 332
hi-lo, 324
hybrid feed, 316
inset-fed, 304
meander, 322
network tuned, 303
overcoupled feed, 303
pattern, 287
probe feeding, 301
quarterwave, 310–313
rectangular, 299–309
scan blindness, 128
series fed array, 329
stacked, 323–327

surface wave efficiency, 293
turnstile feed, 316–319
undercoupled feed, 303
waveguide quarterwave, 313

Mismatch loss, 17
Mismatch noise, 32
Modal expansion, 370, 524–526, 538–540
Modified Taylor distribution, 155
Modulated arm width spiral, 541
Moment method, 30, 43, 67–76
Monopole, 242, 361
Monopulse tracking, 158
Monostatic radar, 8
Multimodal horn, 372, 376
Multipath, 36, 107
Multiple beam array, 118–120
Mutual coupling, 29, 66

array feed compensation, 128
Mutual impedance, 28, 67, 127

Natural balun, 260
Near-field, 2, 55
Near field measurements, 602
Noise figure, 32
Noise temperature, 30
Nonresonant array, 278
Normal mode helix antenna, 503
Notched cone, 233
Null beamwidth, 4, 142
Null beamwidth factor, 142
Null filling, 174, 184
Null formation, 599
Numerical dispersion, 80

Obliquity factor, 51, 141, 339
Odd-mode array, 104
Odd-mode circuit, 251
Offset fed reflector, 399

beam deviation factor, 404
cross polarization, 402
dual, 424
f/D, 401
geometry, 401
manufacture, 401
periscope, 404
rim ellipse, 401

Omnidirectional pattern, 13
Open sleeve dipole, 243
Optimum horn, 343, 352, 357
Orchard array synthesis, 178–188
Orthogonal polarization, 24
Over-coupled impedance, 303
Overlapped subarray, 599

Paraboloidal reflector
aperture distribution, 383
aperture efficiency, 6
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Paraboloidal reflector (continued )
approximate illumination losses, 385
array feed, 397
astigmatism, 389
axial defocusing, 387
beam deviation factor, 391, 404
beamwidth, 387
Cassegrain, 408
coma lobes, 390
conical spiral feed, 547
cross-polarization loss, 384
depth, 381
diffraction loss, 413
Dragonian dual, 427
dual reflector antennas, 408–416
edge taper, 382
feed blockage, 410
feed mismatch, 397
feed scanning, 390, 404
focal plane fields, 396
front-to-back ratio, 399
geometry, 381
gore surface, 395
Gregorian reflector, 408
log periodic feed, 563
Mizugutch tilt, 426
near field measurement, 604
normal vector, 382
offset fed reflector, 399, 424
optimization synthesis, 442
phase error loss, 384
physical optics analysis, 65
periscope, 404
radius of curvature, 382
random errors, 393
RMS surface tolerance, 394
spillover, 384
struts, 416
subreflector, 405
subtended angle, 382
vertex plate, 398

Parallel plate lens 461
Parallel plate mode, 268
Parasitic loop reflector, 264, 497
Paraxial focus, 430
Partial gain, 26
Patch antenna feed networks, 327
Path loss, 6, 9, 38
Pattern, 1
Pattern approximation, 11
PEC, 58
Pencil beam, 11
Periscope, 404
Phase center, 227, 347, 558
Phase error loss, 138–140

paraboloidal reflector, 384, 563
Phase error, multipath, 37
Phased array, 115–117, 573

array element pattern, 127, 588
average sidelobes, 581
bandwidth, 117, 576
beam scanning, 116
communication system, 601
corporate feed network, 590
errors, 580
feed network interaction, 540
frequency scanning, 575
gain, 129, 573
impedance, 127, 574
multiple beam, 118
near field measurement, 602
null formation, 599
overlapped subarrays, 599
quantization lobes, 578
reflector feed, 397
scan blindness, 127
scan impedance, 127, 574
scan increments, 580
series feed, 576, 592
space feeding, 596
space tapered, 582
statistically thinned, 587
subarrays, 597

Phase shifters (phasers), 574, 592
Physical optics, 42, 59–67
PIFA, 319–321
Planar array, 120–127, 202

convolution synthesis, 203
Planar inverted F antenna, 319–321
Plane wave, 2
PMC, 58, 234
Polarization, 18

rotated element, 134
Polarization efficiency, 23, 27
Polarization ellipse tilt, 19, 21
Polyrod antenna, 499
Poynting vector, 2
Principal plane patterns, 3
PTD, 65

Q, 3, 232, 294
dielectric, 296
surface wave, 294

Quadratic phase error, 211–214
horn, 337
reflector axial defocusing, 387

Quadridged horn, 366
Quadrifilar helix, 218, 264–266
Quantization lobes, 578
Quarterwave microstrip patch, 310

Radar cross section, 7
Radar range, 35
Radar range equation, 7
Radial line choke, 234, 361
Radiation approximation, 44
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Radiation intensity, 3
Radiation resistance, 48, 220
Ray tracing, 96
Rayleigh distribution, 39
Reactance, 30, 66, 396
Reactive power divider, 327
Receiving antenna, 18
Reciprocity, 6, 67, 252
Rectangular array, 121
Rectangular corrugated horn, 359
Rectangular horn, 337
Rectangular microstrip patch antenna, 299
Rectangular waveguide, 271
Reflected power loss, 18
Reflection boundary, 57, 86, 381
Reflection, curved surface, 94
Reflection differential equation, 432
Reflection polarization, 94
Reflector dipole, 327
Reflector parasitic loop, 264, 497
Refracted ray direction, 455
Relative propagation constant, 475
Resonant array, 278
Resonant loop antenna, 218, 263
Return loss, 17
Rhombic antenna, 483
Rhombic array, 206
Ridged waveguide horn, 365
Rim ellipse, 401, 408
Ripple, peak-to-peak, 37
RMS surface tolerance, 394, 415
Roberts balun, 253, 536
Robieux’s theorem, 396
Rotating antenna phase, 25
Rotation matrix, 133
Rotman lens, 471

Scalar horn, 353
Scaling constant, LP, 550
Scan blindness, 127
Scan element pattern, 128, 588
Scan impedance, 127, 539, 574
Schelkunoff’s unit circle method, 164–170
Selective combining (SEC), 601
Self scaling antennas, 521
Series fed array, 137, 188–192, 278–282, 329,

576, 592
Series fed distribution, 190–191
Shadow boundary, 57, 86
Shallow-cavity crossed-slot antenna, 269
Shaped reflectors, 432–443
Short backfire antenna, 509
Short current element, 46, 222, 293
Short helical antenna, 508
Shunt fed dipole, 248
Sidelobe, 3
Sidelobe decay, 143
Sidewall waveguide slots, 274

Sin θ space, 53, 140
Single refracting surface lenses, 448
Single surface (contact) lens, 459, 536
Sinuous antenna, 570
Sky temperature, 31
Sleeve antenna, 242–245, 254
Sleeve balun, 253, 256
Slope diffraction, 98
Slow wave, 478
Slot, 49, 217

cavity-backed, 266, 269
coaxial, 277
cylinder, 262
directivity, 220
impedance, 220
measurements, 274
notched cone, 232
stripline series, 266
super turnstile, 234–237
waveguide, 270–283
waveguide slot array, 278–283

Small horn, 342, 345
Small loop, 49, 260
Smart antenna, 601
Snell’s laws, 93
Soft surface, 234, 242, 361
Soil reflection, 37
Space feeding, 596
Space tapered array, 582
Spacing constant, LP, 552
Spherical aberration, 429
Spherical reflector, 429
Spherical wave, 2, 92, 405
Spillover, 384
Spiral antennas, 522–550

Archimedean, 526, 532
arm/gap, 528
arm length, 530, 544
balun feed, 536
beamformer feed, 522, 538
conical, 543–550
construction, 521, 535–538
contact lens, 536
equiangular, 527
expansion factor, 528, 545
feed network interaction, 540
gap/arm, 528
growth rate, 528
measurements, 526, 538
modal expansion, 522, 524–526
modal impedance, 529
modulated arm width, 541
paraboloidal reflector feed, 547
pattern, 522, 530–534
wrap angle, 528, 544

Spiral modes, 522
Split-coax balun, 255
Split-tube balun, 259, 536, 550
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Squint, 252, 403
Stacked microstrip patch antennas, 323
Standing wave current, 218–220, 272,

481
Statistically thinned array, 587
Stripline series slot, 266–269
Structural mode RCS, 9
Struts, 416–421
Subdomain growth method, 540
Super turnstile, 234–237
Superdirectivity, 168
Surface mismatch, 463
Surface wave antenna design, 479
Surface waves, 293, 475
Surface wave, dielectric slab, 296–299
Surface wave efficiency, 293, 324
Surface wave scan blindness, 128
Switch combining (SWC), 601

T-bar fed slot antenna, 374
T -match, 248
Takeoff angle design, 484
Taper loss, 137–140

array, 580
paraboloidal reflector, 383

Tapered slot antenna, 512
Taylor circular aperture distribution, 196–200

blockage efficiency, 210
blockage sidelobes, 210
quadratic phase error, 213

Taylor modified distribution, 155–158
Taylor n line distribution, 147–152
Taylor one-parameter distribution, 144
Taylor line distribution with edge nulls, 152
Tenth-power beamwidth, 3
Thèvenin equivalent circuit, 18
Thinned array, 582
Three-wire line, 251
Tilt of polarization, 19
Time-harmonic wave, 2
Transformer balun, 258
Transmit/receive TR module, 577
Transverse resonance, 366
Traveling waves, 475
Traveling wave current, 481
Traveling wave distribution, 188, 279
Triangular array, 123

Triangular distribution, 142
Turnstile dipole, 231, 316
Turnstile feed, 231–233, 265, 316
Two-surface lens, 454, 466, 468

Unbalanced mode, 251
Under-coupled impedance, 303
Uniform distribution, 52, 140, 191

quadratic phase error, 212
traveling wave, 476

Uniform linear array, 109
Unit circle method, 164–170

V wire antenna, 482
Variable power divider, 592
Vector effective height, 27
Vector potential, 43, 50
Vector propagator, 59
Vertex plate, 398
Vestigial lobe, 3, 390
Villeneuve array synthesis, 172
Virtual focus lens, 457
Visible region, 110, 125
Vivaldi antenna, 513
Voltage reflection coefficient, 17
VSWR, 17

Wave number, 2
Waveguide, rectangular, 271
Waveguide slot, 218, 270–283
Waveguide slot array, 278–283
Wavelength, 2
Wire cage, 72–74 , 245, 249
Wire frame model, 73
Woodward line source synthesis,

162–164
Wrap angle, spiral, 528, 544

Yagi–Uda antennas, 485–497
dipole, 486
multiple feed, 492
optimized over band, 488
resonant loop, 495

Yee’s cell, 78

Zero sampling for array, 173
Zoned lenses, 451, 462, 470


